
Cryptography by D. Coppersmith

244

This paper is concerned with two aspects of
cryptography in which the author has been
worl(ing. One is the Data Encryption Standard
(DES), developed at IBIM and now in wide use
for commercial cryptographic applications. This
is a "private key" system; the communicants
share a secret key, and the eavesdropper will
succeed if he can guess this key among its
quadrillions of possibilities. The other is the
Diffie-Hellman key exchange protocol, a typical
"public key" cryptographic system. Its security
is based on the difficulty of taking "discrete
logarithms" (reversing the process of
exponentiation in a finite field). We describe the
system and some analytic attacks against it.

Introduction
I have been asked to give "timeless and immortal"
comments on the subject of "cryptography." Instead I will
give a somewhat technical presentation of the niche within
cryptography where I have done some of my work. I will
concentrate on two subjects: the Data Encryption Standard
(DES) and the discrete logarithm problem (Diffie-Hellman
key exchange). The opinions in this paper are purely
personal and are not intended to represent IBM poUcy.

Cryptography is the art of secret writing, or devising ways
of transmitting messages so that others cannot read them.
Cryptanalysis is the art of breaking such cryptographic
schemes, thus reading the heretofore secret messages.
I believe that some solid experience in the latter is a
prerequisite to the successful practice of the former art; one
cannot devise strong systems without some idea of the
manner of attacks to which such systems are likely to be
subject. This paper will include aspects of each field.

^Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

DES
The Data Encryption Standard, or DES, was developed at
IBM during the period 1973-74.1 consider this to be a
crowning achievement of the Yorktown Mathematical
Sciences Department, although our department certainly did
not act alone. Among the people involved in this project at
IBM in Yorktown were Horst Feistel (the designer of the
original "Lucifer" scheme), Alan Konheim, Bryant
Tuckerman, Edna Grossman, and myself (all in the
Mathematical Sciences Department), as well as Bill Notz and
Lynn Smith, who did much of the implementation. IBM
Kingston was well represented, and the Crypto Competency
Center there now "owns" this product. We were assisted by
several outside consultants, and benefited greatly from the
expertise of the National Security Agency.

The basic structure of DES was inherited from the earlier
"Lucifer" machine [1]. There is a secret 56-bit key, under
whose influence a 64-bit cleartext (input) is transformed into
a 64-bit ciphertext (output). The input message is broken
into two halves, "left" and "right." During the first of sixteen
"rounds," the 32-bit right half, along with 48 of the 56 key
bits, is fed into a nonlinear function F. The 32-bit output of
this function, added to the left half message, becomes the
new right half message. In the meantime, the old right half
message is funneled forward to become the new left half
message. Thus ends one round. The process is repeated
sixteen times, using a different selection of 48 key bits each
time. The final left half and right half messages become the
ciphertext.

With this design, decipherment is easily performed, as
long as one possesses the same key. One simply climbs back
up the ladder, reversing the effects of one round at a time.
One sees the new left half message and the new right half, as
well as the key. The new left is the same as the old right;
that, and the appropriate 48 key bits, are fed into F. The
32-bit output of î is subtracted from the new right half to
obtain the old left half Thus can one reverse one round, and
by repeated application, one reverses the entire encryption.

DES is described more fully in the books by Meyer and
Matyas [2] and Konheim [3].

D. COPPERSMITH IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

I was a student at the time of the development, working
summers, but I am proud of my small part in this project.
This cryptographic engine, small enough to fit on a chip in
1974, has withstood all analytic attacks since then. Many
papers have been published, focusing on apparent anomalies
in the design and attempting to create analytic attacks
against the system. But to my knowledge nobody has ever
come up with a shortcut that would make cryptanalysis
easier than key exhaustion.

The quickest known way is to try all 2'* possible keys to
see which keys encipher a given plaintext into a known
ciphertext. Now 2" = 7.2 x lO'* is 72 quadriUion. That's a
lot of operations. With advancing technology and parallel
architectures, there is a perception that 2^ encryptions is a
feasible task. I do not agree with that perception yet, but the
viewpoint is being loudly touted and widely beUeved. For
those skeptics, we also have Plan B: triple encryption, which
is in use in several installations. Choose three independent
keys, encipher your plaintext under the first key, re-encipher
the ciphertext under the second key, and once again under
the third key. (Some prefer the sequence "encrypt, decrypt,
encrypt," which allows compatibility with single-key
systems.) This costs three times as much, but the security
gain is tremendous: The apparent work factor is now
2112 ^ ^2'Y = 5.2 X 10". I beUeve there is a word for that
number—"decillions"—but I don't believe there is a
machine for it, or ever will be. [The apparent work factor is
(2^f rather than (2^*)' because of a "meet in the middle"
attack.]

Key passing
DES gives us a way of communicating secret information
across a public channel: I encrypt the data under a secret key
(or three secret keys), and send you the ciphertext; you
possess the same secret key(s) and can decipher, recovering
the plaintext. But how did you and I agree on the same
secret keys? If we had a way of passing secret keys, why did
we not use the same path for passing our secret messages and
do away with DES altogether?

One possible answer to this question is given by Diffie and
Hellman [4]. They propose a "public key" scheme for secret
passing, based on exponentiation in a finite field. I will
describe the later variant due to Shamir, Rivest, and
Adleman [5], which is a little more flexible.

• Logarithms in GF(p)
Suppose I wish to tell you a secret, but you and I have never
previously shared any secret which we could use as a
cryptographic key. We agree on a large prime p. This can be
done in public. I wish to send you the secret y. I represent y
as an element of the finite field GF(p) (the integers mod p). I
also select two integers, c and c~', such that cc~^ = 1 mod
p—\, and keep these integers secret. You select two secret
integers d and rf~' such that dd~^ » 1 mod p - 1, and keep

these secret as well. By repeated squaring, I compute the field
element y, that is / mod p, and send that field element to
you. You raise this to the d power in the field, and send me
the resulting element /**. I raise this to the c~' power,
obtaining y , which I send to you. You raise that to the d~'
power and obtain the secret y.

The eavesdropper knows the field GF(p), and three
elements: / , y' ,y . Suppose that he knows how to extract
the integer d from the field elements / and / ' ' = (/)' '; i.e.,
he can tell what power / must be raised to in order to
obtain / . This is the finite field analog of taking logarithms,
and is today called the "discrete logarithm" problem. An
eavesdropper with this power could break the system: From
/ and J?" he could recover d, and this, along with y'', would
give him y. (There may be other ways of breaking the
system; it has not been proven that it is as hard as discrete
logarithms.) This gives a cryptanalytic motivation to the
study of discrete logarithms.

Question No. 1: "What's the point? I know how to take
logarithms of real numbers; can it be that much harder
in finite fields?"

Answer No. 1: "Yes: it's an entirely diflferent problem.
In the reals, we can use power series expansions to find
successive approximations to the real logarithm, and if
we get twenty-digit accuracy, that's enough for all
practical purposes. But in the finite field case, there are
no 'approximations'; a miss is as good as a mile.
Further, there is no way even to tell whether you are
getting 'close,' because there is no such thing as 'close'
here."

To fix notation, suppose that ^ is a generator of GF(p),
meaning that powers of Z> take on each nonzero residue
mod p. Let y = log^x £ Z/(p — 1) be an integer y such that
b'' = xeGF(p).

An early method for solving this problem, attributed to
Roland Silver [6], is the "giant steps, baby steps" technique.
It runs in time Vp, or more precisely, v^, where q is the
largest prime dividingp- I. The technique is similar to a
Vernier caUper: you make two lists of size -Jp each, and
where the two lists have a common element, you compute
your logarithm from that intersection. Setk= [y/p] + 1, and
make two lists: xb', / = 0, 1, •••,k- 1, and fr**,
7 = 0, 1, •••,k- 1. Look for a common element, and
compute xb' = b''', so that x = *̂̂ *~", and log^x =jk- i.

More eflScient techniques are given by Western and Miller
[7] and Adleman [8]. Their algorithms are based on
smoothness, the same concept that pervades many of the
modem integer factorization algorithms. One selects a
"smoothness bound"

i3^/logj>loglogp

B = e

for a small constant /?. Say that an integer x is "smooth" 245

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987 D. COPPERSMITH

(with respect to B) if it is expressible as the product of small
primes Qj < B:

x= n q?.
(II<B

The intermediate goal is to find log^ ,̂ for each of the small
primes Qi < B. To this end, we will develop a system of
linear equations relating these logarithms:

Sa, logi^, = Iftlogfc ,̂ in Zlip - 1).

Exponentiating such a linear equation, we would find

n ? ? = n^?' mod p.

Thus our goal is to relate smooth numbers multiplicatively
mod p.

Adleman's method of doing this involves selecting random
integers z and computing b' mod p, thus creating a random
integer between 1 and p— \. If this integer happens to be
smooth, then its expression as the product of small primes
gives us one of the equations we need:

A ' » n « r m o d A

z = Ea,log49, in Zl{p - 1).

If the integer is not smooth, we get nothing. Thus the
amount of trial and error depends on the proportion of
smooth integers in this range.

Having gathered many such equations, we solve the
system of linear equations, to obtain the logarithms of all the
small primes. [The equations are in a finite ring Zl(p — 1),
but this poses no problems.] Now we are in a position to
find individual logarithms. To find x = logj,c, we first
randomize: Select a random integer z, compute y = cb' mod
p, and ask whether y is smooth. If it is, its expression as the
product of small primes gives us our answer:

ymcb'm H^J' mod p,

lOgjC + Z = 27,l0gi9,

The running time is dominated by the search for smooth
numbers, and this governs our choice of 5. If J8 is too large,
we will have to gather too many equations (one for each
small prime) before we can solve the system. If 5 is too
small, smooth numbers will be too scarce and we will have
too much trial and error. The selection of 5 as eP>"ogpiogiogp

246

gives an optimal running time of '̂'" '̂*''''̂ '*''. Variants on
this algorithm have improved the constant y [9].

• Logarithms infields of characteristic two
The key exchange protocol has since been extended to finite
fields of the form GF(2"). The protocol itself is unchanged,
except that arithmetic is carried on in the field GF(2"). The
circuitry for carrying out this arithmetic seems to be easier
than for fields GF(p) of comparable size. However, my 1983
work [10] shows that the cryptanalysis is also easier in

GF(2"), so that the trade-off between security and ease of
implementation is not clear-cut. I wall describe this work
next.

GF{2") can be represented as the set of polynomials A{x)
with coefficients in GF{2) (the field of integers mod 2),
reduced modulo a fixed irreducible polynomial P{x) of
degree n. We assume that P{x) is in fact primitive, meaning
that powers of jc in the field, x' mod P(x), take on all the
nonzero values A{x) mod P{x). The logarithm is defined as
before: y = \o%^A{x) if x^ = A(x) mod P{x). The logarithm
y lives in the ring Z/(2" — 1).

It is handy to bear in mind a rough correspondence
between notions in GFiX) and the corresponding notions in
GF{p).

GF{p) GF(2")

integer

prime

small prime

polynomial

irreducible polynomial

irreducible polynomial
of small degree

Using such a correspondence, Hellman and Reyneri [H]
adapted the Adleman algorithm to find logarithms in
GF(2"). Choose a smoothness bound b = c^n log n. Say
that A(x) is smooth if it is the product of irreducible
polynomials g^ix) of degree at most b. Select a random z,
compute yi(A:) • x' mod P(x), and ask whether A(x) is
smooth. If so, its explicit representation as the product of
small irreducible polynomials gives a linear equation relating
the logarithms of these small irreducible polynomials:

A(x) 'x'm UQiixf mod P{x),

z = loilog^q.(x).

Collect enough such equations, solve the system, and obtain
the logarithms of all the small irreducible polynomials.
Finally, to find the logarithm of a given element, multiply by
a random power ofx, reduce mod Fix), and hope that the
result is smooth. If so, the expression in terms of small
irreducible polynomials gives the desired logarithm. The

running time of their algorithm is ei"^"'°*"; recalling that n is
comparable to log p for fields of comparable size, we see that
this running time is comparable to that of Adleman for the
case of GF{p).

One can do better than this, however. To motivate my
work, consider: The smaller a polynomial (in terms of
degree), the more likely it is to be smooth. Each
multiplicative relation [mod P{x)] between smooth
polynomials gives us one of the desired equations relating
the logarithms of the small irreducible polynomials.
Therefore, we want to find a source of multiplicative
relations [mod P{x)] among rather small polynomials.

D. COPPERSMiTH IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

We take advantage of the following peculiarity of fields of
characteristic two: Squaring is a linear operation. That is,
(A + Sf =A^ + B^, since the usual 2AB term drops out
(2 = 0 here).

Consider the example of GF(2), where we actually
applied the techniques I will describe. Let the field be defined
by P(x) = x ' " + X + 1. (It turns out that we are free to
choose the defining polynomial at our convenience, as long
as it is irreducible and of the right degree.)

Select two arbitrary polynomials A{x), B(x) of degree at
most 10. Construct C{x) = x^^A{x) + B(x). Set D(x) =
Cix)* mod P{x). We find

D(x) ^ C(x)* = x'^U(x)* + B(xt

= (x^ + x)A(x)* + B(x)* mod P(x),

where the second equality follows from the linearity of
squaring, and the third follows from the fact that here
jc'̂ * sx^ + x mod P(x). Notice that both C(jc) and D{x)
are of relatively small degree: at most 42. Thus there is a
good chance that both C{x) and D(x) are smooth; if so, the
equation D(x) = C(x)* mod P{x), together with the explicit
representations of C(x) and D(x) as the products of small
irreducible polynomials, yields a linear equation relating the
logarithms of the small irreducible polynomials:

n^iixf = D(x) = Cix)' = dlQiixT')* mod P{x),

iPilog^x) = S4a,log^^,(^)-

Because of this source of multiplicative relations among
smooth polynomials [mod P(x)], we are faced with less trial
and error. This in fact gives us a running time of

e ,

compared with the previous time of
<:'n"^(log«)"^

Skeptical remark No. 2: "So, you've decreased 1/2 to
1/3. Who cares?"

Answer No. 2: "Ah, but it's in the second exponential!
A little change makes a big difference there."

Skeptical remark No. 3: "These are all asymptotic
estimates. Given the speaker's work on matrix
multiplication [12] (where the asymptotically fast results
only work for matrices larger than the size of the known
universe), how seriously should we take these
estimates?"

Answer No. 3: "In the field GF{2^'), a moderately sized
field, we did in a few minutes what the competing
schemes were taking days to do. Our advantage will
increase for larger fields."

We compare GF(2") with GF{p). My work shows that the
cryptanalysis in GF(2") is roughly exponential in the cube

root of the number of bits, compared to roughly exponential
in the square root of the number of bits for GF{p). Thus, for
a comparable level of security, the GF{2") case must use a
much larger key size. But since the arithmetic is so much
easier to implement in circuitry for GF{2") than for GF(p),
it remains a viable alternative. I had hoped to have killed the
scheme with this work, but that does not seem to be the
case.

• Elliptic curves
The key-passing scheme has been described in two flavors of
finite field: GF(p) and GF{1"). But in fact it never makes
use oi addition in the finite field, only multiplication. The
scheme will generalize to any finite Abelian group.

At Crypto '85, Victor Miller [13] described an adaptation
of the Diffie-Hellman scheme to a finite elliptic curve. This
has the appearance of being much harder to break, although
not as many people have been trying to break it, so its
apparent strength remains to be fully tested.

Select a large prime /, and integers A, B. An elliptic curve
E,'\s given as the set of solutions of a given cubic equation,
together with an extra point at infinity:

E,= {(x,y)\x,yGZ/f,y^ ^ x^ + Ax + B mod/] U {oo).

The group operation is defined by a geometric construction.
If P and Q are elements of E/, draw the line joining P and Q
in (x, y)-space. The line will intersect the curve in one other
point. Reflect this point about the ;c-axis, and the reflection
will be called the sum (P + Q). There are also rules to
handle the special cases when the Une has only two points of
intersection (one being a "tangent point") or when the Une is
vertical (necessitating the extra point at infinity). It can be
shown that the group operation so defined is associative and
commutative, so that we really have a finite Abelian group.
Its size I E,\ is between /+ 1 - 2-J/and /+ 1 + 2-J'f, and
achieves any integer in that range.

We know how to add two points P and Q on the curve E,.
By repeated duplication, we can take an integer multiple of a
point: If P e £•/, « e Z, we can form nP = P + P+ ••• + P.
(Repeated duplication means 12^=6^+ 6P.) But the
reverse problem (corresponding to the "logarithm") appears
to be difficult: Given P,Q& E,, find an integer n such that
Q = nP. In fact it appears to be much more difiicult than the
corresponding problem in GF(p).

The key-passing scheme is by now familiar. We agree on /,
A, B, and thus £,. We find its size f = \E,\. (This in itself
seems to be fairly difficult, but not insurmountable.) I wish
to pass you the secret y, which I represent as a point P e E,.
I select auxiliary secret integers c, c~ with cc~' = 1 mod /'.
You select d,d~\l pass you cP, you pass me cdP, I pass you
dP, and you compute P. The eavesdropper can crack the
scheme if he can find "logarithms" as described above:
Given P,QS E,, find « G Z such that Q = nP. 247

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987 D. COPPERSMITH

248

This logarithm problem seems to be difficult. The
smoothness techniques do not seem to work any more.
Before, we were taking an element of GF(p) and lifting it to
Z, that is, taking an integer between 1 and p - 1 and asking
whether that integer is the product of small primes in Z.
Trying an analogous procedure here, we find that the
rational points on the rational elliptic curve

EQ = \{x, y)\x, y&Q^/^x' +Ax+B]\J |oo)

are too large to be of much help: To lift a general point from
E, to EQ we would take too long just writing down the
numerators and denominators of the coefficients.

The only technique which is known to work in this case is
the "giant steps, baby steps" method of Roland Silver, which
takes time V^, where q is the largest prime dividing \E,\.
(His method will work for any finite Abelian group, in fact.)
By judicious choice oil. A, B, we can force ^ to be as large
as/.

Put another way, for the same apparent level of security,
one can allow the prime /here to be much smaller than the
prime p in the original Diffie-Hellman scheme. Rough
estimates suggest that we can deal with integers of 128 bits
rather than 512. This means (first) that the modular
multiplications involved in group operations are much easier
(being on smaller integers), and (second) that there are fewer
group operations to perform, since the number of group
operations per exponentiation is roughly log2/= 128 rather
than logjP = 512. The group operations themselves are more
complicated: They seem to require nine multiplications
rather than one. But the net result is that, for the same
apparent level of security, the eUiptic curve method can be
faster by a factor of 7:1. Thus this method is promising, and
bears a closer examination.

I summarize the best known running time of the discrete
logarithm problem for the three cases examined:

GF{p) '̂•.<"«p)"'<"«'°«"'"̂

GF(2") e'^""'"'"^-^,

E, e^^"*"' = V/(C3 = 1/2).

All are exponential in some fractional power of number of
bits, and this fraction in the second exponent is the
important measure: 1/2 for GF{p\ 1/3 for GF(2"), and 1 for
the elliptic curves. Thus elliptic curves are apparently much
harder than GF(p), which is in turn harder than GF(2").

Summary
I have attempted to give some flavor of the techniques
involved in the discrete logarithm problem, which is one
instance of cryptanalysis. I have also attempted to
communicate some of the excitement I feel in working with
cryptographic problems, and some of the pride I feel for
having been associated with DES, especially the latter. DES
has been much maligned in the popular press, and I

welcome this opportunity to defend it publicly. I view it as
one of the fine contributions of a fine department, now
happily celebrating its twenty-fifth anniversary.

References
1. H. Feistel, "Cryptography and Computer Privacy," Sci. Amer.

228, 15-23 (May 1973).
2. C. H. Meyer and S. M. Matyas, Cryptography: A New

Dimension in Computer Data Security, John Wiley, New York,
1982.

3. A. G. Konheim, Cryptography: A Primer, John Wiley, New
York, 1981.

4. W. Diffie and M. E. Hellman, "New Directions in
Cryptography," IEEE Trans. Info. Theory 17-22,644-654
(1976).

5. A. Shamir, R. L. Rivest, and L. M. Adieman, "Mental Poker,"
MIT/LCS/TM-125, Laboratory for Computer Science,
Massachusetts Institute of Technology, 545 Technology Square,
Cambridge, MA 02139, February 1979.

6. S. C. Pohlig and M. Hellman, "An Improved Algorithm for
Computing Logarithms over GF(p) and Its Cryptographic
Significance," IEEE Trans. Info. Theory 17-24, 106-110 (1978).

7. A. E. Western and J. C. P. Miller, Tables of Indices and
Primitive Roots, Royal Society Mathematical Tables, Vol. 9,
Cambridge University Press, England, 1968.

8. L. M. Adieman, "A Subexponential Algorithm for the Discrete
Logarithm Problem with Applications to Cryptography,"
Proceedings, 20th IEEE Found. Comp. Sci. Symp., 1979, pp.
55-60.

9. D. Coppersmith, A. M. Odlyzko, and R. Schroeppel, "Discrete
Logarithms in GFip)," Algorithmica 1, 1-15 (1986).

10. D. Coppersmith, "Fast Evaluation of Logarithms in Fields of
Characteristic Two," IEEE Trans. Info. Theory TT-30, 587-594
(1984).

11. M. E. Hellman and J. M. Reyneri, "Fast Computation of
Discrete Logarithms in GFig)," Advances in Cryptology:
Proceedings of CRYPTO '82, D. Chaum, R. Rivest, and
A. Sherman, Eds., Plenum Publishing Co., New York, 1983,
pp. 3-13.

12. D. Coppersmith and S. Winograd, "On the Asymptotic
Complexity of Matrix Multiplication," SI AM J. Comput. 11,
No. 3,472-492 (1982).

13. V. S. Miller, "Use of Elliptic Curves in Cryptography," Advances
in Cryptology: Proceedings of Crypto '85, Hugh C. Williams,
Ed., Springer-Verlag Lecture Notes in Computer Science, Vol.
218, 1986, pp. 417-426.

Received August 28, 1986; accepted for publication
November 5, 1986

Don Coppersmith IBM Thomas J. Watson Research Center.
P.O. Box 218, Yorktown Heights, New York 10598. Dr. Coppersmith
received the B.S. in mathematics from the Massachusetts Institute of
Technology, Cambridge, in 1972 and the M.S. and Ph.D. in
mathematics from Harvard University, Cambridge, Massachusetts,
in 1975 and 1977. He was the winner of the Putnam Mathematical
Contest in 1968,1969,1970, and 1971. He is currently manager of
the Theory of Computation group at the Thomas J. Watson
Research Center, where he has been a Research Staff Member since
1977. His research interests include cryptography, computational
complexity, combinatorics, and coding theory.

D. COPPERSMrrH IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

