
Technical Forum

&

WORM STORAGE IS NOT ENOUGH

The fundamental purpose of record keeping is to

preserve the details associated with certain trans-

actions or events and, furthermore, to preserve

irrefutable evidence of the occurrence of such

events. Trustworthy record keeping is vital to an

organization in the current regulatory and business

environment. It enables the smooth operation of the

organization, and it helps reduce the exposure of the

organization to business risks and liabilities. The

problems of trustworthy record keeping are exacer-

bated nowadays when most records are stored in

electronic form, which is susceptible to undetected

destruction or modification. The requirements for

proper record keeping are further underscored by

current intense regulatory scrutiny, which is in part

the result of recent incidents of corporate miscon-

duct and ensuing attempts to destroy incriminating

records. Consequently, several write-once-read-

many (WORM) (e.g., References 1, 2, and 3) storage

devices have been introduced in recent years to

facilitate the effective preservation of records.

In this paper, we contend that (1) not all WORM

storage devices are effective for trustworthy record

keeping, (2) simply storing records in WORM storage

is not sufficient to ensure that they are trustworthy,

and (3) an end-to-end approach to record-keeping

systems is necessary to achieve trustworthy records.

Because of the high stakes that could be involved in

tampering with records, the likelihood of malicious

attacks, possibly by insiders, is real. The record-

keeping system must, thus, be secure against such

attacks. At the same time, the record-keeping system

must enable the timely retrieval of all of the records

that are relevant to an inquiry. Furthermore, the

records must be protected from any alteration after

they are retrieved from the system and before they are

delivered to the inquiry agent. We use the term

Fossilization* to refer to such an end-to-end approach

to designing systems for trustworthy record keeping.

TRUSTWORTHY RECORD KEEPING

When events such as financial transactions occur,

records that document these events are created, and

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 TECHNICAL FORUM 3630018-8670/07/$5.00 ª 2007 IBM

these records can be used as evidence that such

events have occurred. A trustworthy record-keeping

system must not only store the records, but also

protect them from any modification. In addition, the

system must be capable of efficiently locating the

records associated with an inquiry and of delivering

the records intact to the inquiry agent. In other

words, trustworthiness must be established on an

end-to-end basis.

In the normal course of business, the record creation

process is an ongoing activity subjected to periodic

audits in order to ensure its proper execution.

Although record keeping is an important aspect of

business operations, it is not meant to and cannot

protect against all wrongdoing. The basic objective

of record keeping is not to prevent the writing of

history, but to prevent the changing of history; that

is, changing the records after the fact. From this

perspective, the record creation process is assumed

to be trusted.

In an inquiry, all the records of interest have to be

promptly located and delivered unchanged to the

inquiry agent. This includes preventing any physical

modification of records, including selective destruc-

tion, during their storage or their delivery to the

agent. To satisfy the requirement for prompt location

of relevant records when dealing with large volumes

of records and quick response times for users, some

form of direct access mechanism, such as an index,

must be used. Protecting the records from change

must, therefore, also include preventing any logical

modification of the records by manipulating the

access mechanism, including replacing them with

new versions, performing logical deletions, and

employing other forms of record hiding.

Modification and loss of records could result from

hardware failures, software bugs, natural disasters,

and human errors (such as issuing the wrong

command or replacing the wrong disk). Given our

increasing reliance on computer records, the poten-

tial gain from manipulating the records is huge. It is

thus important that records be protected from

attacks, possibly by company insiders. An adversary

could have the highest level of access, privilege, and

knowledge. Although operational procedures, such

as separation of duties, can help reduce the

exposure to such attacks, a well-placed adversary

can still cause much damage.

In a typical scenario, the adversary might be the

system administrator who is tasked by a company

executive to initiate the attack when there is a threat

of an audit, a legal or regulatory discovery process,

or an internal investigation that could uncover

damaging or embarrassing information. Although

the adversary may have physical access to the

records, destroying them in a blatant fashion may

not be an option because it would result in the

presumption of guilt. Moreover, actual destruction

of records can be effectively prevented through

physical security measures and by replicating the

records at one or more remote sites, as is often the

practice. The adversary’s task, therefore, is to

secretly hide or modify specific records that might

contain incriminating or embarrassing information.

Note that the adversary cannot clone a WORM

storage device, omitting specific records in the

process, without triggering suspicion because the

devices tend to be large and the records are time-

stamped internally.

The following threat model results: Alice, a legiti-

mate user, creates a record (document) R and,

through the use of an application that manipulates

and stores documents, commits R to WORM storage.

We assume the application performs as expected,

and R reaches WORM storage. After R has been

committed, user Mala has reasons to want R deleted

or its contents changed; we say that Mala ‘‘begins to

regret the existence of R.’’ Mala will attempt to

prevent user Bob, possibly representing a regulatory

authority, from obtaining R as the answer to one of

his future queries. We assume that Mala can take on

the identity of any legitimate user or superuser in the

system, performing any action that person can

perform. For example, Mala can write any data to

WORM storage as long as the write does not

overwrite existing data, and she can read any data

from WORM storage. This means that we cannot rely

on conventional file or storage system access-control

mechanisms to ensure that documents and indexes

are only modifiable by legitimate applications. We

assume that physical access to WORM storage is

restricted or monitored so that Mala cannot steal or

destroy WORM storage devices. We also assume that

Mala cannot inconspicuously clone a WORM storage

device and omit specific records from the clone.

FOSSILIZATION

Fossilization is the end-to-end approach for trust-

worthy record keeping. Fossilization consists of

TECHNICAL FORUM IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007364

three parts—storage, discovery, and delivery. The

Fossilization of storage ensures that all records are

reliably stored and securely protected from modifi-

cation. The efficient identification and retrieval of all

records relevant to an inquiry is known as Fossil-

ization of discovery. The Fossilization of delivery

ensures that exactly the retrieved records are

delivered to the agent and that none of them are

compromised along the delivery path.

Fossilization of storage
The basic requirement for preserving records is to

prevent their physical deletion or modification. For

electronic records, this means protecting from

change the bits and bytes that make up the records.

One approach is to digitally sign the contents of each

record using one-way hash functions combined with

cryptographic techniques such as used in notary

services (e.g., Reference 4). Such an approach,

however, only detects whether a record has been

tampered with; it does not protect the record from

being tampered with, as is required by regulatory

bodies such as the Securities and Exchange Com-

mission (SEC).

Currently, the requirement that records be immuta-

ble is satisfied by storing the records in WORM

storage. Note that although immutability is often

stipulated as a requirement for records, what is

needed in practice is that the records be ‘‘term-

immutable’’, that is, immutable for a specified

retention period (e.g., three years). Consequently,

most of the recently introduced WORM storage

devices are actually ‘‘term-WORM’’, that is, not

rewritable for a specified duration. In practice, the

WORM capability can be achieved in various ways.

Given the need to support term immutability, and

the performance and cost advantage that rewritable

(magnetic) disks currently enjoy over optical media,

a popular approach is to use rewritable disks as the

storage media and implement overwrite checks or

content-based addressing
5

in software or firmware.

In some systems, overwriting is replaced by

maintaining multiple versions of a record through

mechanisms such as copy-on-write (e.g., References

6 and 7). These systems can be viewed as providing

WORM storage with an audit trail.

The degree of overwrite protection afforded depends

on how the system is implemented. Self-securing

storage
8

leverages the fact that storage servers run

separate software on separate hardware to ensure

that security mechanisms embedded in the file

server cannot be disabled by software running on

client systems. Recall, however, that Mala can take

on the identity of any legitimate user or superuser in

the system and can perform any action that person

can perform. Thus, we need a secure mechanism for

enforcing the WORM property that can not only

protect against accidental alteration but also with-

stand malicious attacks, including attacks from the

inside.

It follows that, based on the computer security

principle of minimizing the trusted computing base,

the component for enforcing the WORM property

should be as small as possible, both to reduce the

probability that something could go wrong or be

compromised, and to increase our ability to verify

the correctness of the component. The component

should also have a simple and well-defined interface

to robustly restrict traffic into the component to only

legitimate requests. In addition, we must make sure

that the component mediates all requests; in other

words, that the overwrite protection cannot be

circumvented by, for example, directly accessing the

rewritable disk. One such system is the Content

Immutable Storage described in Reference 9.

A record is typically composed of data objects such

as a collection of documents or a sequence of data

blocks. As illustrated in Figure 1, a record involves

not only the data objects but also additional objects

that are used to identify and manage the record and

that are known as metadata. Storing the data objects

in secure WORM storage is analogous to ‘‘casting

the data objects in stone’’ (once written the data

objects cannot be modified). Keeping the metadata

in rewritable storage is akin to ‘‘writing them in

sand’’ (they can be changed); alteration of records is

possible as shown in Figure 1. Specifically, a record

with data objects 1, 2, 3, and 4 can be made to

appear as consisting of data objects 1, 2, 30, and 4. In

general, a record must be preserved in WORM

storage together with all of its associated evidentiary

metadata, including information that describes the

structure and attributes of the record, such as its

creation date. The Fossilization of storage ensures

that no part of a record can be altered, replaced, or

removed and that the record is preserved completely

with all of the information necessary to ensure its

long-term usefulness.

Fossilization of discovery
Formerly, Fossilization of storage, that is protecting

the record from physical modification, was sufficient

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 TECHNICAL FORUM 365

to ensure that the records were effectively immuta-

ble because even if a record were to be logically

modified, all versions of the record would be

preserved so that one could theoretically scan all the

stored data to discover the original record. For

example, if we store a file in an optical disc, we can

later write a newer version of the file and have it

logically replace the first file. If we scan through the

entire contents of the optical disc, we can find the

first file; but scanning all of the data to piece

together possible versions of a record has become

far less practical, given huge volumes of records,

increasingly stringent query response times, and the

growing complexity of record-keeping systems. For

the same reasons, creating a direct access mecha-

nism such as an index at query time is not a viable

option. Moreover, the trustworthiness of an index

created at query time is suspect because, according

to our threat model, an adversary who is aware of

the investigation could prevent the index from

including the record R.

Consequently, some form of index must be main-

tained for accessing the records. But unless the

index is properly realized, the records stored in

WORM storage can in effect be hidden or altered.

Figure 2 illustrates the way a record stored in

WORM storage can be logically modified if the index

through which it is accessed is susceptible to

improper manipulation by an adversary. Figure 2A

shows how the manipulation of the index could

cause a logical deletion of record B. Figure 2B shows

how the index could be manipulated to modify

record B to record B0. To prevent such logical

modification of the records, the index must have the

property that once a record is preserved in WORM

storage, it is accessible through the index. For

example, both the index entry for that record and

the path through the index to that entry could be

made immutable.

In our threat model, an adversary, Mala, may try to

keep the record R out of the index that agent Bob

uses in his search. She can do this by preventing R

from ever getting into the index or by ensuring that

R is not in the index that Bob uses. We must,

therefore, make sure that (1) R is entered in the

index before Mala regrets R’s existence, and (2) any

record that ever enters the index stays accessible

through it forever (or at least for a mandated

retention period). To stop Mala from preventing R

from entering the index, one approach is to insert R

and construct the index entry for R as a single

action, because we trust the document insertion

code to get R into WORM storage initially. In

general, inserting a document (e.g., e-mail) into a

Figure 1
Possible alteration of records when metadata are kept in rewritable storage

Metadata Blocks Data Objects

1 2 3 4

Metadata Blocks Data Objects

1 2 3 4 3‘

TECHNICAL FORUM IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007366

full-text index could involve many random I/Os
10

and would be prohibitively expensive to perform

incrementally in an online fashion. However, recent

techniques, such as that introduced in Reference 11,

enable online update of an inverted index while

maintaining good query performance.

Mala may also attempt to logically modify R by

manipulating the index. Research work into index-

ing techniques has been extensive, but simply

storing conventional indexes such as the B-tree,

extensible hashing, and their derivatives in WORM

storage (e.g., Reference 12) does not achieve

Fossilization of discovery.
11,13

In general, index

trees that grow from the leaves up to the root are

vulnerable to compromise because an adversary

could modify records at will by exploiting the

provision for creating new versions of the tree

nodes. Any approach that requires the rebalancing

of a tree is similarly exposed because it inevitably

allows an adversary to create new paths to records.

Methods that permit index entries to be relocated are

also not trustworthy because they open the door for

an adversary to create new versions of any entry. In

short, new indexing techniques are necessary to

ensure that the index cannot be suitably manipu-

lated to hide the index entry of a committed record.

Recent work has introduced such indexing tech-

niques and shown that they do not incur much

additional cost.
11,13

Note that Fossilization of discovery must be applied

to any trusted means of finding and accessing a

record. Examples include the file-system directory

that allows records to be located by the file name,

the database index that enables records to be

retrieved based on the value of some specified field

or combination of fields, and the full-text index that

allows records containing some particular words or

phrases to be found.

Fossilization of delivery
The Fossilization of storage and discovery ensures

that all records are securely preserved and that any

record can be quickly located, but, a weak link in

the system remains—the records may be susceptible

to alteration during their delivery to the agent

conducting the inquiry. For example, adversary

Mala could fabricate a set up with a version of the

search engine or the system stack that has been

doctored to compromise the results to agent Bob’s

queries.

To illustrate this, Figure 3 shows a typical record-

keeping system in which the records retrieved from

WORM storage are handled by an elaborate stack of

Figure 2
Possible logical modification of records if index is stored in rewritable storage: (A) deletion and (B) alteration

Index
Records

Index Index
Records

Deletion

B

B

A

Index
Records

Records

Alteration

BA

B B‘A

A B

A

From "Fossilized Index: The Linchpin of Trustworthy Nonalterable Electronic
Records" by Q. Zhu and W. W. Hsu, Proceedings of ACM SIGMOD International
Conference on Management of Data (June 14-16, 2005), Baltimore, MD,
http://doi.acm.org/10.1145/1066157.1066203. ©2005, ACM. Inc.
Reprinted by permission.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 TECHNICAL FORUM 367

software components before they are delivered to

the agent. The system stack is designed in modular

fashion in order to allow the addition of new

components or the replacement of existing compo-

nents. In fact, the components often have to be

updated for function or to fix bugs and security

exposures. The dynamic nature of the system stack

makes the system vulnerable to security attacks. For

example, as illustrated in Figure 3, an additional

component or software patch labeled Filter could be

installed by Mala and used to modify or drop

selected records in transit. Such a system is clearly

not trustworthy.

Therefore, the inquiry agent should not assume that

record delivery is trustworthy. Agent Bob should,

for example, be able to verify that he is running a

certified version (e.g., signed by a trusted party) of

the search engine and operating system. In some

cases, it may be necessary for Bob to use his own

trusted software stack or version of the software

stack to directly access the records. Alternatively,

the layout of the records and indexes in the WORM

storage could be disclosed so that Bob could use his

own code or some third-party software, possibly

open-source software, to interpret the layout and

retrieve the records.

In practice, Bob may not personally or directly

conduct the record discovery. Instead, the search

results are typically delivered to Bob through some

physical mechanism (depicted in the figure as a

squiggle arrow), such as a CD (compact disc). In

such cases, Mala (depicted in the figure as a bandit)

could target the physical delivery mechanism. For

example, she could create a near duplicate copy of

the search results CD that omits the record R and

send that to Bob. We must prevent Mala from

compromising the integrity of any record sent to

Bob, and even more important, we must protect the

completeness of the search results; that is, we must

ensure that Mala cannot omit any record from the

result set without Bob’s knowledge.

Techniques for ensuring data integrity, such as

digital signatures, have been well studied. Ensuring

the completeness of search queries is a more

challenging problem and has been addressed in part

for the data publishing model (e.g., References 14

and 15). In this model, the completeness of query

results can be certified by having the data owner

attach signatures to the data/indexes, which can

later be verified by the inquiry agent. With our

current threat model, however, because adversary

Mala can take on the data owner’s identity, she can

modify the data/indexes and re-sign them. More

research is needed, therefore, toward the design of a

trustworthy delivery mechanism. One approach is to

use the WORM storage as a trusted entity to certify

that the result set received by Bob is proper.
16

Summary

The fundamental purpose of record keeping is to

preserve accurate details of events and establish

solid proof that the events have occurred. Trust-

worthy records are, therefore, those that can be

relied upon to provide irrefutable evidence of all the

events that have been logged. Such records must be

managed from an end-to-end perspective, beginning

with their preservation, and including their subse-

quent discovery and delivery to an agent seeking

proof or details of an event.

The current limited focus on storing electronic

records in WORM storage is increasingly inadequate

Figure 3
Possible alteration of records on delivery path
from WORM storage to agent

Secure WORM Storage Secure WORM Storage

Content Manager

Database

Storage Manager

Content Manager

Database

Filter

Storage Manager

A‘

A
B

Agent Agent

TECHNICAL FORUM IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007368

to ensure that such records are trustworthy. In

particular, given the high stakes that could be

involved in tampering with the records, the WORM

storage must be secure against attacks, even those

from the inside. Furthermore, the WORM storage

must be used in such a way as to allow all records

that are relevant to an inquiry to be quickly found

without being vulnerable to logical modification. In

addition, these records must be protected against

any alteration after they are retrieved from the

WORM storage and before they are delivered to the

inquiry agent.

We use the term Fossilization to describe a holistic

approach to storing and managing records that

ensures the records are trustworthy. Fossilization is

composed of three parts. The first, Fossilization of

storage, ensures that all the records and their

associated metadata are securely protected from any

loss or modification. The second, Fossilization of

discovery, ensures that every preserved record which

is pertinent to an inquiry can be readily located and

retrieved in a timely fashion, and the third, Fossil-

ization of delivery, warrants that exactly the records

retrieved from storage are delivered to the agent and

that the records are delivered unaltered.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries or both.

CITED REFERENCES
1. EMC Corp., ‘‘EMC Centera Governance Edition: Content

Addressed Storage System’’ (2003), http://www.emc.
com/products/systems/centera_ce.jsp.

2. Network Appliance, Inc., ‘‘SnapLock
TM

Compliance and
SnapLock Enterprise Software’’ (2003), http://www.
netapp.com/products/enterprise-software/
data-retention-software/archive-compliance/snaplock.
html.

3. IBM Corp., ‘‘IBM System Storage DR550’’ (2004), http://
www-1.ibm.com/servers/storage/disk/dr.

4. J. M. Peha, ‘‘Electronic Commerce with Verifiable Audit
Trails,’’ Proceedings of the Internet Society Conference
INET ’99 (June 1999).

5. S. Quinlan and S. Dorward, ‘‘Venti: A New Approach to
Archival Storage,’’ Proceedings of the FAST ’02 Conference
on File and Storage Technologies (January 2002), pp. 89–
101.

6. D. S. Santry, M. J. Fecley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir, ‘‘Deciding When to Forget in
the Elephant File System,’’ Proceedings of the 17th ACM
Symposium on Operating System Principles (December
1999), pp. 110–123.

7. Z. N. Peterson and R. C. Burns, ‘‘Ext3cow: A Time-
Shifting File System for Regulatory Compliance,’’ ACM
Transactions on Storage 1, pp. 190–212 (May 2005).

8. J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger, ‘‘Self-Securing Storage: Pro-
tecting Data in Compromised Systems,’’ Proceedings of the
4th Symposium on Operating System Design and Imple-
mentation (OSDI 2000) (October 2000), pp. 165–180.

9. L. Huang, W. W. Hsu, and F. Zheng, ‘‘Content Immutable
Storage for Trustworthy Electronic Record Keeping,’’
Proceedings of the Conference on Mass Storage Systems
and Technologies (May 2006), pp. 101–112.

10. A. Tomasic, H. Garcı́a-Molina, and K. Shoens, ‘‘Incre-
mental Updates of Inverted Lists for Text Document
Retrieval,’’ Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data (Sep-
tember 1994), pp. 289–300.

11. S. Mitra, W. W. Hsu, and M. Winslett, ‘‘Trustworthy
Keyword Search for Regulatory-Compliant Records Re-
tention,’’ Proceedings of the 32nd International Confer-
ence on Very Large Data Bases (September 2006), pp.
1001–1012.

12. M. C. Easton, ‘‘Key-Sequence Data Sets on Indelible
Storage,’’ IBM Journal of Research and Development 30,
No. 3, 230–241 (May 1986).

13. Q. Zhu and W. W. Hsu, ‘‘Fossilized Index: The Linchpin
of Trustworthy Non-alterable Electronic Records,’’ Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data (June 2005), pp. 395–406.

14. M. Goodrich, R. Tamassia, and A. Schwerin, ‘‘Imple-
mentation of an Authenticated Dictionary with Skip Lists
and Commutative Hashing,’’ Proceedings of the DARPA
Information Survivability Conference and Exposition
(June 2001), pp. 1068–1082.

15. R. Sion, ‘‘Query Execution Assurance for Outsourced
Databases,’’ Proceedings of the 31st International Confer-
ence on Very Large Data Bases, (September 2005), pp.
601–612.

16. S. Mitra, M. Winslett, X. Ma, and W. W. Hsu,
‘‘Trustworthy Migration and Retrieval of Regulatory-
Compliant Records.’’ Submitted for publication.

Accepted for publication December 1, 2006.

Windsor W. Hsu

IBM Almaden Research Center,

Computer Science Storage Systems Department,

San Jose, California

Shauchi Ong

IBM Almaden Research Center,

Computer Science Storage Systems Department,

San Jose, California

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 TECHNICAL FORUM 369

Published online April 11, 2007.

