
M OBILE ROBOTS POSE A UNIQUE
set of challenges to artificial intelli-
gence researchers. Such chal-

lenges include issues of autonomy, uncertainty
(both sensing and control), and reliability,
which are all constrained by the discipline that
the real world imposes. Planning, sensing, and
acting must occur in concert and in context.
That is, information processing must satisfy not
only the constraints of logical correctness but
also some assortment of crosscutting, physical
constraints. Particularly interesting among these
robots are humanoids, which assume an anthro-
pomorphic (humanlike) form.

A growing number of roboticists believe that
the human form provides an excellent platform
on which to enable interactive, real-world ma-
chine learning. Robots that can learn from nat-
ural, multimodal interactions with the environ-
ment might be able to accomplish tasks by
means their designers did not explicitly imple-
ment and to adapt to the unanticipated circum-
stances in an unstructured environment. Ulti-
mately, humanoids might prove to be the ideal
robot design to interact with people. After all,
humans tend to naturally interact with other
humanlike entities.

Eventually, humans and humanoids might be
able to cooperate in ways now imaginable only
in science fiction. Humanoids might also pro-
vide a revolutionary way of studying cognitive
science. As we review successes and failures in
the field, we provide a contextual backdrop for
understanding where humanoid research began,
the dilemmas with which it currently struggles,
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and where it might take us in the future. We
also discuss how these technological devel-
opments have and will continue to affect the
ways in which we understand ourselves.

A brief history of “thinking”
robots

In Plato’s Timaus, the soul, before captiv-
ity within a human frame, knows no con-
straints while freely traversing the nonphys-
ical realm. Yet, once inside the human body,
the soul finds itself confounded by the incon-
sistency of the physical world, struggling to
relate its prior knowledge of perfect, heav-
enly archetypes to the muddled reflections
the senses perceive.

Early attempts to build robots that could
think and act like humans met a similar fate.
Often derived in simulated environments,
these agents possessed perfect, a priori
knowledge of their virtual, archetypal worlds.
Once embodied, these robots struggled to
relate to a noisy and all too often inconsistent
flow of data streaming in and out from a host
of real-world sensors and actuators.

Understanding good, old-fashioned arti-
ficial intelligence. Instead of engineering
effective, real-world behavior, classical AI
emphasized computational intelligence.
Researchers sought to implement rational
thought processes and considered rational
behavior to be an inevitable by-product.
Researchers paid little regard to the corre-
spondence problem as they constructed
increasingly complex and large knowledge-
based systems to capture and process seman-
tic information. 

Researchers deemed symbolic represen-
tation paramount because it let agents oper-
ate on sophisticated human concepts and lin-
guistically report on their action. As Donald
Michie stated, “In AI-type learning, explain-
ability is all.”1 The resulting emphasis on
symbolic representation and planning pro-
foundly affected robotics. Although these
systems produced elaborate and elegant con-
trol architectures, the intelligence in these
systems remained exclusively with the
designer. The robots were merely automata
executing static and often brittle programs.

Problems with hard-coded, top-down con-
trol. In their zeal to make robots think like
humans, many researchers focused on high-
level cognition and provided no mechanism

for building control from the bottom up.
Although intended to model humans, most
systems did not, like humans, acquire their
knowledge through interaction with the real
world. When in the real world, these robots
possessed little mastery over it. Even in the
fortunate event that sensors could accurately
connect internal archetypes to real-world
objects, robots could only extend the knowl-
edge thrust on them in rudimentary, systematic
ways. Such robots carried out preconceived
actions with no ability to react to unforeseen
features of the environment or task.

Once a cause of great optimism, attempts
to create humanlike intelligence became a
favored target for philosophical criticism. In
1979, Hubert Dreyfus argued that computer

simulation assumes incorrectly that explicit
rules can govern intellectual processes.2 An
ability to break rules, Dreyfus thought, bet-
ter characterizes human intelligence. Rules
allow only elementary capabilities and are
routinely broken once we achieve true com-
petence. He viewed this competence not
merely as a new, more sophisticated set of
rules but as the ability to serve principles that
have not yet and might never become explicit.
Another argument was that computer pro-
grams are inherently goal-seeking and thus
require the designer to know beforehand
exactly what behavior is desired (as in a chess
match as opposed to a work of art).3 In con-
trast, humans are value-seeking—that is, we
do not always begin with an end goal in mind
but seek to bring implicit values to fruition,
on the fly, through engagement in a creative
or analytical process. 

Although some of the ultimate conclu-
sions were premature, these arguments aptly
called attention to the fact that static pro-
grams, explicit rules, and knowledge bases
drove robots estranged from the real world.

As such, robots remained information-pro-
cessing machines, applicable only to highly
structured domains such as assembly lines.
At best, those who claimed to be creating
human-like intelligence were labeled posi-
tivists. At worst, they were considered delu-
sional. Many roboticists forsook the goal of
humanlike cognition entirely and focused on
creating functional, high-utility agents, using
the lower animal world as a model (if they
even needed models).

Toward a more robust, low-level knowl-
edge. Realizing the limitations of hard-coded,
externally derived solutions, many within the
AI community decided to look to fields such
as neuroscience, cognitive psychology, and
biology for new insight. Before long, the mul-
tidisciplinary field of cognitive science drove
home the notion that the planning and high-
level cognition of which humans are con-
sciously aware represents only the tip of a vast
neurological iceberg.4 The mainstay of
human action, researchers argued, derives
from motor skills and implicit behavior
encodings that lie beneath the level of con-
scious awareness. Borrowing on this under-
standing, Philip Agre and David Chapman
argued that robots should likewise spend less
time deliberating and more time responding
to a world in constant flux.5A new, behavior-
based view of intelligence emerged that trans-
ferred the emphasis from intelligent process-
ing to robust real-world action.

Neurobiology provided compelling evi-
dence for a behavior-based approach with
studies on the behavioral architecture of low-
level animals. In one experiment, scientists
severed the connection between a frog’s
spine and brain, effectively removing the
possibility of centralized, high-level control.
They then stimulated particular points along
the spinal chord and found that much of the
frog’s behavior was encoded directly into the
spine.6For instance, stimulating one location
prompted the frog to wipe its head, whereas
another location encoded jumping behavior.
This implicit, reactive control layer was what
classical AI methods had ignored.

Bottom-up intelligence for
more capable robots

For a new wave of roboticists, the ques-
tion is how best to impart these primitive
behaviors to robots. Attempts to directly
hard-code such low-level behavior have

JULY/AUGUST 2000 13

MANY ROBOTICISTS FORSOOK

THE GOAL OF HUMANLIKE

COGNITION ENTIRELY AND

FOCUSED ON CREATING

FUNCTIONAL, HIGH-UTILITY

AGENTS, USING THE LOWER

ANIMAL WORLD AS A MODEL.



proven either impossible or ineffectual.
Instead, an increasing number of roboticists
look to machine learning techniques, includ-
ing artificial neural networks, genetic algo-
rithms, and reinforcement learning. Neural
networks provide a “supervised” learning
approach where a designer trains a system’s
response to stimulation by adjusting weights
between network nodes. Reinforcement
learning provides an “unsupervised,” learn-
ing-with-a-critic approach where systems
can learn mappings from percepts to actions
inductively through trial and error. Evolu-
tionary methods begin with an initial pool of
program elements and use genetic operators
such as recombination and mutation to gen-
erate successive generations of increasingly
better controllers.

Using these approaches and others, robots
can learn by adjusting parameters, exploit-
ing patterns, evolving rule sets, generating
entire behaviors, devising new strategies,
predicting environmental changes, recog-
nizing the strategies of opponents, or
exchanging knowledge with other robots.
Such robots have the potential to acquire new
knowledge at a variety of levels and to adapt
existing knowledge to new purposes. Robots
now learn to solve problems in ways that
humans can scarcely understand. In fact, one
side effect of these learning methods is sys-
tems that are anything but explainable. Care-
ful design no longer suppresses emergent
behavior but encourages it.

Applying learning approaches
to humanoid robots

With the realization that the designer does
not need to conceive solutions a priori, hope
for building intelligent, humanlike robots
rekindled. By exploiting these learning tech-
niques, roboticists have once again begun to
tackle a variety of anthropomorphic capabili-
ties. Many roboticists working with humanoids
code learning mechanisms directly into their
design environments and use them to hone
existing behaviors, develop new behaviors, and
string behaviors together. For instance, a
designer can use a neural network to implic-
itly encode low-level motor control for an arm-
reaching behavior and then use reinforcement
learning to train the humanoid when to reach
and grasp. If the humanoid still struggles, the
designer might, for instance, optimize behav-
ior using a genetic algorithm to tweak para-
meters controlling rotational torque.

Although such methods have been invalu-
able, the devastating complexity of most
humanoids has required specialization. The
goal of humanlike versatility has bowed to
the goal of engineering specific humanlike
behaviors. The result has been humanoids
that can exhibit impressive functionality
within a highly restricted domain or task.
The next step is for an increasing number of
capabilities to reside on general-purpose
machines, engineered for all tasks because
they are engineered for none in particular.
Recent mechanical advances have produced
humanoid bodies such as Robonaut (see
“Robonaut: NASA’s Space Humanoid,” by
Robert Ambrose, Hal Aldridge, R. Scott
Askew, Robert Burridge, William Blueth-

mann, Myron Diftler, Chris Lovchik, Darby
Magruder, and Fredrik Rehnmark in this
issue) that represent an important step
toward this goal.

Unfortunately, the software to enable such
universal machines lags significantly. At first
blush, the mechanical sophistication of a full-
fledged humanoid body sounds like a devas-
tating challenge to even the most robust
learning technique. The more complex a
humanoid body, the harder it is to place con-
straints necessary for productive learning. If
we employ too few constraints, learning
becomes intractable. On the other hand, too
many constraints might curtail learning’s
ability to scale. Consequently, many of the
most physically adept humanoid bodies tend
to be driven by hard-coded behaviors or
through a virtual reality human interface. 

Ultimately, the conventional learning tech-
niques we describe are perhaps most limited
because they are tools human designers wield
rather than self-directed capabilities of the
robot. We submit that this might not need to
be the case. Although robots will always

require an initial program, this does not pre-
clude them from indefinitely, willfully, and
creatively building on it. After all, humans
also begin with a program encoded in their
DNA. The key is that in humans much of this
genetic code is devoted not to mere behavior
but to laying a foundation necessary for
future development.

Automated development
through real-world
interaction

A growing number of humanoid researchers
believe that this ability to appropriately seed
development will make learning tractable for
humanoids. The goal is no longer for robots
to merely learn (acquire knowledge and skill
in a particular area) but also to develop
(enrich cognitive ability to learn and extend
physical ability to apply learning). Truly
autonomous humanoids must ultimately play
some role as arbiters of their own develop-
ment and be able to channel and structure
learning across layers of control. This will
require generalized learning starting from the
ground up and continuing throughout the
humanoid’s life, affecting what the robot is,
rather than merely what the robot does.

Before we can transform a cognitive archi-
tecture into a developing mind, we must
answer a host of difficult questions. How do
we give humanoids the ability to impress
their own meaning onto the world? How can
humanoids direct their own development?
How do we motivate this development? How
much a priori skill and knowledge do we
build in? Using what level of representation?
What, if any, bounds should we impose?

Although these questions might never have
definitive answers, an emerging learning
approach provides a unique, functional bal-
ance of human input, self-development, and
real-world interaction. This approach, which
we call imitative learning, lets the robot con-
tinuously learn through multimodal interac-
tions with a human trainer and the environ-
ment. The robot does not simply process
incoming information but actively responds
to natural visual, auditory, and tactile stimu-
lation. The robot can pose questions, ask for
actions to be repeatedly demonstrated, and use
emotional states to communicate frustration,
exhaustion, or boredom to the human trainer.
Advocates of imitative learning see it as the
cornerstone in a developmental foundation
that can enable self-directed, future learning.
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As you might expect, giving humanoids
the ability to interact profitably with humans
is not easy. For imitative learning to succeed,
robots must have some way of knowing
which aspects of the environment to attend
to and precisely which actions to reproduce.
For instance, a robot should not imitate a
cough or a scratch when a trainer shows it
how to turn a crank. To guide robots through
the process of imitative learning, we must
give them the ability to recognize and
respond to natural cues we give uncon-
sciously through body language.

How far have we come?

This issue showcases a rich diversity of
projects that use humanoid robots to model
some subset of the physical, cognitive, emo-
tional, and social aspects of human body and
experience. In “Social Constraints on Ani-
mate Vision,” Cynthia Breazeal, Aaron
Edsinger, Paul Fitzpatrick, Brian Scassellati,
and Paulina Varchavskaia discuss an MIT
project in which they are training a robot head
called Kismet with eyebrows, eyelids, ears,
and a mouth to discern and respond to social
cues, such as nodding and eye contact, that
are crucial in correctly guiding interaction.

Bryan Adams, Cynthia Breazeal, Rodney
Brooks, and Brian Scassellati discuss another
robot platform, Cog, in “Humanoid Robots:
A New Kind of Tool.” They equipped Cog
with a sophisticated visual system capable of
saccades, smooth pursuit, vergence, and head
and eye coordination through modeling of
the human vestibulo-ocular reflex. Cog
responds to visual stimulation, sounds, and
the ways people move its body parts. By
exploiting its ability to interact with humans,
Cog can learn diverse behaviors including
everything from playing with a slinky to
using a hammer. Eventually, military com-
manders who might not know beforehand
what tasks Cog will need to accomplish will
be able to naturally and quickly task it.

Work with imitative learning also pro-
gresses at Michigan State University, where
researchers are using communicative learn-
ing to iteratively hone behavior as the
humanoid responds to verbal feedback from
a human trainer.7 The foundational principle
is that all human-derived forms of represen-
tation bias the system and inhibit learning’s
ability to scale. Instead, they wish the
humanoid to build layers of control using as
little built-in representation as possible.

Rather than storing semantic information, the
humanoid treats all stimulation as low-level
vectors. Thus, the principles that let the robot
process and learn from visual stimulation
will apply equally well to other capabilities
such as object manipulation.

Human–robot interaction plays a crucial
role in the burgeoning market for intelligent
service robots. Increasingly, robots that can
serve as mobile, autonomous tour guides and
information kiosks will grace public places.
Sebastian Thrun, Jamie Schulte, and Chuck
Rosenberg give an encouraging example in
“Robots with Humaniod Features in Public
Places:A Case Study.” Their robot Minerva,
a popular tour guide at the Smithsonian
National Museum of American History, used

a rich repertoire of interactive capabilities to
attract people and guide them through the
museum. Minerva’s facial features and
humanoid form greatly affected how people
responded to it.

An ambitious effort at Vanderbilt Univer-
sity is working toward intelligent, task-gen-
eral service robots that can aid the elderly
and disabled. To deal with the complexity
inherent to humanoid bodies and tasks,
Kazuhiko Kawamura, R. Allen Peters II, D.
Mitchell Wilkes, W. Anthony Alford, and
Tamara E. Rogers (“ISAC: Foundations in
Human–Humanoid Intraction”) designed
their robot Intelligent Soft-Arm Control as a
multiagent system that devotes a separate
agent to each functional area. For instance,
one agent deals with arm movement while
another interacts with humans. Using data-
base associative memory, ISAC can store
and structure the knowledge it acquires. To
mimic long-term memory, DBAM uses a
spreading activation network to form asso-
ciations between database records. To effi-
ciently structure its memories, ISAC’s Sen-

sory EgoSphere processes incoming percep-
tual data according to spatial and temporal
significance.

In “A Neurobiological Perspective on
Humanoid Robot Design,” Simon Gistzer,
Karen Moxon, Ilya Rybak, and John Chapin
provide a tour of recent neurobiological find-
ings that continue to impact humanoid robot-
ics. The authors explain the process by which
they encoded aspects of motor execution into
a modular neural architecture within the
spinal system. This architecture expedites
motor control learning by constraining the
output sent to limbs and by hierarchically
structuring control primitives at varying lev-
els. Maja Matari´c’s article (“Getting
Humanoids to Move and Imitate”) provides
convincing evidence that roboticists can
exploit this model by coding or training a set
of basis behaviors on which developmental
learning can build. Imitative learning is then
a process of matching perceived behavior to
an assemblage of these a priori primitives. 

In “Using Humanoid Robots to Study
Human Behavior,” Chris Atkeson, Josh Hale,
Mitsuo Kawato, Shinya Kotosaka, Frank Pol-
lick, Marcia Riley, Stefan Schaal, Tomohiro
Shibata, Gaurav Tevatia,Ales Ude, and Sethu
Vijayakumar discuss a collaborative, inter-
national endeavor that uses a 30 degree-of-
freedom robot to emulate complex, full-body
movement. For insight into human body
movement, they use a unique motion capture
system called a SenSuit which, when worn as
an exoskeleton, lets researchers record human
movement trajectories for shoulders, elbows,
wrists, hips, knees, and ankles. This data iden-
tifies the underlying principles that constrain
and optimize body movement. Ultimately,
these principles will inform the way
humanoid designers develop and use motion
primitives. Currently, researchers have cho-
sen to represent motion primitives using B-
spline wavelets—spikes in the kinematic
graphs that characterize a specific joint move-
ment. By providing an efficient way to spec-
ify and optimize multiresolution motion tra-
jectories, B-spline wavelets enable smooth,
efficient movement.

In “Tracing Patterns and Attention:
Humanoid Robot Cognition,” Luiz-Marcos
Garcia, Antonio Oliveira, Roderic Grupen,
David Wheeler, and  Andrew Fagg use atten-
tional mechanisms to focus a humanoid robot
on visual areas of interest. On top of this
capability, the authors have implemented a
learning system that lets the robot
autonomously recognize and categorize the
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environmental elements it extracts. They
equip robots with perceptual clues such as
sound, movement, color intensity, or human
body language (pointing, gazing, and so on).
For rich sensor modalities such as vision,
perception is as much a process of excluding
input as receiving it.

The articles in this special issue do not pre-
sume to exhaustively cover the realm of
humanoid robotics. For example, in Japan,
the electronics and automotive industries have
played a key role in the resurgence of
humanoids by developing robots capable of
walking, climbing stairs, and even playing
pianos. Although Japanese scientists have
focused on the necessary mechatronics, they
are also beginning to search for learning tech-
niques that can scale indefinitely. At the Uni-
versity of Tokyo, researchers are using a
learning methodology they call interactive
teaching to give robots the ability to 
drive their own development. A robot uses
Bayesian networks to map sensor evidence to
behavior and then assigns each mapping a
confidence rating. In the beginning stages,
confidence ratings are low and the robot must
frequently ask a human trainer for help decid-
ing between competing actions. With prac-
tice, the robot requires less intervention from
the human trainer until eventually it can
autonomously complete a task. When the task
changes, the robot can again ask for help.8

What does the future hold?

Although these projects are important
steps in the right direction, functional results
come slowly. Like the human infants they
model, developing humanoids are inefficient
at most tasks and require intensive training.
One implication of this research is that to cre-
ate humanlike adaptability and versatility,
introducing an element of human frailty and
inconsistency might be necessary.

As robots become increasingly pervasive,
it remains to be seen whether humanoids can
become crucial arbiters of this new world,
able to favorably coexist with humans while
exploiting the way we have structured our
environment. Recent humanoid research has
suggested that humanoid robots might one
day perform surgery, build and maintain
space stations, serve meals, or deliver pack-
ages throughout an office building. Moreover,
researchers will task them naturally through
gestures and speech. Nonetheless, there are
still many who view humanoid research as a

foolhardy, misdirected pursuit. Both inside
and outside robotics, skeptics maintain that
we could better spend money and time engi-
neering targeted and arguably more afford-
able robotic solutions to fit specific needs.

Certainly, myriad tasks exist for which an
ability to converse, learn, and interact is not
necessary. For highly structured environments,
factory automation robots are extremely adroit,
efficient, and reliable. Even for tasks such as
land-mine detection, which might benefit from
adaptation and autonomy, the robots do not
necessarily need a human form or the ability
to interact with humans. However, it takes lit-
tle imagination to conceive the benefits of
bringing highly capable humanoid agents to
bear in scenarios spanning everything from

firefighting or rescue operations to assisting
the elderly and disabled. Moreover, such skep-
ticism overlooks all that humanoid research
can tell us about the way we think, learn, adapt,
interact, develop, and evolve from an entity
whose cognitive existence is not limited to a
biologically constrained lifespan.

On the other hand, humanoids have much
yet to prove. Will humanoid research propel
robotics on to great heights, channeling ideas
from diverse fields toward an ultimate goal?
Or will the quest to model ourselves prove to
be a stumbling block, or worse? We might be
our best or worst models of intelligence.
Although cognitive neuroscience will con-
tinue to contribute much to our self-under-
standing, we by no means fully appreciate
the many internal processes that actually pro-
duce our intelligence.

Roboticist Rodney Brooks voiced similar
sentiments, arguing that our view of how we
think and act is tainted with subjectivity.9We
cannot wholly transcend our biased per-
spective. The best we can do is neutralize its
effect by bringing humanoid bodies in line

with our own. Most likely, we will never fully
understand, much less recreate, everything
that it means to be human. As the frontiers of
our self-understanding expand, humanoid
robots might simply follow (and at times pro-
pel) our continuously changing conception
of what we are. 

On one hand, we can view the human form
as an absurd and fragile vessel, ill-suited for
any one task and redeemed only by human
intelligence. On the other hand, the human
body provides us with a unique ability to
learn and apply learning. Dualistic thinking
has often rendered the body little more than
a tomb for the mind, but to the contrary,
humanlike intelligence might require a
humanlike body.

Humanoid robotics provides a unique
forum in which to continue this age-old
debate. Are humanoids destined to remain
lumbering, overly complex, and ineffectual,
or, like those they model, will they manage to
grow into their ungainly form? This special
issue attests that rather than hampering the
application of AI, physical embodiment in
the human form provides a necessary and
useful grounding, letting humanoids surpass
their original programming as they endeavor
to communicate with their creators.
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