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cow w = @ U S i set of challenges to artifial intelli-
e = - @ S S gence reearchers. Such chal-

lenges include issues of autonomy, uncertainty

S ' (both sensing and control), and reliability

e o ' which are all constrained by the discipline tha

¥ gt — . : the real world imposes. Planning, sensing, an
1 : . t acting must occur in concert and in contexf.

3 That is, information processing must satisfy ngt
only the constraints of logical correctness but
also some assortment of crosscutting, physical
.Y constraints. Particularly interesting among these
) robots are humanoids, which assume an anthro-
pomorphic (humanlike) form.

A growing number of roboticists believe that

the human form provides an excellent platform

on which to enable interactive, real-world mat

chine learning. Robots that can learn from nat

ural, multimodal interactions with the environ-

ment might be able to accomplish tasks by

means their designers did not explicitly impler

ment and to adapt to the unanticipated circum

stances in an unstructured environment. Ult

mately, humanoids might prove to be the ideal

robot design to interact with people. After all

humans tend to naturally interact with other

humanlike entities.

Eventually, humans and humanoids might b

able to cooperate in ways now imaginable only

in science fiction. Humanoids might also pro+

vide a revolutionary way of studying cognitive,

science. As we review successes and failures in

Mark L. Swinson, DARPA the field, we provide a contextual backdrop fo

David J. Bruemmer, Strategic Analysis understanding where humanoid research began,
the dilemmas with which it currently struggles
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and where it might take us in the future. \\Vdor building control from the bottom up. As such, robots remained information-pro+
also discuss how these technological deyeAlthough intended to model humans, mostessing machines, applicable only to highl
opments have and will continue to affect theystems did not, like humans, acquire theistructured domains such as assembly line
ways in which we understand ourselves. | knowledge through interaction with the realAt best, those who claimed to be creating
world. When in the real world, these robatdhuman-like intelligence were labeled posi
possessed little mastery over it. Even in thavists. At worst, they were considered delut
A brief his‘lory of "'Ihinking” fortunate event that sensors could accuratejonal. Many roboticists forsook the goal o
rohots connect internal archetypes to real-worldhumanlike cognition entirely and focused on
objects, robots could only extend the knowl¢reating functional, high-utility agents, using
In Plato’sTimaus the soul, before captiv: edge thrust on them in rudimentary, systematitie lower animal world as a model (if they
ity within a human frame, knows no con-ways. Such robots carried out preconceiveeven needed models).
straints while freely traversing the nonphysactions with no ability to react to unforeseen
ical realm. Yet, once inside the human bodyfeatures of the environment or task. Toward a more robust, low-level knowl-
the soul finds itself confounded by the incan- Once a cause of great optimism, attemptsdge Realizing the limitations of hard-coded,
sistency of the physical world, struggling toto create humanlike intelligence became externally derived solutions, many within the
relate its prior knowledge of perfect, heav{favored target for philosophical criticism. In Al community decided to look to fields such

" =

enly archetypes to the muddled reflectian4979, Hubert Dreyfus argued that computeas neuroscience, cognitive psychology, and

the senses perceive. biology for new insight. Before long, the mul-
Early attempts to build robots that cot -||‘|||‘||||‘|||‘"m"mHHHHHHHH tidisciplinary field of cognitive science drove

think and act like humans met a similar fe =* home the notion that the planning and high-

Often derived in simulated environmen 3, M level cognition of which humans are con
these agents possessed perfect, a p ori ANY ROBOTICISTS FORSOOK sciously aware represents only the tip of a vast

knowledge of their virtual, archetypal worlc . THE GOAL OF HUMANLIKE neurological iceberd. The mainstay of
Once embodied, these robots strugglec to human action, researchers argued, derives
relate to a noisy and all too often inconsist nt COGNITION ENTIRELY AND from motor skills and implicit behavior
flow of data streaming in and out fromah st FOCUSED ON CREATING encodings that lie beneath the level of con-
of real-world sensors and actuators. scious awareness. Borrowing on this under-
FUNCTIONAL, HIGH-UTILITY standing, Philip Agre and David Chapmar
nderstandin Id-fashion rti- I hatr hould likewi nd les
Understanding good, old-fashioned art AGENTS, USING THE LOWER argued that robots should likewise spend less

ficial intelligence. Instead of engineerin time deliberating and more time responding
effective, real-world behavior, classical, | ~ ANIMAL WORLD AS A MODEL. to a world in constant fluXA new, behavior-
emphasized computational intelligenc 2. based view of intelligence emerged that trans-
Researchers sought to implement ratic al ferred the emphasis from intelligent process-
thought processes and considered ratignaimulation assumes incorrectly that expliciing to robust real-world action.
behavior to be an inevitable by-productrules can govern intellectual proces$és Neurobiology provided compelling evi-
Researchers paid little regard to the correability to break rules, Dreyfus thought, bet-dence for a behavior-based approach wit
spondence problem as they constructetér characterizes human intelligence. Rulestudies on the behavioral architecture of low
increasingly complex and large knowledgeallow only elementary capabilities and ardevel animals. In one experiment, scientist
based systems to capture and process semeautinely broken once we achieve true comsevered the connection between a frog
tic information. petence. He viewed this competence napine and brain, effectively removing the
Researchers deemed symbolic represemerely as a new, more sophisticated set glossibility of centralized, high-level control.
tation paramount because it let agents opemdles but as the ability to serve principles thathey then stimulated particular points along
ate on sophisticated human concepts and lihave not yet and might never become explicithe spinal chord and found that much of the
guistically report on their action. As DonaldAnother argument was that computer profrog’s behavior was encoded directly into the
Michie stated, “In Al-type learning, explain- grams are inherently goal-seeking and thuspine®For instance, stimulating one location
ability is all.”* The resulting emphasis onrequire the designer to know beforehangrompted the frog to wipe its head, wherea
symbolic representation and planning proexactly what behavior is desired (as in a chessiother location encoded jumping behavior.
foundly affected robotics. Although thesematch as opposed to a work of &ri). con- | This implicit, reactive control layer was what
systems produced elaborate and elegant camast, humans are value-seeking—that is, welassical Al methods had ignored.
trol architectures, the intelligence in thesealo not always begin with an end goal in mind
systems remained exclusively with thebut seek to bring implicit values to fruition,
designer. The robots were merely automatan the fly, through engagement in a creati vBo"om-up inl‘elligeme for
executing static and often brittle programs.or analytical process. more mpuble robots
Although some of the ultimate conclu-
Problems with hard-coded, top-down con-| sions were premature, these arguments aptly For a new wave of roboticists, the ques
trol. In their zeal to make robots think like called attention to the fact that static protion is how best to impart these primitive
humans, many researchers focused on hijggrams, explicit rules, and knowledge basebehaviors to robots. Attempts to directly
level cognition and provided no mechanisndrove robots estranged from the real worldhard-code such low-level behavior have

>

0n 9

7]

JULY /AUGUST 2000 13




proven either impossible or ineffectual. Although such methods have been invalurequire an initial program, this does not pre
Instead, an increasing number of roboticistable, the devastating complexity of mastlude them from indefinitely, willfully, and

look to machine learning techniques, includhumanoids has required specialization. Thereatively building on it. After all, humans
ing artificial neural networks, genetic algo-goal of humanlike versatility has bowed toalso begin with a program encoded in the
rithms, and reinforcement learning. Neurathe goal of engineering specific humanlikeDNA. The key is that in humans much of thig
networks provide a “supervised” learningbehaviors. The result has been humanaidgenetic code is devoted not to mere behavi
approach where a designer trains a systentisat can exhibit impressive functionalitybut to laying a foundation necessary fo

or

response to stimulation by adjusting weightsvithin a highly restricted domain or tas
between network nodes. Reinforcementhe next step is for an increasing numbe
learning provides an “unsupervised,” learncapabilities to reside on general-purp
ing-with-a-critic approach where systemamachines, engineered for all tasks beca
can learn mappings from percepts to actiorthey are engineered for none in particul
inductively through trial and error. Evolu- Recent mechanical advances have prod
tionary methods begin with an initial pool ofhumanoid bodies such as Robonaut (

program elements and use genetic operatdiiRobonaut: NASA's Space Humanoid,” b
such as recombination and mutation to gerRobert Ambrose, Hal Aldridge, R. Sco
erate successive generations of increasinghyskew, Robert Burridge, William Blueth
better controllers.

Using these approaches and others, ro ¢
Wil dbaitoatubdgitid 1
ing patterns, evolving rule sets, generat 1g T
entire behaviors, devising new strategi s, RULY AUTONOMOUS
p_re_dicting environmental changes, rect 3- HUMANOIDS MUST
nizing the strategies of opponents, r
exchanging knowledge with other robo 5. ULTIMATELY PLAY SOME ROLE
Such robots have the potential to acquire | 2w AS ARBITERS OF THEIR OWN
knowledge at a variety of levels and to ad pt
existing knowledge to new purposes. Rot tsDEVELOPMENT, MUST BE ABLE
now learn to solve problems in ways tl it TO CHANNEL LEARNING
humans can scarcely understand. In fact, ne
side effect of these learning methods is ¢ 's- ACROSS LAYERS OF CONTROL.
tems that are anything but explainable. Ci e-
ful design no longer suppresses emerg :nt
behavior but encourages it. mann, Myron Diftler, Chris Lovchik, Darby
Magruder, and Fredrik Rehnmark in th
issue) that represent an important s

Applying learning approaches
to humanoid robots

With the realization that the designer da
not need to conceive solutions a priori, hg
for building intelligent, humanlike robot
rekindled. By exploiting these learning tec

toward this goal.
Unfortunately, the software to enable su
universal machines lags significantly. At fir;

eblush, the mechanical sophistication of a fullWhat, if any, bounds should we impose?

p#edged humanoid body sounds like a dev
s tating challenge to even the most rob
hlearning technique. The more complex

nigues, roboticists have once again begu
tackle a variety of anthropomorphic capab

n tumanoid body, the harder itis to place cc
listraints necessary for productive learning

ties. Many roboticists working with humanoidswe employ too few constraints, learnin
code learning mechanisms directly into theibecomes intractable. On the other hand,
design environments and use them to hormaany constraints might curtail learning
existing behaviors, develop new behaviors, anability to scale. Consequently, many of t
string behaviors together. For instance| aost physically adept humanoid bodies te
designer can use a neural network to implido be driven by hard-coded behaviors
itly encode low-level motor control for an arm-through a virtual reality human interface.
reaching behavior and then use reinforcement Ultimately, the conventional learning tec
learning to train the humanoid when to regchiques we describe are perhaps most limi
and grasp. If the humanoid still struggles, th&ecause they are tools human designers w
designer might, for instance, optimize behavrather than self-directed capabilities of t
ior using a genetic algorithm to tweak pararobot. We submit that this might not need

.future development.
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Automated development
through real-world

cifiteraction

ee

A growing number of humanoid researcher:
tbelieve that this ability to appropriately seec
development will make learning tractable fo
humanoids. The goal is no longer for robot
to merely learn (acquire knowledge and skil
in a particular area) but also to develo
(enrich cognitive ability to learn and extend
physical ability to apply learning). Truly
autonomous humanoids must ultimately pla
some role as arbiters of their own develop-
ment and be able to channel and structu
learning across layers of control. This will
require generalized learning starting from th
ground up and continuing throughout the
humanoid’s life, affecting what the robot is,
rather than merely what the robot does.

Before we can transform a cognitive archit

tecture into a developing mind, we must
answer a host of difficult questions. How dg
we give humanoids the ability to impress

istheir own meaning onto the world? How car

epumanoids direct their own development
How do we motivate this development? Ho

cmuch a priori skill and knowledge do we

stbuild in? Using what level of representation?
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as- Although these questions might never hayv
ugdefinitive answers, an emerging learning
approach provides a unique, functional ba
nance of human input, self-development, an
. Ifeal-world interaction. This approach, which
gwe callimitative learninglets the robot con-
tamnuously learn through multimodal interac-
'stions with a human trainer and the environ
hement. The robot does not simply proces
nohcoming information but actively responds
oto natural visual, auditory, and tactile stimu

lation. The robot can pose questions, ask f
h-actions to be repeatedly demonstrated, and U
tegimotional states to communicate frustratio
iedcthaustion, or boredom to the human traine
heé\dvocates of imitative learning see it as th
t@ornerstone in a developmental foundatio
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meters controlling rotational torque. be the case. Although robots will alwa
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sthat can enable self-directed, future learning
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As you might expect, giving humanoidsRather than storing semantic information, theory EgoSphere processes incoming percep-
the ability to interact profitably with humanshumanoid treats all stimulation as low-levekual data according to spatial and temporal
is not easy. For imitative learning to succeedjectors. Thus, the principles that let the robagignificance.
robots must have some way of knowingprocess and learn from visual stimulation In “A Neurobiological Perspective on
which aspects of the environment to attendiill apply equally well to other capabilities Humanoid Robot Design,” Simon Gistzer,
to and precisely which actions to reproducesuch as object manipulation. Karen Moxon, llya Rybak, and John Chapin
For instance, a robot should not imitate a Human-robot interaction plays a crucialprovide a tour of recent neurobiological find-
cough or a scratch when a trainer shows ible in the burgeoning market for intelligentings that continue to impact humanoid robot
how to turn a crank. To guide robots througlservice robots. Increasingly, robots that gaits. The authors explain the process by whig
the process of imitative learning, we mysserve as mobile, autonomous tour guides aridey encoded aspects of motor execution into
give them the ability to recognize andinformation kiosks will grace public places.a modular neural architecture within the
respond to natural cues we give unconSebastian Thrun, Jamie Schulte, and Chudpinal system. This architecture expedite
sciously through body language. Rosenberg give an encouraging example imotor control learning by constraining the

“Robots with Humaniod Features in Publicoutput sent to limbs and by hierarchically

Places: A Case Study.” Their robot Minervastructuring control primitives at varying lev-
How far have we come? a popular tour guide at the Smithsoniarels. Maja Matag’s article (“Getting

National Museum of American History, usedHumanoids to Move and Imitate”) provides

This issue showcases a rich diversity Jf convincing evidence that roboticists can
projects that use humanoid robots to mc _||‘|||‘||||‘|||‘"m"mHHHHHHHH exploit this model by coding or training a set
some subset of the physical, cognitive, er of basis behaviors on which developmenta
tional, and social aspects of human body n learning can build. Imitative learning is then
experience. In “Social Constraints on Al - FOR IMITATIVE LEARNING TO a process of matching perceived behavior
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mate Vision,” Cynthia Breazeal, Aarc i SUCCEED, ROBOTS MUST HAVE an assemblage of these a priori primitives.
Edsinger, Paul Fitzpatrick, Brian Scassell i, In “Using Humanoid Robots to Study
and Paulina Varchavskaia discuss an M T SOME WAY OF KNOWING Human Behavior,” Chris Atkeson, Josh Hale,
project in which they are training a robot he d WHICH ASPECTS OF THE Mitsuo Kawato, Shinya Kotosaka, Frank Pol
called Kismet with eyebrows, eyelids, ea 3, lick, Marcia Riley, Stefan Schaal, Tomohiro
and a mouth to discern and respond to sc :ial ENVIRONMENT TO ATTEND TO  Shibata, Gaurav Tevatia, Ales Ude, and Sethu
cues, such as nodding and eye contact, nat AND PRECISELY WHICH Vijayakumar discuss a collaborative, inter
are crucial in correctly guiding interaction national endeavor that uses a 30 degree-of-
Bryan Adams, Cynthia Breazeal, Rodr y ACTIONS TO REPRODUCE. freedom robot to emulate complex, full-body
Brooks, and Brian Scassellati discuss ano 1er movement. For insight into human body
robot platform, Cog, in “Humanoid Robot : movement, they use a unique motion capture

A New Kind of Tool.” They equipped Cog arich repertoire of interactive capabilities tosystem called a SenSuit which, when worn as
with a sophisticated visual system capable afttract people and guide them through than exoskeleton, lets researchers record human
saccades, smooth pursuit, vergence, and headiseum. Minerva’s facial features andmovement trajectories for shoulders, elbows,
and eye coordination through modeling |ohumanoid form greatly affected how peoplewrists, hips, knees, and ankles. This data iden-
the human vestibulo-ocular reflex. Cogresponded to it. tifies the underlying principles that constrain
responds to visual stimulation, sounds, and An ambitious effort at Vanderbilt Univer- and optimize body movement. Ultimately,
the ways people move its body parts. Bity is working toward intelligent, task-gen-these principles will inform the way
exploiting its ability to interact with humans, eral service robots that can aid the elderljljumanoid designers develop and use motign
Cog can learn diverse behaviors includingnd disabled. To deal with the complexityprimitives. Currently, researchers have chg
everything from playing with a slinky to inherent to humanoid bodies and taskssen to represent motion primitives using B
using a hammer. Eventually, military com-Kazuhiko Kawamura, R. Allen Peters II, D.spline wavelets—spikes in the kinematic
manders who might not know beforehandMitchell Wilkes, W. Anthony Alford, and graphs that characterize a specific joint move
what tasks Cog will need to accomplish willTamara E. Rogers (“ISAC: Foundations [irment. By providing an efficient way to spec-
be able to naturally and quickly task it. Human—-Humanoid Intraction”) designedify and optimize multiresolution motion tra-
Work with imitative learning also prot their robot Intelligent Soft-Arm Control as|ajectories, B-spline wavelets enable smooth
gresses at Michigan State University, wherenultiagent system that devotes a separagdficient movement.
researchers are usisgmmunicative learn; agent to each functional area. For instance, In “Tracing Patterns and Attention:
ing to iteratively hone behavior as theone agent deals with arm movement whilédumanoid Robot Cognition,” Luiz-Marcos
humanoid responds to verbal feedback froranother interacts with humans. Usihgta- | Garcia, Antonio Oliveira, Roderic Grupen,
a human trainefThe foundational principle base associative memomBAC can store David Wheeler, and Andrew Fagg use atten
is that all human-derived forms of represenand structure the knowledge it acquires. Tdonal mechanisms to focus a humanoid robo
tation bias the system and inhibit learning’snimic long-term memory, DBAM uses g on visual areas of interest. On top of thi
ability to scale. Instead, they wish thespreading activation network to form assoeapability, the authors have implemented
humanoid to build layers of control using agiations between database records. To effiearning system that lets the robo
little built-in representation as possible.ciently structure its memories, ISAC’s Sep-autonomously recognize and categorize the
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environmental elements it extracts. Theyoolhardy, misdirected pursuit. Both insidewith our own. Most likely, we will never fully
equip robots with perceptual clues such|aand outside robotics, skeptics maintain thainderstand, much less recreate, everything
sound, movement, color intensity, or humarwe could better spend money and time engthat it means to be human. As the frontiers of
body language (pointing, gazing, and so onneering targeted and arguably more affordsur self-understanding expand, humanoid
For rich sensor modalities such as visionable robotic solutions to fit specific needs| robots might simply follow (and at times pro-
perception is as much a process of excluding Certainly, myriad tasks exist for which anpel) our continuously changing conceptio
input as receiving it. ability to converse, learn, and interact is noof what we are.

The articles in this special issue do not praaecessary. For highly structured environments, On one hand, we can view the human form
sume to exhaustively cover the realm |ofactory automation robots are extremely adroias an absurd and fragile vessel, ill-suited fq
humanoid robotics. For example, in Japarefficient, and reliable. Even for tasks such|aany one task and redeemed only by human
the electronics and automotive industries havand-mine detection, which might benefit fromintelligence. On the other hand, the human
played a key role in the resurgence |o&daptation and autonomy, the robots do hditody provides us with a unique ability to
humanoids by developing robots capable afiecessarily need a human form or the abilitiearn and apply learning. Dualistic thinking
walking, climbing stairs, and even playingto interact with humans. However, it takes lithas often rendered the body little more than
pianos. Although Japanese scientists hauk imagination to conceive the benefits ol tomb for the mind, but to the contrary,
focused on the necessary mechatronics, théyinging highly capable humanoid agents|ttiumanlike intelligence might require a
are also beginning to search for learning techpear in scenarios spanning everything frorhumanlike body.

=

niques that can scale indefinitely. Atthe U i- Humanoid robotics provides a unique
versity of Tokyo, researchers are usin( \“HH\HHH\|||”|||‘||||\|||\||||\|||\- forum in which to continue this age-old
learning methodology they catiteractive debate. Are humanoids destined to remain
teaching to give robots the ability t lumbering, overly complex, and ineffectual,
drive their own development. A robot us s AS ROBOTS BECOME or, like those they model, will they manage t¢
Bayesi_an networks to map sensor eviden_( 10 INCREASINGLY PERVASIVE, IT grow into their ungainly form? This sp_ecial
behavior and then assigns each mappii J a issue attests that rather than hampering the
confidence rating. In the beginning stag s, REMAINS TO BE SEEN application of Al, physical embodiment in
confidence ratings are low gnd the robot i 1st WHETHER HUMANOIDS CAN the human fo.rm proyldes a necessary and
frequently ask a human trainer for help de« J- useful grounding, letting humanoids surpass
ing between competing actions. With pri -  BECOME CRUCIAL ARBITERS their original programming as they endeavor
tice, the robot requires less intervention fri m OF THIS NEW WORLD to communicate with their creatols.

the human trainer until eventually it ci 1
autonomously complete a task. When the sk
changes, the robot can again ask for Relg

firefighting or rescue operations to assisting
the elderly and disabled. Moreover, such skep-
ticism overlooks all that humanoid research

Although these projects are importantan tell us about the way we think, learn, adapt,
steps in the right direction, functional resultsnteract, develop, and evolve from an entjty
come slowly. Like the human infants theywhose cognitive existence is not limited t
model, developing humanoids are inefficienbiologically constrained lifespan.
at most tasks and require intensive training. On the other hand, humanoids have much o ) o
One implication of this research is that to creyet to prove. Will humanoid research propel 1+ B- Michie, "Machine Learning in the Next

: - - . . L Five Years,"Proc. Third European Working

ate humanlike adaptability and versatilityrobotics on to great heights, channeling ideas  gagsion on Learningitman, London, 1988,
introducing an element of human frailty androm diverse fields toward an ultimate goal?  pp. 107-122.
inconsistency might be necessary. Or will the quest to model ourselves prove|to

As robots become increasingly pervasivehe a stumbling block, or worse? We might be2- H.L. Dreyfus,What Computers Can't Do:
it remains to be seen whether humanoids cair best or worst models of intelligence. &T’O'F‘)m';SBOJO’?(g"f;\?';Lg’;f&'"%%%?ﬂarper
become crucial arbiters of this new world Although cognitive neuroscience will con-
able to favorably coexist with humans whiletinue to contribute much to our self-under- 3. G.B. Kleindorfer and J.E. Martin, “The Iron
exploiting the way we have structured oustanding, we by no means fully appreciate ~ Cage, Single Vision, and Newton's Sleep,”
environment. Recent humanoid research haise many internal processes that actually pro-  Reésearch in Philosophy and Technology.

. . S 3,1983, pp. 127-142.

suggested that humanoid robots might anguce our intelligence.
day perform surgery, build and maintain Roboticist Rodney Brooks voiced similar 4. D.L. Schacter, C.Y.P. Chiu, and K.N. Ochsner
space stations, serve meals, or deliver packentiments, arguing that our view of how we  “Implicit Memory: A Selective ReviewAnn.
ages throughout an office building. Moreoverthink and act is tainted with subjectivityve Rev. Neurosciencgol. 16, 1993, pp. 159-182.
researchers will task them naturally throu h:anngt wholly transcend our biased.p 5. PE. Agre and D. Chapman, “What Are Plans
gestures and speech. Nonetheless, there afgective. The best we can do is neutralize its  For2"Robotics and Autonomous Systgvbs
still many who view humanoid research as affect by bringing humanoid bodies in line 6, 1990, pp. 17-34.

What does the future hold?
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User interfaces to market systems, including mobile interfaces
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pp. 57-64.
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