
An architecture of diversity for
commonsense reasoning
Although computers excel at certain bounded tasks
that are difficult for humans, such as solving inte­
grals, they have difficulty performing commonsense
tasks that are easy for humans, such as understand­
ing stories. In this Technical Forum contribution, we
discuss commonsense reasoning and what makes it
difficult for computers. We contend that common­
sense reasoning is too hard a problem to solve using
any single artificial intelligence technique. We pro­
pose a multilevel architecture consisting of diverse
reasoning and representation techniques that collab­
orate and reflect in order to allow the best techniques
to be used for the many situations that arise in com­
monsense reasoning. We present story understand­
ing-specifically, understanding and answering ques­
tions about progressively harder children's texts-as
a task for evaluating and scaling up a commonsense
reasoning system.

In the fall of2001, a proposal was developed by Mar­
vin Minsky, Erik Mueller, Doug Riecken, Push
Singh, Aaron Sloman, and Oliver Steele for a proj­
ect to develop a human-level commonsense reason­
ing system. The basic proposal was (1) to develop
certain ideas of Minsky and Sloman about a multilevel
cognitive architecture, and (2) to develop the system
in a way that would exploit many existing artificial
intelligence techniques for commonsense reasoning
and knowledge representation, such as case-based
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reasoning, logic, neural nets, genetic algorithms, and
heuristic search.

We proposed to organize a meeting at which we
would bring together many of the major established
researchers in the area of commonsense knowledge
and reasoning. Riecken organized a preliminary
meeting at the IBM Thomas J.Watson Research Cen­
ter in March 2002, at which many IBM researchers
were invited to discuss and react to this general sub­
ject as well as to present their own ideas. Afterwards,
the specific proposal was discussed in more detail
by specialists in commonsense knowledge and rea­
soning at a meeting held on S1. Thomas, Virgin Is­
lands, in April 2002, and hosted by Jeffrey Epstein.
This Technical Forum contribution focuses on the
preliminary meeting, but also contains some mate­
rial presented at the April meeting, including some
material from Minsky's forthcoming book The Emo­
tion Machine. 1

At the IBM meeting, a broad consensus was reached
on three main points. First, there was agreement that
the community should strive toward solving a non­
trivial problem that would require a level of knowl­
edge, and a capability of reasoning with that knowl­
edge, beyond what is demonstrated by current
systems. The problem put forward was that of story
understanding. An important advantage of the story
understanding task is that standardized tests are
available to evaluate students on their reading com­
prehension skills. Moreover, these tests require the
use of commonsense reasoning skills. It is thus pos­
sible to evaluate the performance of any story un­
derstanding system against that of students at dif­
ferent reading levels. 2

Second, there was consensus that the story under­
standing task provides a strong testbed for evaluat­
ing a commonsense reasoning system. Not only does
such a system need several different forms of rea­
soning, representation, and learning, but it also needs
them to work in conjunction with each other. In ad­
dition, the task highlights the importance of using
and reasoning with common sense. This is illustrated
by a sentence from a story about a child and her
grandfather: "He gently takes my elbow as we walk
so that I can help show him the path." Knowledge
of the fact that the grandfather is blind, and the com­
monsense facts that people ordinarily use their sight
to find paths and that blind people are unable to see,
enable the inference that the child is guiding the
grandfather and not merely pointing out the path,
another frequent sense of the word "show." Absence
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of this commonsense knowledge could lead to the
incorrect interpretation of the word "show."

Third, there was agreement on the need to develop
a testbed architecture for representation and rea­
soning that allows different systems and represen­
tations to work with each other. Researchers often
try to solve a problem using just one form of rep­
resentation and reasoning. But such an approach
does not work well for sufficiently complex problems
such as story understanding. In contrast, enabling
various techniques to collaborate will allow the best
techniques to be used for a given situation. Any such
architecture must provide metalevel control and
knowledge that will enable different techniques to
determine whether or not they are suited for a given
task, to decide what other techniques may be better
for the task, and to communicate information and
share partial results with each other.

What makes commonsense reasoning
difficult

Commonsense reasoning-the sort of reasoning we
would expect a child to do easily-is difficult for com­
puters to do. Certainly, the relative paucity of results
in this field does not reflect the considerable effort
that has been expended, starting with McCarthy's
paper "Programs with Common Sense."3 Neverthe­
less, the problem remains unsolved. What is it about
commonsense reasoning that makes it difficult to au­
tomate? Various explanations have been suggested,
some of which we discuss in this section.

McCarthy's commonsense informatic situation. The
knowledge needed to solve a commonsense reason­
ing problem is typically much more extensive and
general than the knowledge needed to solve diffi­
cult problems. McCarthy points out that the knowl­
edge needed to solve well-formulated problems in
fields such as physics or mathematics is bounded. 4

In contrast, there are no a priori limitations to the
facts that are needed to solve commonsense prob­
lems: the given knowledge may be incomplete; one
may have to use approximate concepts and approx­
imate theories; one will generally have to use non­
monotonic reasoning to reach conclusions; and one
will need some ability to reflect upon one's own rea­
soning processes. Morgenstern provides an exam­
ple of the commonsense informatic situation in the
problem of two friends arranging to meet for dinner
at a restaurant. 5
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Explicit vs implicit knowledge. Commonsense
knowledge is often implicit, whereas the knowledge
needed to solve well-formulated difficult problems
is often explicit. For example, the knowledge needed
to solve integrals can be found in explicit form in a
standard calculus textbook. However, the knowledge
needed to arrange a dinner meeting exists in vague,
implicit form. Implicit knowledge must first be made
explicit, which is a time-consuming task requiring a
serious knowledge engineering effort.

Domain knowledge. A huge amount of knowledge
is needed to do even simple forms of commonsense
reasoning. For example, to figure out what sorts of
objects will work as stakes in a garden-a reasoning
task that seemingly demands no effort-requires
knowledge of plant materials, how plants grow, flex­
ibility and hardness, shapes of plants, soil texture,
properties of wind, spatial reasoning, and temporal
reasoning. 6 Although there have been a number of
efforts to capture large amounts ofworld knowledge,
most notably the Cyc** project,7 we are not at this
point aware of any knowledge base that contains the
information necessary to reason about stakes in a
garden or about fumbling for an object in one's
pocket.

This Technical Forum piece does not present a so­
lution to these difficulties. Rather, we are attempt­
ing to see how far we can progress on an important
commonsense reasoning problem even in the pres­
ence of such difficulties.

Story understanding as a vehicle for
studying commonsense reasoning

Story understanding requires addressing the com­
monsense informatic situation. A story understand­
ing system should be able to read and understand
a story, and demonstrate its understanding by (1) an­
swering questions about the story, (2) producing
paraphrases and summaries of the story, and (3) in­
tegrating the information the story contains into a
database. Further, useful results from this work will
have a direct impact on many business products and
services.

A brief history of story understanding systems.
Starting in the 1960s, 8 researchers have studied story
understanding and have built systems that can read
and answer questions about simple stories. An early
system built by Charniak9 used a single mechanism,
test-action demons, for making inferences in under­
standing. In the 1970s, Schank and Abelson 10 pro-
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posed scripts, plans, and goals as knowledge struc­
tures for understanding. These knowledge structures
were incorporated into the SAM ll and PAM 12 story
understanding systems.

In the 1980s, knowledge structures for emotions,
story themes, and spatial/temporal maps were incor­
porated into BORIS. 13 AQUA 14 used case-based rea­
soning to retrieve and apply explanation patterns in
order to answer questions raised by anomalies en­
countered while reading a story. CRAM 15 used a con­
nectionist approach to story understanding.

Recent story understanding systems have adopted
the approach of understanding a story by building
and maintaining a simulation that models the men­
tal and physical states and events described in the
story, as demonstrated in ThoughtTreasure. 16 The
advantage of this approach is that it is easy to an­
swer questions about the story simply by examining
the contents of the simulation.

Critical problems for story understanding systems.
The story understanding systems built so far work
only on the particular stories they are designed to
handle. For example, SAM ll handles five stories,
BORIS 13 three, AQUA14 five, and ThoughtTreasure 16

three. What prevents story understanding systems
from scaling up to hundreds of previously unseen
stories?

We contend that story understanding research is
blocked on three critical problems: (1) complexity
of the structure of natural language, (2) necessity for
large commonsense knowledge bases, and (3) com­
binatorial explosion in the understanding process.

Complexity ofthe structure ofnatural language. Rare
is the simple subject-verb-object sentence that maps
into a simple proposition. More typically, text con­
tains numerous language phenomena such as adver­
bials, compound nouns, direct and indirect speech,
ellipsis, genitive constructions, and relative clauses. 17

Present-day syntactic and semantic parsers have trou­
ble producing accurate parses of typical story sen­
tences.

Necessity for large commonsense knowledge bases.
Understanding even simple stories requires know­
ing a huge number offacts. For example, understand­
ing the first paragraph of The Cat in the Hat requires
knowing about children's play, how children can be
affected by winter weather, their relationship to their
parents, and notions of discipline, boredom, surprise,
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and risk. Similarly, as Davis 18 points out, the first
paragraph of The Tale ofBenjamin Bunny assumes
familiarity with concepts of quantity, space, time,
physics, goals, plans, needs, and communication.

Combinatorial explosion in the understandingprocess.
Multiple possible interpretations arise at all levels
of language. Words are ambiguous as to part of
speech and word sense. Sentences are syntactically
ambiguous. There are several possible explanations
for any action of a story character, several possible
explanations for those explanations, and so on. We
get a combinatorial explosion: the understanding
process must search an extremely large space of pos­
sibilities.

Approaches to critical problems in story under­
standing. What can be done? We propose a three­
pronged approach. First, to deal with the complex­
ity of the structure of natural language, we make a
major cut in complexity by going back to books for
early readers. Second, to deal with the necessity for
large commonsense knowledge bases, we propose
to identify the domains most frequently used in a
restricted set of stories and to address these first.
Last, to deal with the combinatorial explosion in the
understanding process, we propose a new paradigm
for commonsense reasoning: an architecture of di­
versity.

Early readers. Early reader texts are designed for pre­
school and kindergarten students. These texts em­
ploy a small or controlled vocabulary, short sen­
tences, and limited language constructions. Working
with early reader texts will enable us to effectively
solve the language front-end problem using existing
research techniques.

Text annotation for domain identification. We cannot
hope to deal with the commonsense informatic sit­
uation head-on. The point of McCarthy's 1996 pa­
per4 is that any domain can be relevant to a partic­
ular problem: when reading a story, any area of
knowledge may be necessary for comprehension.
This is less true for stories designed for very young
readers; although, as our examples above show, a
great many concepts and domains are still needed
for full comprehension even of early reader texts.
Nevertheless, we believe we can make progress by
choosing to address those domains that most fre­
quently turn up in children's stories. Such an ap­
proach would, we hope, make the problem tracta­
ble.
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We thus propose the following corpus-based ap­
proach. We start with a corpus of stories at the pre­
school and kindergarten levels and divide the cor­
pus into a development set and a test set. We
manually annotate each story in the development set
with an informal inventory ofwhat domains of com­
monsense knowledge and reasoning must be ad­
dressed in order to understand the story. We sort
the domains by their frequency and attempt to de­
velop methods to understand the domains that oc­
cur most frequently. We start with the most frequent
domain, proceeding to the next most frequent do­
main, and so forth. Development proceeds on the
development set, and a final evaluation of the gen­
erality of the system is conducted on the previously
unseen test set. We iterate this process on succes­
sively higher reading levels, progressing to stories de­
signed for Grades 1, 2, and 3. This approach, based
on an incremental series of experiments, will enable
a significant research focus at each step on an ar­
chitecture of diversity.

To demonstrate how this approach would work, we
formed a corpus of 15 early reader stories and an­
notated them as to the domains of common sense
necessary for understanding them. The vocabulary
size was 561 words. The top 10 domains of common
sense are shown in Table 1. This provides us with
a path for research in understanding the story cor­
pus: focus on handling the most frequently appear­
ing domains of common sense.

Dealing with these concepts is by no means trivial.
We plan to leverage the extensive work that has been
done in these areas. Such work includes: Thought­
Treasure, 16 NETL2,19 Cyc,7 Shanahan's formalization
of time,20 the RCC formalization of space,21 and
Kuipers's Spatial Semantic Hierarchy. 22 We will also
employ rapid knowledge formation techniques such
as Open Mind. 23

An architecture of diversity

Many attempts to build intelligent computers have
hunted for a single mechanism (such as universal sub­
goaling, propagation rules, logical inference, prob­
abilistic reasoning) or representation (such as pro­
duction rules, connectionist networks, logical
formulas, causal networks) that would serve as a ba­
sis for general intelligence. Why have these ap­
proaches so far failed to achieve human-level com­
mon sense?
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Table 1 Early reader corpus: top 10 domains of common
sense

Domain Number Percentage
of Stories of Stories

space-location 14 93.3
space-motion 11 73.3
math-counting 10 66.6
attitude-positive 9 60.0
speech act 9 60.0
space-size 8 53.3
space-grasping 7 46.6
sound-speech 7 46.6
logic-universal 7 46.6

quantification
space-housing 6 40.0

We believe that the problem is too large to solve us­
ing any single approach. Human versatility must
emerge from a large-scale architecture of diversity
in which each of several different reasoning mech­
anisms and representations can help overcome the
deficiencies of the other ones. 24,1 Our hypothesis is
that such an architecture can overcome the combi­
natorial explosion problem in story understanding.

Multilevel cognitive architecture. We conjecture that
the information processing architecture of a human
is something like the three-level architecture devel­
oped by Sloman in the Cognition and Affect proj­
ect 25 (H-Cogaff), shown in Figure 1. This conjecture
is based on evidence of many kinds from several dis­
ciplines, and constraints on evolvability, implement­
ability in neural mechanisms, and functionality. 26

Reactive processes are those in which internal or ex­
ternal states detected by sensors immediately trig­
ger internal or external responses. Deliberative pro­
cesses are those in which alternative possibilities for
action can be considered, categorized, evaluated, and
selected or rejected. More generally a deliberative
mechanism may be capable of counterfactual rea­
soning about the past and present and hypothetical
reasoning about the future. The depth, precision, and
validity of such reasoning can vary. Meta-manage­
ment processes add the ability to monitor, evaluate,
and to some extent control processes occurring
within the system in much the same way as the whole
system observes and acts on the environment. The
three layers operate concurrently and do not form
a simple dominance hierarchy. Arrows represent flow
of information and control, and boundaries need not
be sharp in all implementations.
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Figure 1 The H-Cogaff three-level architecture
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A. Sloman, "Beyond Shallow Models of Emotion," Cognitive Processing, Vol. 1, No.1 (2001).

The reactive and deliberative layers differ in that the
deliberative layer evolved much later and requires
a far more sophisticated long-term memory, as well
as symbolic reasoning capabilities using a short-term
reusable memory. The meta-management layer may
have evolved at a still later time and requires explicit
use of concepts referring to states of an information
processing architecture. The earliest organisms, such
as most existing organisms, were totally reactive. De­
liberative and meta-management layers evolved
later. Adult humans appear to have all three types
of processing, which is probably rare among other
animals.

One of the key features that gives H-Cogaff its gen­
erality is the fact that different components, instead
of forming parts of simple pipelines, can concurrently
send information ofvarious kinds to arbitrarily many
other components, allowing a wide variety of feed­
back mechanisms and triggering mechanisms.
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In story understanding, the meta-management level
may control the deliberative level in a number of
ways.

• If the deliberative level is spending too much time
considering certain details and those details are
not crucial to the story, the meta-management level
will make the deliberative level stop.

• If the deliberative level is spending too much time
on a task that does not relate to the goal of read­
ing the story, the meta-management level will make
the deliberative level stop.

• If the deliberative level becomes confused, the
meta-management level will tell it to go back and
reread. The deliberative level may have ruled out
a possibility earlier that needs to be reconsidered
in light of new information.

Minsky further elaborates the H-Cogaff architecture
into the six-level architecture called "Model Six"
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shown in Figure 2. 1 At its bottom lies a "zoo of in­
stinctive subanimals" built upon ancient, ancestral
systems that still maintain our bodies and brains.
These include systems for feeding, breathing, heat­
ing, sleeping, and other systems that keep us alive.
The deliberative and reflective levels are engaged
to solve more difficult kinds of problems. The self­
reflective level is engaged when the problems involve
our relationships with our past and future selves. At
the top lies machinery that we acquire from our so­
cieties, such as suppressors and censors, imprimers
and values, and our various kinds of self-ideals.

Figure 2 The Model Six six-level architecture
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Figure 3 Multiple reasoning and representation schemes
and levels

From M. Minsky, "Common Sense-Based Interfaces," Communications
oftheACM, Vol. 43, No.8, 67-73 (2001). Copyright 2001 ACM.
Reprinted by permission.

M. Minsky, The Emotion Machine, Pantheon, New York (forthcoming).

Multiple reasoning and representation schemes
and levels. An architecture of diversity would em­
bed representations from natural language to mi­
cronemes 27

,1 as depicted in Figure 3. The represen­
tations depicted include frames, transframes, frame­
arrays, K-lines, and micronemes. A frame is a
representation based on a set of slots to which other
structures can be attached. 28 Each slot is connected
to a default assumption that is easily displaced by
more specific information. A transframe is a partic­
ular type of frame representing the causal trajectory
between the initial and resulting states representing
a situation that a legal action was performed on. A
frame-array is a collection of frames that share the
same slots, making it easy to change perspective with
respect to physical viewpoint or other mental realms.
A knowledge-line or K-line is a wirelike structure
that attaches itself to whichever resources are active
in solving a problem. The K-line simplifies activa­
tion of those same resources when solving a similar
problem in the future. Micronemes are low-level fea­
tures for representing the many cognitive shades and
hues of a context. In Figure 3, new evolved struc­
tures are made from older lower-level ones, and the
tower shown might be a plausible Darwinian brain­
development scheme.

Table 2 shows just a few of the diverse representa­
tion and reasoning schemes useful for domains of
story understanding.

We propose to address the commonsense reason­
ing problem starting with stories for very young read­
ers. However, to demonstrate all of the different ways
we think when understanding a story, and what we
would eventually expect a commonsense story un­
derstanding system to be able to handle, consider
the following adult story (the discussion here is con­
densed from Reference 1).

Joan heard a ring andpicked up the phone. Charles
was answering her question about how to use a cer­
tain technique. He suggested she read a certain book,
which he would soon bring to her since he had
planned to be in her neighborhood. Joan thanked
him and ended the call. Soon Charles arrived and
gave her the book.

Following are a few of the understandings an adult
reader would have after hearing the story.
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Table 2 Diverse schemes for story understanding
domains

Domain Representation/Reasoning
Schemes

The dominion realm. Given Charles gave Joan the
book, one infers not only that Joan is holding the
book, but also that, at least for a time, she possesses
the right to use it.

space frame, generalized cylinder model,
interval logic, occupancy grid

time, action effects causal model, event calculus,
situation calculus, transframe

reactivity neural net, production system,
subsumption architecture

schemas, scripts finite automaton, frame, frame-
array, generalized Petri net

subgoaling first-order logic, K-line, marker
passing, semantic net

emotions, attitudes microneme, neural net, temporal
modal logic

• Joan heard a ring. She recognizes it as a telephone
bell and feels the need to respond quickly. She
knows how to use the telephone.

• She picked up the phone. She is subsequently hold­
ing the phone to her ear.

• Charles was answering her question. Charles and
Joan are not in the same room. Charles also knows
how to use the telephone.

• He suggested she read a certain book. Joan prob­
ably now feels some relief, since she knows where
to find the knowledge she needs.

• He hadplanned to be in her neighborhood. Joan will
not be surprised when he arrives, because she will
remember that he said he would come.

• He gave her the book. Will she have to give it back?
The story does not tell us that.

These conclusions are based on reasoning and rep­
resentations in many realms, as follow.

The physical realm. In this realm, give might mean
the motion of the book through space. This could
be represented as a transframe that starts with
Charles's hand holding the book and ends with Joan's
hand carrying it. One must know a lot about phys­
ical things and how they behave in space and time.

The social realm. In this realm, give may signify so­
cial acts that can alter the relationships of the ac­
tors. What were Charles's motives or his attitudes?
Clearly, he was not returning a loan. Was he hoping
to ingratiate himself? Or was he just being gener­
ous? How will Joan feel about Charles after he gives
her the book? One must know a lot about what peo­
ple are, and a certain amount about how people
work.
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The conversational realm. How do conversations
work? Consider how many elaborate skills are in­
volved in a typical verbal exchange. One has to keep
track of what is being discussed, what one has pre­
viously told the listener, and what the listener knows.
Thus conversations are partly based on knowledge
of how human memories work and what is commonly
known in one's culture. One has to make sure the
listener has understood what was said and why it was
said. One certainly needs to know how to speak and
to understand some of what one may hear.

The procedural realm. How does one make a tele­
phone call? One must first find a phone and dial a
number. Then once the connection has been estab­
lished, one says hello, talks a bit, and eventually leads
into why one called. At the end, one says goodbye
and hangs up the phone. Generally, such scripts have
certain steps that are specified, while other steps pro­
vide for more room to improvise.

The sensory and motor realms. Each of the above
steps raises questions. For example, it takes only one
second or so for one's arm to reach out in order to
pick up the phone. How can one do that so quickly?

The kinesthetic, tactile, and haptic realms. Using a
telephone or any other physical object engages a
great base ofbody-related knowledge and skills. One
anticipates how the phone will feel against one's ear
or sandwiched between shoulder and cheek. One ex­
pects certain haptic sensations such as the feel of the
phone's weight. One strengthens one's grip when the
phone starts to slip.

The temporal realms. People have elaborate models
of time where events are located in futures and pasts
that are represented in relation to other times and
events or in anecdotal stories.

The economic realm. People know and reason about
the costs incurred by each action or transaction in
terms of money, energy, space, or time.

The reflective realm. People know about themselves.
One knows to some degree what one can or cannot
do, what kinds of problems one can solve, how one's
thinking and memory works, and what sorts of things
one is able to learn.
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Figure 4 The M system

RULE-BASED SYSTEM SEMANTIC NETWORK

From D. Riecken, "An Architecture of Integrated Agents," Communications oftheACM, Vol. 37, No.7, 107-116 (1994). Copyright 1994 ACM.
Reprinted by permission.

Along with these positive kinds of knowledge, one
also has negative knowledge about what might go
wrong when using a phone. One must know what to
do if one gets a wrong number, if there is no answer,
or if a modem or intercept recording is reached.

Example system with architecture of diversity. Thus
far, the Sloman and Minsky architectures are the­
oretical constructs and have not yet been imple­
mented. However, there are examples ofworking sys­
tems that capture the spirit of such architectures. One
such example is the M system depicted in Figure 4. 29

M integrates multiple reasoning processes and repre­
sentations to selVe as an assistant to a user collabo­
rating with other workers within a virtual meeting
room that hosts multimedia desktop conferencing.
M selVes to recognize and classify the actions per­
formed by the participants as well as the objects upon
which the actions are applied; example actions and
objects are brainstorming on a whiteboard, coauthor­
ing a document, and creating and working with other
artifacts.

Next steps

The two recent meetings held in March 2002 at the
IBM Thomas J. Watson Research Center and in April
2002 on St. Thomas indicate that there is a dedicated
group of recognized researchers interested in work­
ing together on a project to develop a solution to
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commonsense reasoning. We are now planning to
undertake some of the next steps in a plan for such
a project. The inspiration for this work comes from
Minsky's past and forthcoming work. We close with
his thoughts on how such a project might be real­
ized, as follows.

Our goal is to aim toward a critical "change ofphase"
that will come when we cross a threshold at which
our systems know how to improve themselves. This
is something that all young children can do, but we
do not know enough about how they do it; so one
goal of the project must be to develop better models
of how normal people think.

We will start by trying to implement some of the ar­
chitectures proposed over the past decade. There al­
ready exist many useful schemes for representing and
using knowledge mostly of a factual nature for use
on what we call the deliberative leveL However, there
has not been enough work on the higher reflective
and self-reflective levels that humans use, as they
learn to improve their thinking itself. Any such sys­
tem, we claim, will need additional kinds of meta­
resources, which will include systems that manage,
criticize, and modify the already operating parts of
the structure.

In the field of AI we already have many resources
related to this, for example, neural networks, for-
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mal logic, relational databases, genetic programs, sta­
tistical methods, and of course the heuristic search,
planning, and case-based reasoning schemes of ear­
lier years. However, our goal is not to discuss which
method is best. Instead we will try to develop a plan
of how to incorporate into one system the virtues of
many different approaches. Of course, each such
scheme has deficiencies and our hope is that our sys­
tem can escape from these by using higher-level,
more reflective schemes that understand what each
of those other schemes can do and in what context
they are most effective.

**Trademark or registered trademark of Cycorp, Inc.
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