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This paper is concerned with two aspects of 
cryptography in which the author has been 
worl(ing. One is the Data Encryption Standard 
(DES), developed at IBIM and now in wide use 
for commercial cryptographic applications. This 
is a "private key" system; the communicants 
share a secret key, and the eavesdropper will 
succeed if he can guess this key among its 
quadrillions of possibilities. The other is the 
Diffie-Hellman key exchange protocol, a typical 
"public key" cryptographic system. Its security 
is based on the difficulty of taking "discrete 
logarithms" (reversing the process of 
exponentiation in a finite field). We describe the 
system and some analytic attacks against it. 

Introduction 
I have been asked to give "timeless and immortal" 
comments on the subject of "cryptography." Instead I will 
give a somewhat technical presentation of the niche within 
cryptography where I have done some of my work. I will 
concentrate on two subjects: the Data Encryption Standard 
(DES) and the discrete logarithm problem (Diffie-Hellman 
key exchange). The opinions in this paper are purely 
personal and are not intended to represent IBM poUcy. 

Cryptography is the art of secret writing, or devising ways 
of transmitting messages so that others cannot read them. 
Cryptanalysis is the art of breaking such cryptographic 
schemes, thus reading the heretofore secret messages. 
I believe that some solid experience in the latter is a 
prerequisite to the successful practice of the former art; one 
cannot devise strong systems without some idea of the 
manner of attacks to which such systems are likely to be 
subject. This paper will include aspects of each field. 
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payment of royalty provided that (1) each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
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other portions, of this paper may be copied or distributed royalty 
free without further permission by computer-based and other 
information-service systems. Permission to republish any other 
portion of this paper must be obtained from the Editor. 

DES 
The Data Encryption Standard, or DES, was developed at 
IBM during the period 1973-74.1 consider this to be a 
crowning achievement of the Yorktown Mathematical 
Sciences Department, although our department certainly did 
not act alone. Among the people involved in this project at 
IBM in Yorktown were Horst Feistel (the designer of the 
original "Lucifer" scheme), Alan Konheim, Bryant 
Tuckerman, Edna Grossman, and myself (all in the 
Mathematical Sciences Department), as well as Bill Notz and 
Lynn Smith, who did much of the implementation. IBM 
Kingston was well represented, and the Crypto Competency 
Center there now "owns" this product. We were assisted by 
several outside consultants, and benefited greatly from the 
expertise of the National Security Agency. 

The basic structure of DES was inherited from the earlier 
"Lucifer" machine [1]. There is a secret 56-bit key, under 
whose influence a 64-bit cleartext (input) is transformed into 
a 64-bit ciphertext (output). The input message is broken 
into two halves, "left" and "right." During the first of sixteen 
"rounds," the 32-bit right half, along with 48 of the 56 key 
bits, is fed into a nonlinear function F. The 32-bit output of 
this function, added to the left half message, becomes the 
new right half message. In the meantime, the old right half 
message is funneled forward to become the new left half 
message. Thus ends one round. The process is repeated 
sixteen times, using a different selection of 48 key bits each 
time. The final left half and right half messages become the 
ciphertext. 

With this design, decipherment is easily performed, as 
long as one possesses the same key. One simply climbs back 
up the ladder, reversing the effects of one round at a time. 
One sees the new left half message and the new right half, as 
well as the key. The new left is the same as the old right; 
that, and the appropriate 48 key bits, are fed into F. The 
32-bit output of î  is subtracted from the new right half to 
obtain the old left half Thus can one reverse one round, and 
by repeated application, one reverses the entire encryption. 

DES is described more fully in the books by Meyer and 
Matyas [2] and Konheim [3]. 
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I was a student at the time of the development, working 
summers, but I am proud of my small part in this project. 
This cryptographic engine, small enough to fit on a chip in 
1974, has withstood all analytic attacks since then. Many 
papers have been published, focusing on apparent anomalies 
in the design and attempting to create analytic attacks 
against the system. But to my knowledge nobody has ever 
come up with a shortcut that would make cryptanalysis 
easier than key exhaustion. 

The quickest known way is to try all 2'* possible keys to 
see which keys encipher a given plaintext into a known 
ciphertext. Now 2" = 7.2 x lO'* is 72 quadriUion. That's a 
lot of operations. With advancing technology and parallel 
architectures, there is a perception that 2^ encryptions is a 
feasible task. I do not agree with that perception yet, but the 
viewpoint is being loudly touted and widely beUeved. For 
those skeptics, we also have Plan B: triple encryption, which 
is in use in several installations. Choose three independent 
keys, encipher your plaintext under the first key, re-encipher 
the ciphertext under the second key, and once again under 
the third key. (Some prefer the sequence "encrypt, decrypt, 
encrypt," which allows compatibility with single-key 
systems.) This costs three times as much, but the security 
gain is tremendous: The apparent work factor is now 
2112 ^ ^2'Y = 5.2 X 10". I beUeve there is a word for that 
number—"decillions"—but I don't believe there is a 
machine for it, or ever will be. [The apparent work factor is 
(2^f rather than (2^*)' because of a "meet in the middle" 
attack.] 

Key passing 
DES gives us a way of communicating secret information 
across a public channel: I encrypt the data under a secret key 
(or three secret keys), and send you the ciphertext; you 
possess the same secret key(s) and can decipher, recovering 
the plaintext. But how did you and I agree on the same 
secret keys? If we had a way of passing secret keys, why did 
we not use the same path for passing our secret messages and 
do away with DES altogether? 

One possible answer to this question is given by Diffie and 
Hellman [4]. They propose a "public key" scheme for secret 
passing, based on exponentiation in a finite field. I will 
describe the later variant due to Shamir, Rivest, and 
Adleman [5], which is a little more flexible. 

• Logarithms in GF(p) 
Suppose I wish to tell you a secret, but you and I have never 
previously shared any secret which we could use as a 
cryptographic key. We agree on a large prime p. This can be 
done in public. I wish to send you the secret y. I represent y 
as an element of the finite field GF(p) (the integers mod p). I 
also select two integers, c and c~', such that cc~^ = 1 mod 
p—\, and keep these integers secret. You select two secret 
integers d and rf~' such that dd~^ » 1 mod p - 1, and keep 

these secret as well. By repeated squaring, I compute the field 
element y, that is / mod p, and send that field element to 
you. You raise this to the d power in the field, and send me 
the resulting element /**. I raise this to the c~' power, 
obtaining y , which I send to you. You raise that to the d~' 
power and obtain the secret y. 

The eavesdropper knows the field GF(p), and three 
elements: / , y' ,y . Suppose that he knows how to extract 
the integer d from the field elements / and / ' ' = (/)' '; i.e., 
he can tell what power / must be raised to in order to 
obtain / . This is the finite field analog of taking logarithms, 
and is today called the "discrete logarithm" problem. An 
eavesdropper with this power could break the system: From 
/ and J?" he could recover d, and this, along with y'', would 
give him y. (There may be other ways of breaking the 
system; it has not been proven that it is as hard as discrete 
logarithms.) This gives a cryptanalytic motivation to the 
study of discrete logarithms. 

Question No. 1: "What's the point? I know how to take 
logarithms of real numbers; can it be that much harder 
in finite fields?" 

Answer No. 1: "Yes: it's an entirely diflferent problem. 
In the reals, we can use power series expansions to find 
successive approximations to the real logarithm, and if 
we get twenty-digit accuracy, that's enough for all 
practical purposes. But in the finite field case, there are 
no 'approximations'; a miss is as good as a mile. 
Further, there is no way even to tell whether you are 
getting 'close,' because there is no such thing as 'close' 
here." 

To fix notation, suppose that ^ is a generator of GF(p), 
meaning that powers of Z> take on each nonzero residue 
mod p. Let y = log^x £ Z/(p — 1) be an integer y such that 
b'' = xeGF(p). 

An early method for solving this problem, attributed to 
Roland Silver [6], is the "giant steps, baby steps" technique. 
It runs in time Vp, or more precisely, v^, where q is the 
largest prime dividingp- I. The technique is similar to a 
Vernier caUper: you make two lists of size -Jp each, and 
where the two lists have a common element, you compute 
your logarithm from that intersection. Setk= [y/p] + 1, and 
make two lists: xb', / = 0, 1, •••,k- 1, and fr**, 
7 = 0, 1, •••,k- 1. Look for a common element, and 
compute xb' = b''', so that x = *̂̂ *~", and log^x =jk- i. 

More eflScient techniques are given by Western and Miller 
[7] and Adleman [8]. Their algorithms are based on 
smoothness, the same concept that pervades many of the 
modem integer factorization algorithms. One selects a 
"smoothness bound" 

i3^/logj>loglogp 

B = e 

for a small constant /?. Say that an integer x is "smooth" 245 
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(with respect to B) if it is expressible as the product of small 
primes Qj < B: 

x= n q?. 
(II<B 

The intermediate goal is to find log^ ,̂ for each of the small 
primes Qi < B. To this end, we will develop a system of 
linear equations relating these logarithms: 

Sa, logi^, = Iftlogfc ,̂ in Zlip - 1). 

Exponentiating such a linear equation, we would find 

n ? ? = n^?' mod p. 

Thus our goal is to relate smooth numbers multiplicatively 
mod p. 

Adleman's method of doing this involves selecting random 
integers z and computing b' mod p, thus creating a random 
integer between 1 and p— \. If this integer happens to be 
smooth, then its expression as the product of small primes 
gives us one of the equations we need: 

A ' » n « r m o d A 

z = Ea,log49, in Zl{p - 1). 

If the integer is not smooth, we get nothing. Thus the 
amount of trial and error depends on the proportion of 
smooth integers in this range. 

Having gathered many such equations, we solve the 
system of linear equations, to obtain the logarithms of all the 
small primes. [The equations are in a finite ring Zl(p — 1), 
but this poses no problems.] Now we are in a position to 
find individual logarithms. To find x = logj,c, we first 
randomize: Select a random integer z, compute y = cb' mod 
p, and ask whether y is smooth. If it is, its expression as the 
product of small primes gives us our answer: 

ymcb'm H^J' mod p, 

lOgjC + Z = 27,l0gi9, 

The running time is dominated by the search for smooth 
numbers, and this governs our choice of 5. If J8 is too large, 
we will have to gather too many equations (one for each 
small prime) before we can solve the system. If 5 is too 
small, smooth numbers will be too scarce and we will have 
too much trial and error. The selection of 5 as eP>"ogpiogiogp 
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gives an optimal running time of '̂'" '̂*''''̂ '*''. Variants on 
this algorithm have improved the constant y [9]. 

• Logarithms infields of characteristic two 
The key exchange protocol has since been extended to finite 
fields of the form GF(2"). The protocol itself is unchanged, 
except that arithmetic is carried on in the field GF(2"). The 
circuitry for carrying out this arithmetic seems to be easier 
than for fields GF(p) of comparable size. However, my 1983 
work [10] shows that the cryptanalysis is also easier in 

GF(2"), so that the trade-off between security and ease of 
implementation is not clear-cut. I wall describe this work 
next. 

GF{2") can be represented as the set of polynomials A{x) 
with coefficients in GF{2) (the field of integers mod 2), 
reduced modulo a fixed irreducible polynomial P{x) of 
degree n. We assume that P{x) is in fact primitive, meaning 
that powers of jc in the field, x' mod P(x), take on all the 
nonzero values A{x) mod P{x). The logarithm is defined as 
before: y = \o%^A{x) if x^ = A(x) mod P{x). The logarithm 
y lives in the ring Z/(2" — 1). 

It is handy to bear in mind a rough correspondence 
between notions in GFiX) and the corresponding notions in 
GF{p). 

GF{p) GF(2") 

integer 

prime 

small prime 

polynomial 

irreducible polynomial 

irreducible polynomial 
of small degree 

Using such a correspondence, Hellman and Reyneri [H] 
adapted the Adleman algorithm to find logarithms in 
GF(2"). Choose a smoothness bound b = c^n log n. Say 
that A(x) is smooth if it is the product of irreducible 
polynomials g^ix) of degree at most b. Select a random z, 
compute yi(A:) • x' mod P(x), and ask whether A(x) is 
smooth. If so, its explicit representation as the product of 
small irreducible polynomials gives a linear equation relating 
the logarithms of these small irreducible polynomials: 

A(x) 'x'm UQiixf mod P{x), 

z = loilog^q.(x). 

Collect enough such equations, solve the system, and obtain 
the logarithms of all the small irreducible polynomials. 
Finally, to find the logarithm of a given element, multiply by 
a random power ofx, reduce mod Fix), and hope that the 
result is smooth. If so, the expression in terms of small 
irreducible polynomials gives the desired logarithm. The 

running time of their algorithm is ei"^"'°*"; recalling that n is 
comparable to log p for fields of comparable size, we see that 
this running time is comparable to that of Adleman for the 
case of GF{p). 

One can do better than this, however. To motivate my 
work, consider: The smaller a polynomial (in terms of 
degree), the more likely it is to be smooth. Each 
multiplicative relation [mod P{x)] between smooth 
polynomials gives us one of the desired equations relating 
the logarithms of the small irreducible polynomials. 
Therefore, we want to find a source of multiplicative 
relations [mod P{x)] among rather small polynomials. 
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We take advantage of the following peculiarity of fields of 
characteristic two: Squaring is a linear operation. That is, 
(A + Sf =A^ + B^, since the usual 2AB term drops out 
(2 = 0 here). 

Consider the example of GF(2 ), where we actually 
applied the techniques I will describe. Let the field be defined 
by P(x) = x ' " + X + 1. (It turns out that we are free to 
choose the defining polynomial at our convenience, as long 
as it is irreducible and of the right degree.) 

Select two arbitrary polynomials A{x), B(x) of degree at 
most 10. Construct C{x) = x^^A{x) + B(x). Set D(x) = 
Cix)* mod P{x). We find 

D(x) ^ C(x)* = x'^U(x)* + B(xt 

= (x^ + x)A(x)* + B(x)* mod P(x), 

where the second equality follows from the linearity of 
squaring, and the third follows from the fact that here 
jc'̂ * sx^ + x mod P(x). Notice that both C(jc) and D{x) 
are of relatively small degree: at most 42. Thus there is a 
good chance that both C{x) and D(x) are smooth; if so, the 
equation D(x) = C(x)* mod P{x), together with the explicit 
representations of C(x) and D(x) as the products of small 
irreducible polynomials, yields a linear equation relating the 
logarithms of the small irreducible polynomials: 

n^iixf = D(x) = Cix)' = dlQiixT')* mod P{x), 

iPilog^x) = S4a,log^^,(^)-

Because of this source of multiplicative relations among 
smooth polynomials [mod P(x)], we are faced with less trial 
and error. This in fact gives us a running time of 

e , 

compared with the previous time of 
<:'n"^(log«)"^ 

Skeptical remark No. 2: "So, you've decreased 1/2 to 
1/3. Who cares?" 

Answer No. 2: "Ah, but it's in the second exponential! 
A little change makes a big difference there." 

Skeptical remark No. 3: "These are all asymptotic 
estimates. Given the speaker's work on matrix 
multiplication [12] (where the asymptotically fast results 
only work for matrices larger than the size of the known 
universe), how seriously should we take these 
estimates?" 

Answer No. 3: "In the field GF{2^'), a moderately sized 
field, we did in a few minutes what the competing 
schemes were taking days to do. Our advantage will 
increase for larger fields." 

We compare GF(2") with GF{p). My work shows that the 
cryptanalysis in GF(2") is roughly exponential in the cube 

root of the number of bits, compared to roughly exponential 
in the square root of the number of bits for GF{p). Thus, for 
a comparable level of security, the GF{2") case must use a 
much larger key size. But since the arithmetic is so much 
easier to implement in circuitry for GF{2") than for GF(p), 
it remains a viable alternative. I had hoped to have killed the 
scheme with this work, but that does not seem to be the 
case. 

• Elliptic curves 
The key-passing scheme has been described in two flavors of 
finite field: GF(p) and GF{1"). But in fact it never makes 
use oi addition in the finite field, only multiplication. The 
scheme will generalize to any finite Abelian group. 

At Crypto '85, Victor Miller [13] described an adaptation 
of the Diffie-Hellman scheme to a finite elliptic curve. This 
has the appearance of being much harder to break, although 
not as many people have been trying to break it, so its 
apparent strength remains to be fully tested. 

Select a large prime /, and integers A, B. An elliptic curve 
E,'\s given as the set of solutions of a given cubic equation, 
together with an extra point at infinity: 

E,= {(x,y)\x,yGZ/f,y^ ^ x^ + Ax + B mod/] U {oo). 

The group operation is defined by a geometric construction. 
If P and Q are elements of E/, draw the line joining P and Q 
in (x, y)-space. The line will intersect the curve in one other 
point. Reflect this point about the ;c-axis, and the reflection 
will be called the sum (P + Q). There are also rules to 
handle the special cases when the Une has only two points of 
intersection (one being a "tangent point") or when the Une is 
vertical (necessitating the extra point at infinity). It can be 
shown that the group operation so defined is associative and 
commutative, so that we really have a finite Abelian group. 
Its size I E,\ is between /+ 1 - 2-J/and /+ 1 + 2-J'f, and 
achieves any integer in that range. 

We know how to add two points P and Q on the curve E,. 
By repeated duplication, we can take an integer multiple of a 
point: If P e £•/, « e Z, we can form nP = P + P+ ••• + P. 
(Repeated duplication means 12^=6^+ 6P.) But the 
reverse problem (corresponding to the "logarithm") appears 
to be difficult: Given P,Q& E,, find an integer n such that 
Q = nP. In fact it appears to be much more difiicult than the 
corresponding problem in GF(p). 

The key-passing scheme is by now familiar. We agree on /, 
A, B, and thus £,. We find its size f = \E,\. (This in itself 
seems to be fairly difficult, but not insurmountable.) I wish 
to pass you the secret y, which I represent as a point P e E,. 
I select auxiliary secret integers c, c~ with cc~' = 1 mod /'. 
You select d,d~\l pass you cP, you pass me cdP, I pass you 
dP, and you compute P. The eavesdropper can crack the 
scheme if he can find "logarithms" as described above: 
Given P,QS E,, find « G Z such that Q = nP. 247 
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This logarithm problem seems to be difficult. The 
smoothness techniques do not seem to work any more. 
Before, we were taking an element of GF(p) and lifting it to 
Z, that is, taking an integer between 1 and p - 1 and asking 
whether that integer is the product of small primes in Z. 
Trying an analogous procedure here, we find that the 
rational points on the rational elliptic curve 

EQ = \{x, y)\x, y&Q^/^x' +Ax+B]\J |oo) 

are too large to be of much help: To lift a general point from 
E, to EQ we would take too long just writing down the 
numerators and denominators of the coefficients. 

The only technique which is known to work in this case is 
the "giant steps, baby steps" method of Roland Silver, which 
takes time V^, where q is the largest prime dividing \E,\. 
(His method will work for any finite Abelian group, in fact.) 
By judicious choice oil. A, B, we can force ^ to be as large 
as/. 

Put another way, for the same apparent level of security, 
one can allow the prime /here to be much smaller than the 
prime p in the original Diffie-Hellman scheme. Rough 
estimates suggest that we can deal with integers of 128 bits 
rather than 512. This means (first) that the modular 
multiplications involved in group operations are much easier 
(being on smaller integers), and (second) that there are fewer 
group operations to perform, since the number of group 
operations per exponentiation is roughly log2/= 128 rather 
than logjP = 512. The group operations themselves are more 
complicated: They seem to require nine multiplications 
rather than one. But the net result is that, for the same 
apparent level of security, the eUiptic curve method can be 
faster by a factor of 7:1. Thus this method is promising, and 
bears a closer examination. 

I summarize the best known running time of the discrete 
logarithm problem for the three cases examined: 

GF{p) '̂•.<"«p)"'<"«'°«"'"̂  

GF(2") e'^""'"'"^-^, 

E, e^^"*"' = V/(C3 = 1/2). 

All are exponential in some fractional power of number of 
bits, and this fraction in the second exponent is the 
important measure: 1/2 for GF{p\ 1/3 for GF(2"), and 1 for 
the elliptic curves. Thus elliptic curves are apparently much 
harder than GF(p), which is in turn harder than GF(2"). 

Summary 
I have attempted to give some flavor of the techniques 
involved in the discrete logarithm problem, which is one 
instance of cryptanalysis. I have also attempted to 
communicate some of the excitement I feel in working with 
cryptographic problems, and some of the pride I feel for 
having been associated with DES, especially the latter. DES 
has been much maligned in the popular press, and I 

welcome this opportunity to defend it publicly. I view it as 
one of the fine contributions of a fine department, now 
happily celebrating its twenty-fifth anniversary. 
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