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Machine intelligence and the Turing
Test
Alan Mathison Turing, the British mathematician,
philosopher, and logician, proposed in 1950 that if
a computer could successfully mimic a human dur­
ing an informal exchange of text messages, then, for
most practical purposes, the computer might be con­
sidered intelligent. 1 This soon became known as the
Turing Test (TT), most typically conducted as anon­
ymous exchanges of English-language text between
computers. A panel of judges poses questions to the
contestants in order to determine which are human
and which are programs. There have been many such

experiments since Turing proposed the challenge,
but there is considerable disagreement as to what
passing the test means, and whether passing it tells
us much at all. 2

We use the TT here as a means of identifying arti­
ficial intelligence (AI) technologies that will have a
pivotal role in creating more intuitive machine-hu­
man interactions. We have chosen six technologies
supporting certain computer behaviors that could sig­
nificantly increase the practical value of computers.
In what follows we summarize and editorialize on
where each of these technologies stands today, re­
lying heavily on the findings of the conference and
workshop "Machine Intelligence and the Turing
Test,,3 held last year at the IBM Thomas J. Watson
Research Center in Yorktown Heights, New York.

The first technology we address is natural language
understanding (NLU). We confess to a particular pas­
sion for this part of AI, so fundamental for commu­
nication and yet still full of nuances, poorly under­
stood, and hard to symbolize. 4 Even if computers
could understand plain English, this would just be
the beginning.

Our second technology is machine reasoning (MR).
The TT judges ask the contestants questions intended
to flush out the mere mechanical responses of a com­
puter. To fool the human judges, a computer will
need to provide reasonable answers, answers that are
relevant within the context set by earlier exchanges.
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Since TT questions can be about any subject, con­
testants need a very significant knowledge base cov­
ering a wide range of human activities such as sports,
politics, health, and food. In addition to the ratio­
nal, objective knowledge about ourselves and our so­
ciety, the computer's knowledge base needs to also
include "rules of thumb," myths, "old wives tales"
and urban legends, as well as the complex relation­
ships between facts, theories, conjectures, and judg­
ments. We need knowledge representation (KR) tech­
nology to represent this information in all its
complexity.

Creating the on-line body of knowledge would be
itself a daunting task, and knowledge acquisition (KA)
is our fourth AI technology with direct application
for any would-be TT winner. The manual effort re­
quired to capture this knowledge would be enor­
mous, so computers need to be programmed to lis­
ten and learn automatically.

Two less prominent technologies complete our set.
There is growing interest in the dynamics of dialog
and the role of identity in computer-human ex­
changes. This has led to theories and experiments
in dialog management, 5 and to experiments in mak­
ing computers react to human emotions. 6

Natural language understanding

Natural language understanding (NLU) is the tech­
nology enabling computers to extract meaning from
text-easy and natural for humans, but notoriously
difficult as computation. NLU is a key component of
software that can accept commands and queries from
humans in their own language and produce answers
whose meanings are automatically extracted from
electronic texts. Even limited comprehension has sig­
nificant business benefit. For example, today's im­
perfect approximations to NLU are widely used in:
abstracting of trends and important events from news
sources; summarizing vast repositories of text; and
supporting natural language queries for accessing on­
line help.

Expectations for NLU are well beyond the limited ca­
pabilities of the first-generation technologies that are
built into current search engines, classification en­
gines, and information extraction systems. 7 Current
techniques do not handle semantics verywell because
of the many-to-many mappings between syntactic
forms and semantic meanings. One form can have
many meanings (e.g., "time flies like an arrow");
whereas the same meaning can be paraphrased in
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different forms ("announce/unveil/come out with a
new product"). This is usually no problem for hu­
mans because we interpret meaning relative to con­
text-prior knowledge shared by author and reader
(or speaker and hearer).

The grand challenge of NLU is to simulate the hu­
man capability to:

• Create a store of prior knowledge (see the section
on knowledge representation, later)

• Create a representation of the meaning of the cur­
rent text

• Integrate this representation into the knowledge
store (see the section on knowledge acquisition,
later)

A representation of the meaning of text is created
"bottom up" (small semantic units are fitted together
into larger representations) and "top down," by hom­
ing in on the specific topic the document discusses.
Significant progress has been made with the seman­
tics of the smallest units, such as people, places, or­
ganizations, and temporal expressions (successfully
embedded in IBM text analysis products 8

) and, in­
creasingly, relations in the sentence that hold among
these are also recognized (e.g., announce [IBM, hard
disk drive]). Both symbolic and statistically based ma­
chine learning techniques have been successful and
continue to develop. Advances continue on disam­
biguation of common words 9 and in translation be­
tween pairs of languages.

Progress has been slower beyond the word and sen­
tence level. One well-known requirement, for exam­
ple, is pronoun resolution-determining what a word
such as "it" or "they" refers to. Algorithms were de­
veloped over ten years ago and for a while they im­
proved, but they seem to have reached a plateau. The
next major advance in NLU will probably come from
the use of inferences based on knowledge of the
world. For example, in the text "IBM has unveiled
the Ultrastar* 36Z15 ... It is the fastest in the in­
dustry," we need to know that IBM is a computer
manufacturer, that computer manufacturers produce
computers and parts, and that machines have prop­
erties such as speed to determine that "it" refers to
the disk drive rather than to IBM.

The complete semantic task includes understanding
the relations among entities discussed in the text, the
actions and events they are engaged in, and tempo­
ral and causal sequences. There has been some suc­
cess in understanding the main events (who did what
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to whom) in specific and narrow domains,lO but ex­
panding to larger domains remains a challenge.

Statistical "top down" techniques for topic identi­
fication have been developed mainly within the in­
formation retrieval community, with notable suc­
cesses by IBM. 11 Current classifiers group large
collections of documents into more specific topics,
automatically producing a taxonomy like that of the
Yahoo!** service. 12 These techniques continue to
be crucial for identifying the "aboutness" of a doc­
ument.

The progress of NLU to date has been encouraging
in the areas of syntactic parsing, language-pair trans­
lation, semantic analysis in narrow domains, and sta­
tistically based information retrieval. Now is the time
to concentrate on a deeper semantic understanding
of text in larger domains. The domain-independent
and complete NLU required for TT-like tasks will re­
main elusive for many years, but incremental pro­
gress can be made, and measured, within broadly de­
fined domains and with respect to specific tasks.

Machine reasoning

The human capability for reasoning is another im­
portant aspect of our intelligence that machines have
not fully captured. What we call "reasoning ability"
is in fact a bundle of different abilities, such as:

• Simple inference within the KR system. For exam­
ple, if we are told that Clyde is an elephant, we
can deduce that he probably has four legs and that
he needs food, water, and oxygen to survive.

• Search within the KR system. For example, find an
African animal that is large, gray, and four-legged,
with big-floppy ears and a long prehensile nose.

• More difficult inference. Some kinds of inference,
such as theorem-proving, are much more difficult
for humans than the kind of KR-based inference
described above. There seems to be a qualitative
difference in the effort required, and it may be that
different mechanisms come into play.

• Planning and problem solving. In domains such as
chess and factory scheduling, computers already
exhibit problem-solving performance that is bet­
ter than human performance. However, humans
still excel at tasks requiring broad, diverse knowl­
edge, flexibility, and the ability to learn, general­
ize, and transfer skills from one domain to another.

• Plan recognition and the ability to reason explic­
itly about plans. Humans can create plans; they can
also recognize and explain what another person is
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trying to do. They can examine their own plans and
explain costs, risks, and alternatives to clients or
coworkers.

• Creativity. Some say that creativity is just compe­
tent problem solving that happens to lead to a sur­
prising result, and in that sense, machines can
sometimes be creative, but we believe fundamen­
tal elements of creative problem solving are still
missing.

• Applying recipes. It appears that we humans store
our knowledge of procedures in the form of rec­
ipes or scenarios, rather than as rigid programs.
This same knowledge can be used to produce new
plans and to recognize the structure and compo­
nents of other plans that we encounter. This is an­
other kind of knowledge that we must represent
and store effectively.

The expert-system tools of the 1980s and early 1990s
developed much of the basic machinery for machine
reasoning. The Soar 13 system, developed at Car­
negie Mellon University by the late Allen Newell and
his students, explored ways of combining rule-based
problem solving with powerful learning and chunk­
ing mechanisms, so that the system's performance
would improve over time. However, much still re­
mains to be done to make this problem-solving more
flexible and use knowledge of all kinds to guide the
problem-solving process.

Knowledge representation

For problems that require breadth of understand­
ing-whatwe sometimes call "common sense"-cur­
rent computing systems fall far short of human abil­
ity. The most critical missing piece is the ability to
deal with large amounts of knowledge of many kinds,
and to make that knowledge effective in perception
and problem solving. 14

Many kinds of knowledge are required for human­
like capability. Predicate calculus can in principle be
used to represent all the types listed below, but ef­
ficiency concerns push the system to more special­
ized representations for some of these types:

• Declarative statements
• Linguistic knowledge
• Procedural knowledge
• Naive physics
• Recognition knowledge
• Tactile/kinesthetic knowledge
• Visual knowledge
• Social knowledge
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It seems unlikely that any single approach to knowl­
edge representation (KR) will adequately cover all
of these areas. Merely representing and storing each
kind of knowledge is not sufficient; we must also
make the knowledge effective. Each kind of knowl­
edge requires appropriate representation, machin­
ery for efficient search and inference, and some way
to acquire and digest knowledge. Then all the knowl­
edge types must fit into an architecture that allows
them to work together effectively.

Declarative knowledge figures most prominently in
the TT, which is focused on natural language input
and output. There are several approaches both in­
side and outside IBM (most notably the Cyc** knowl­
edge base 15) for building a declarative KR system with
powerful search and inference capabilities. These sys­
tems include a large base layer of knowledge that
spans most domains-physical objects, materials,
people, organizations, common actions and behav­
iors, and so on. They are then enriched with more
specialized knowledge for each domain of interest.
Although specialists may be required to build the
most fundamental "roots of the universe" knowledge,
it needs to be easy for nonspecialists to extend the
knowledge base.

Knowledge acquisition

A system needs hundred of thousands to several mil­
lion knowledge elements to approximate the knowl­
edge of a human being. The challenge is to automate
the KR process using a variety of techniques, includ­
ing "learning" (as in statistical modeling and machine
learning), in both supervised form (where the an­
swer is provided to the learning algorithm) and un­
supervised form (where the system observes the data
without knowing the answer and has to infer it). To
illustrate, a team at the University of Pennsylvania
manually parsed a million words and provided parse
trees for about 40000 sentences. Their Treebank 16

has been used by many researchers worldwide to cre­
ate and improve parsers for broad domain English
for various applications. Similarly, the creation of an­
notated databanks for other purposes will be a key
ingredient in improving the state-of-the-art of the
component technologies. At the other extreme is the
knowledge in the Cyc knowledge base-a million
facts manually entered over 15 years with 450 person­
years ofeffort. One Cycorp researcher, when pressed,
estimated that Cyc contains perhaps 2 percent of the
required knowledge. But Cyc is at an inflection point
and can start exploring methods to automate the KA
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and extract knowledge from the tens of terabytes of
on-line text available on intranets and the Internet.

Another crucial aspect of KA is that new knowledge
is needed on a daily basis, so the process of acquir­
ing it has to be intrinsic to any system to keep up
with the demands of deployed applications. The ef­
ficient creation of a whole cycle of knowledge up­
date, from statistical learning to manual acquisition,
is key to managing the total cost of operating these
"intelligent" systems and a fundamental activity in
creating the technologies.

Dialog management

A dialog is a sequence of interactions between par­
ticipants with a shared context and a shared set of
goals. Dialog management refers to the analysis of
user utterances in the context of the current dis­
course, figuring out an appropriate response, and
conveying it to the user.

Existing dialog systems differ in the degree to which
users can take the initiative and steer the conver­
sation. Directed dialog systems force users to con­
strain their input and stay on predefined dialog paths.
Mixed initiative systems constrain the user input only
when it is imperative to have a clear understanding
of user intentions (e.g., to get confirmation before
executing a stock purchase). Over the last 20 years
much progress has been made in replacing rigid hi­
erarchical directed dialog systems with mixed initia­
tive systems offering a more open mode of conver­
sation. 17 Of course, we are still a long way away from
completely open user initiative dialogs as character­
ized by the TT.

Narrow domain dialog systems are finding wide­
spread use inside and outside IBM for a whole gamut
of applications ranging from buying stocks to find­
ing information to directory assistance. The big chal­
lenge confronting dialog researchers is to build sys­
tems that can converse with humans about topics not
limited by a few predefined forms or templates. An­
other issue is one of meta-knowledge: Does the sys­
tem know how much it knows or does not know? Can
its behavior degrade gracefully when it encounters
the limits of its knowledge? Promising new ap­
proaches combining statistical information retrieval,
information extraction, and dialog systems may help
answer the above questions.
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Emotion

An intelligent system may benefit from having ac­
cess to information about the intentions or the emo­
tional states of humans. Systems can already begin
to recognize and use affective information in a va­
riety of forms. Ultimately, systems might do this by
observing facial expressions and body language, rec­
ognizing patterns in physiological measures, anal~z­
ing the affective content of text and speech, and In­
ferring emotional states from interactive behavior.

Understanding what people are feeling can guide the
computer interaction with its users, from help mes­
sages to the use of true-to-life computer-generated
speech. Human conversational partners who do not
give affective cues-tone of voice, choice of wor?s,
gestures-are perceived as flat and unresponSIve
partners. Without affective cues, misunderstandings
abound. However, today it is difficult to find reliable
indicators of emotion that are not obscured by in­
dividual differences in the way humans experience
and express emotion.

From the user's perspective, giving our systems the
ability to understand and appropriately respond to
affective content may raise computers from their cur­
rent socially inept role to a role more consistent with
human conversational expectations.

Epilogue

Most of the AI technology used in products today is
based on linguistic models of knowledge and linguis­
tic processing techniques. An important next step will
be to combine linguistics with a large database of
assertions representing commonsense facts about the
world, in the hopes ofproducing much more human­
like reading and conversational systems. Systems like
Cyc and NETL18 aim to give machines common sense
by amassing a large collection of commonsense as­
sertions, then reasoning about them with the help
of a logic engine.

Although there is no doubt as to the business value
of this direction, it is interesting to note that mem­
orized linguistic assertions play only a small part in
intelligent human behavior, and formal first-order
logic has no significant role in human cognitive pro­
cessing. This opens the way for approaches that seek
to incorporate aspects of humans-as-systems beyond
the purely linguistic, both to enhance the linguistic
skills of our systems and to develop skills that may
not be accessible with purely linguistic approaches.
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One such approach creates learning machines that
discover the facts by themselves much as humans do.
Common sense is acquired by the machine sensing
its environment directly and learning from that expe­
rience. In order to learn about catching a baseball,
the machine might interact with the physical world
through sensors and effectors designed for vision and
motion. Common sense involved in a particular lin­
guistic domain might be acquired by reading texts
and conversing with humans.

Other emerging areas include the study of machines
that are based on models of brain behavior, and al­
though these approaches are relatively immature a~d
more speculative in nature than the technologIes
based on linguistic models, they may allow us to make
new, significant, and perhaps revolutionary progress
in AI. On the other hand, although we doubt that AI
technology based on purely linguistic models will ever
be mistaken for a human, or ever pass an uncon­
strained TT, we believe that it will make the largest
AI contribution to business and society for years to
come.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Yahoo! Inc. or Cycorp,
Inc.
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