
 

Abstract — Highly infectious diseases such as SARS (Severe 

Acute Respiratory Syndrome), Avian Influenza (Bird Flu), 

Small Pox, and currently Swine Flu, to name but a few, pose a 

significant threat to the global population. Detection and pre-

vention of infectious diseases is notoriously complex and prob-

lematic due to the ever increasing number of international 

travellers. In addition, the risk of being infected with an infec-

tious disease in densely populated urban areas tends to be much 

higher compared to rural areas. When an outbreak occurs, the 

detection of source of infection (or index case), clusters of cases 

and transmission routes in a rapid manner is crucial in pre-

venting the infectious disease from further spreading. Contact 

tracing has proven to be helpful for these detections. Tradi-

tionally, contact tracing is a field work of the medical personnel 

with little assistance of IT (Information Technology), if any. 

During the worldwide outbreak of SARS in 2003, HCIS (Health 

Care Information Systems) were built to facilitate contact 

tracing. However, contact tracing, and thus the detection 

process, is not a fully automatic process in these systems. In this 

paper, with SARS as a case study, we realize detection as an 

automatic process by applying algorithms and data mining 

techniques in the patients’ activities and social interaction to-

gether with characteristics of the infectious disease. 

Index Terms—Contact Tracing, Healthcare Digital Ecosys-

tem, Infectious Disease Control, SARS, Infection Tree. 

I. INTRODUCTION

Digital ecosystems have emerged as a new conceptuali-

zation of complex, interdependent, loosely-coupled and 

demand-driven interactive environments [1]. In the health 

domain, digital health ecosystems are conceived of as dy-

namic environments in which hospitals, medical centres, 

practitioners, medical researchers and others are linked in 

order to exchange medical records in a demand-driven 

manner, such as in the case of an epidemic. In this paper we 

focus on one such case that motivates the development of 

medical record digital ecosystems. 

During the worldwide outbreak of SARS in 2003, the 

infected regions or countries had tried all measures to pre-

vent the infectious disease from further spreading. As re-

views after the outbreak showed, IT systems have been ef-

fective measures in combating SARS [2],[3]. 

However, soon after the outbreak of SARS, the relevant 

medical institutions in the infected areas found their existing 

IT systems to be inadequate in coping with the outbreak of 

SARS, mainly because these systems do not facilitate contact 

tracing. In this respect, new systems had to be built or ex-

isting systems had to be improved in these infected areas. For 

example, in Hong Kong, a new system, eSARS, was built 

[2],[4]; in Singapore, the existing HCIS was improved [5]; 

and in Taiwan, a new database was added to the existing 

system [6]. These three systems include two major compo-

nents: 

1. Management of cases: This component enables the

management work for all the cases during an outbreak of the 

infectious disease. For example, quarantining, monitoring, 

contacting of the probable cases and/or suspected cases can 

be managed; treatment course for the confirmed case can 

also be managed. 

2. Implementation of contact tracing: With the data

available in the first component, contact tracing [7] is im-

plemented in the second component. Contact tracing has two 

main purposes: 

1. To get the infected persons to be treated as quickly as

possible.

2. To find out the clusters of cases from which sources of

infection and transmission routes within the clusters

and of the overall outbreak can be deduced.

During the outbreak of an infectious disease, medical 

personnel try their best to find out, as quickly as possible, the 

source of infection and the transmission routes in the clusters 

and of the whole outbreak which in turn enables them to take 

appropriate actions on the infectious disease. So, contact 

tracing is crucial in preventing the infectious disease from 

spreading further. 

When the transmission routes in a cluster are identified, 

an infection tree [8] (or cluster tree) of a cluster can be con-

structed; when the transmission routes between the clusters 

are identified, a merged infection tree can be constructed 

from the individual infection trees. This merged infection 

tree, as an overall picture of the outbreak, may enable 

medical personnel to find weaknesses and/or loopholes of 

the medical administrative work during the outbreak [9], 

[10],[11]. The generations [12] of the infectious disease 

which can be deduced from the height of the merged infec-

tion tree may reveal some characteristics of the disease, such 

as the persistence or duration of the disease, which may be a 

valuable reference in predicting the behaviours of the infec-

tious disease in its next outbreak. 

Traditionally, contact tracing for an outbreak of an infec-

tious disease is usually performed in following steps: 

1. Medical personnel interview the confirmed cases and

ask them where they have been and whom they have

met and/or lived with before and after their onset dates.

2. Medical personnel visit or contact the persons pointed

out by the confirmed cases to see whether they have

symptoms related to the infectious disease. If they

have, medical personnel immediately ask them to go to
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hospital for testing. If they are confirmed cases of the 

disease, they are treated immediately. In this respect, 

medical personnel can be sure that the transmission 

route is from the previous case to the new case. 

3. Medical personnel carry out Step 1 and Step 2 for the

new cases.

4. When Step 1 – Step 3 are carried out iteratively during

the outbreak, infection trees (or cluster trees) and the

merged infection tree of the outbreak are identified [8].

A weakness of the traditional contact tracing is that it 

greatly relies on whether the confirmed cases can remember 

whom they met in the places where they have gone. If they 

can’t remember, can’t be sure or even are not willing to point 

out the persons they met in the places they went, then it is 

difficult for contact tracing to fulfil its purpose. 

In general it is easier for a person to point out where 

he/she has gone rather than to point out whom he/she has met 

in a particular period of time. The latter may even be im-

possible in some cases. 

To overcome this difficulty, we make use of knowledge of 

the characteristics of an infectious disease to help contact 

tracing. In this paper, with SARS as a case study, we propose 

an approach to find out clusters of cases, the individual in-

fection trees and the merged infection tree, mainly based on 

visiting records of the cases. 

The reason why visiting records can be applied to the 

contact tracing of SARS is due to the characteristics of SARS 

[13],[14]. As SARS research has shown, SARS is an air-

borne, person-to-person infectious disease. Namely, when a 

person is within an environment in which a SARS case is 

present or has stayed, this person is likely to be infected 

whether or not he/she is aware of the presence of a source of 

infection. So, the visiting (whereabouts) of a SARS case 

before its incubation period can possibly tell where he/she 

got infected. 

In order to find clusters of cases and transmission routes 

of SARS, contact tracing algorithms based on the infectious 

period and the incubation period of SARS are designed. As a 

high level description of our approach, we treat finding the 

clusters of cases, transmission routes and hence the infection 

tree of SARS as a process of data mining; that is, with the 

algorithms applied to the visiting records (raw data), the 

clusters of cases and the infection trees can be mined auto-

matically. 

In section II we briefly review related work of SARS 

contact tracing. A brief idea of the algorithms and charac-

teristics of SARS are described in section III. Our algorithm 

for detecting clusters of cases is discussed in section IV; our 

algorithm for detecting the infection tree of a cluster is given 

in section V; and our algorithm for constructing a merged 

infection tree of an outbreak is described in section VI. We 

make concluding remarks in section VII. 

II. RELATED WORK

Although the systems reported in [2],[3],[4],[5] have re-

leased medical personnel from the tedious management work 

of SARS cases, contact tracing was more or less imple-

mented based on the traditional steps listed in section I. 

Knowing the characteristics of SARS of being airborne 

and person-to-person, Chan et al. [15] have introduced social 

network analysis (SNA) [16] in their contact tracing. They 

construct the geographical locations (whereabouts) of con-

firmed cases into social networks to detect transmission 

routes. With the introduction of social network analysis, [15] 

has revealed more transmission routes between cases. 

However, none of the above-mentioned systems and ap-

proach have utilized the characteristics of SARS such as 

incubation period and infectious period to automate the 

finding of clusters of cases, transmission routes and hence 

infection trees. 

III. METHODOLOGY AND BACKGROUND INFORMATION

The proposed approach utilizes the visiting records of 

confirmed cases before and after their onset date of symp-

toms. These records are collected and input in the system. 

For finding clusters of cases and the infection tree of an in-

fectious disease during its outbreak, we have designed three 

main algorithms: Algorithm 1 – for detecting clusters of 

cases. Algorithm 2 – for detecting the infection tree of a 

cluster; by this algorithm the source of infection (index case) 

and the transmission routes in a cluster can be identified. 

Algorithm 3 – for constructing the merged infection tree of 

an outbreak. First, algorithm 1 is executed to find clusters of 

cases. A cluster of cases is a group of cases who have visited 

the same place. Second, for each cluster, algorithm 2 is used 

to find the infection tree of this cluster. Finally, algorithm 3 is 

used to combine the individual infection trees into a merged 

infection tree. 

Characteristics of SARS 

Researchers show that SARS has following characteris-

tics: 

1. Transmission mode: As stated in [13],[14], SARS can

be transmitted through droplets in the air, in a per-

son-to-person manner. Mainly, a person can become infected 

with SARS by having close contact with very ill SARS pa-

tients. They may also become infected through contact with 

infectious respiratory droplets in the air or on contaminated 

surfaces.  

2. Incubation period, onset date and confirmed date:

When a person becomes infected with SARS, he/she will 

start to show SARS symptoms some days after infection. The 

duration between the infection and the date of onset of 

symptoms is the incubation period of SARS. Once a person 

has the onset of symptoms, he/she can be a source of infec-

tion. 

However, non-SARS infected patients can also have 

symptoms resembling those of SARS. When medical per-

sonnel accept a patient with symptoms like those of SARS, 

they carry out a diagnostic laboratory test to confirm whether 

this patient is real case of SARS. If the test is positive, the 

patient is treated as a SARS patient. Due to the need for di-

agnostic laboratory testing, for a given case of SARS there is 

usually a time gap between the date of onset of symptoms 

(onset date) and the date of confirmation (confirmed date). 
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SARS has a quite clear and short incubation period. Al-

though there are many papers about the investigation of the 

incubation period of SARS [17],[18],[19], we adopt the de-

scription of its incubation period in [20], which is in the 

range of 1 – 10 days, and a mean of around 5 days. 

3. Infectious period: The infectious period concerns the 

transmission efficiency of an infectious disease. As stated in 

[21], “Maximum virus excretion from the respiratory tract 

occurs on about day 10 of illness (that is, 10 days after the 

onset date) and then declines to 0% by day 23.” Therefore, 

SARS shows an up-and-down tendency in its transmission 

efficiency from the onset date.  

From the characteristics of SARS described above, we 

know that the visiting (whereabouts), the incubation period 

and the infectious period of confirmed cases are the main 

factors for the infection of SARS. Therefore, our algorithms 

1 – 3 are designed based on these three factors. 

IV. DETECTING A CLUSTER OF CASES 

Detecting a cluster of cases requires detailed information 

about the places the patient has visited before being identi-

fied as a confirmed case. Algorithm 1 is used to detect 

clusters of cases from an outbreak. 

FOR all visiting records of the confirmed cases 

 Detect the common visiting places of the records; 

ENDFOR 

FOR each common visiting place 

 Group the cases who had visited the place; 

ENDFOR 

FOR each group of cases 

 Draw it as a cluster of cases; 

ENDFOR 
Algorithm 1 – Algorithm for detecting clusters of cases 

V. DETECTING AN INFECTION TREE OF A CLUSTER 

 Algorithm 2 uses two sub-algorithms as follows: 

Algorithm 2a – algorithm for detecting the most relevant 

date of infection between two cases (note: when there are 

several dates of contact between an earlier confirmed case 

and a newly confirmed case,  this algorithm is applied to 

determine the most relevant date of infection for the new 

case’s infection). 

Algorithm 2b – algorithm for detecting the most likely 

source of infection for a case (note: when a newly confirmed 

case has had contact with several earlier confirmed cases, 

this algorithm is applied to determine which earlier con-

firmed case will be the most likely source of infection for this 

newly confirmed case). 

For the purpose of clarification we use the abbreviations 

shown in Table 1. 

Algorithm 2a - Detecting the most relevant date of infec-

tion between two cases 

Suppose two persons A and B are confirmed cases, and 

their onset dates were 1 May and 20 May respectively. Since 

A’s onset date is earlier than B’s, we call A an ancestor of B 

in this infectious disease. Suppose their visiting records in-

dicate that they met on 25 April, 12 May and 16 May. Since 

A was a confirmed case earlier than B and they met, it is 

natural to think that A might have infected B. Now, we have 

the question: from these three meeting dates, can we deter-

mine which date was the most relevant for B’s infection if B 

was really infected by his/her ancestor, A? The details of A 

and B together with the incubation periods and infectious 

periods are represented in Fig. 1. 

From Fig. 1 we can see that SA = 21 Apr, MA = 26 Apr, TA 

= 11 May, EA = 24 May, SB = 10 May, and MB = 15 May. 

Now, we can analyze which of these three meeting dates: 

1mAB
= 25 April, 

2mAB
= 12 May and 

3mAB
= 16 May were 

most relevant to B’s infection if A did infect B. First of all, 

store these three meeting dates in a list, say list_1. For 
1mAB
= 

25 April, it was outside B’s start date of incubation period (SB 

= 10 May), therefore, 
1mAB
 didn’t have much significance 

for B’s infection. We can discard it from list_1. However, the 

meeting dates 12 May and 16 May were within B’s incuba-

tion period (10 May – 20 May), so we need to derive which 

date was more relevant to B’s infection. 

For 
2mAB

= 12 May, find its deviation from A’s date T (TA) 

and from B’s date M (MB), then sum up these two deviations 

as
2δAB

. 

1121122 =−=−= mT ABAABα  

3121522 =−=−= mM ABBAB β  

4222 =+= βαδ ABABAB
 

For 
3mAB

=16 May, repeat the same procedure as for 
2mAB
 

in the following,  

5161133 =−=−= mT ABAABα  

Table 1 Terms and abbreviations used in this paper 

Term  Abbreviation 

Date of Start of Incubation Period of Patient J SJ 

Date of Mean of Incubation Period of Patient J MJ 

Date of Max Transmission Efficiency of Patient J TJ 

Date of End of Infectious Period of Patient J EJ 

The nth Meeting Date between Patient J with Pa-

tient K where J is the likely source of infection of K 
nJK m

 

nJK m
’s  deviation from TJ nJK α

 

nJK m
’s deviation from MK nJK β

 

nJK m
’s deviation sum ( nJK α

 + nJK β
) nJK δ

 

The most relevant date for Patient K’s infection 

with respect to Patient J 
KJ r

 

 

Fig. 1 Timelines of A and B 

11 May 24 May26 Apr21 Apr

10 May 15 May

1
st

 Contact 

25 Apr

2
nd

 Contact 

12 May

3
rd

 Contact 

16 May

A’s 

Timeline

Contact 

Dates

B’s 

Timeline

1 May

(A’s onset date)

20 May

(B’s onset date)
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1161533 =−=−= mM ABBAB β  

6333 =+= βαδ ABABAB
 

Store the deviation sums 
2δAB

 and 
3δAB

 in a list, say 

list_2. In this example, there are only two elements: {
1δ , 

2δ } 

in list_2, however in general there may be k elements: 

{
1δ …

kδ } in list_2. Now find the minimum from list_2. 

Then the meeting date corresponding to the minimum is se-

lected as the most relevant date for infection. Therefore, in 

this example, the most relevant date for B’s infection with 

respect to A,
BA r  is: 

1)(argmin 1 == = j

k

jBA r δ  

In this example k = 2, and 1 (element at index 1 of list_2) 

is returned for )(argmin 1 j

k

j δ=
, then 

2δAB
→

2mAB
 (12 May) 

is the most relevant date for B’s infection with respect to A. 

The algorithm for detecting the most relevant date of in-

fection between two cases can be described as follows: 

IF A and B are two confirmed cases and A is B’s ancestor 

THEN 

 Determine the meeting dates between A and B and store 

 the meeting dates in list_1; 

 IF list_1 is empty THEN 

Return “there is no most relevant date for B’s infection 

with respect to A”; 

 ELSE 

IF there are meeting date(s) outside B’s incubation pe-

riod in list_1 THEN 

   Remove these meeting date(s) from list_1; 

  ENDIF 

  IF list_1 is empty THEN 

Return “there is no most relevant date for B’s infec-

tion with respect to A”; 

  ELSE 

   FOR each meeting date in list_1 

    Find its deviation sum )( iδ and store it in list_2; 

   ENDFOR 

  Find the minimum of list_2; 

Return the meeting date corresponding to the mini-

mum as “the most relevant date for B’s infection with 

respect to A”; 

  ENDIF 

 ENDIF 

ENDIF 
Algorithm 2a – Algorithm for detecting the most relevant date of infection 

between two cases 

Algorithm 2b - Detecting the most likely source of infec-

tion for a case 

In Algorithm 2a there is only one ancestor involved. Now 

we look at the more general case of multiple ancestors. 

Suppose that A, B and C were confirmed cases and their 

onset dates were 1 May, 3 May and 24 May respectively. 

Now, C has two ancestors. Suppose that C met A on 17 May 

and B on 15 May. Since these two meeting dates were within 

C’s incubation period, we need to determine which one, A or 

B, was the most likely source of C’s infection. The details 

between A, B and C together with the incubation periods and 

infectious periods are represented in Fig. 2. 

By using the same procedure as in Algorithm 2a for the 

meeting dates 17 May (A-C) and 15 May (B-C), we can find 

the deviation sums as shown in Table 2.  

As the deviation sum of the B-C meeting date is smaller, 

we can suppose that B was the most likely source of C’s 

infection, as shown in Fig. 3. As a note on Fig. 3, in terms of 

social network analysis [16], the graphs on the left and right 

are the meeting graph and the infection graph of A, B and C 

respectively. 

In the above example, if A and/or B had more than one 

meeting date with C then we firstly use Algorithm 2a to de-

termine “the most relevant date for C’s infection” from  these 

meeting dates, and following that we use the determined 

dates in Algorithm 2b. Also, in the above example, C only 

had two ancestors. In fact, Algorithm 2b is also applicable if 

C had more than two ancestors. Now we can give the details 

of Algorithm 2b as follows: 

IF a confirmed case j has two or more ancestors THEN 

Determine which ancestor j met and store that ancestor in 

list_1; 

 IF list_1 is empty THEN 

Return “these ancestors are not the most likely source of 

infection for j’s infection”; 

 ELSE 

  FOR each ancestor in list_1 

Carry out Algorithm 2a to determine “the most 

relevant date for j’s infection” and store the returned 

meeting date in list_2; 

  ENDFOR 

  IF list_2 is empty THEN 

Return “these ancestors are not the most likely source 

of infection for j’s infection”; 

Fig. 2 Timelines of A, B and C 

11 May 24 May26 Apr21 Apr

15 May

A’s
Timeline

Contact 
Between 

B and C

13 May 26 May28 Apr23 Apr

B’s
Timeline

14 May

C’s
Timeline

19May

17 May

Contact 

Between 
A and C

1 May

(A’s onset date)

3 May
(B’s onset date)

24 May

(C’s onset date)

Table 2 Deviation sums of two meeting dates 

 
1α  

1β  
1δ  

A-C  
1αAC

= |11-17| = 6 
1βAC

= |19-17| = 2 
1δAC

= 8 

B-C  
1αBC

= |13-15| = 2 
1βBC

= |19-15| = 4 
1δBC

= 6 

 

A B

C

A B

C

Fig. 3 The most likely source of infection for patient C: patient B 
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  ELSE 

   FOR each meeting date in list_2 

Find its deviation sum with respect to j and store it 

in list_3; 

   ENDFOR   

   Find the minimum of list_3;  

Return the ancestor corresponding to the minimum as 

“the most likely source of infection for j’s infection”;  

  ENDIF 

 ENDIF 

ENDIF 
Algorithm 2b – Algorithm for detecting the most likely source of infection 

for a case 

Now we are ready to describe Algorithm 2 as a whole. 

The onset dates of the confirmed cases of a cluster are listed 

in Table 3in ascending order. 

First of all, from Table 3 we can see that A had the earliest 

onset date, so A was probably the index case of the cluster. In 

this cluster, B could only have been infected by A (i.e. if B’s 

infection was contracted from within this cluster). That is, B 

was infected by his/her ancestor A. For C and D, apply Al-

gorithm 2b to determine the most likely source of their in-

fections. Suppose C was infected by B, and D was infected 

by C. Next, it came to E and F. Since their onset dates were 

the same, they could not have infected each other. So, the 

ancestors of E and F are the same: A, B, C and D. Apply 

Algorithm 2b to determine the most likely source of infection 

for E and F’s infections. Suppose E was infected by C and F 

was infected by D. Finally, we can draw the infection tree for 

this cluster as in Fig. 4. 

Now we can give the details of Algorithm 2 as follows: 

Put the confirmed cases of a cluster into list_1 sorted by their 

onset dates in ascending order; 

FOR each node, except the first node, in list_1    

Carry out Algorithm 2b to determine the most likely 

source of its infection; 

 Store this information into an adjacency matrix; 

ENDFOR 

Draw the infection tree from the adjacency matrix; 
Algorithm 2 – Algorithm of detecting the infection tree of a cluster 

VI. CONSTRUCTING THE MERGED INFECTION TREE   

Once the infection trees of the clusters are found, Algo-

rithm 3 is used to assemble the individual infection trees into 

a merged infection tree of an outbreak, as follows: 

Put the root nodes of the individual infection trees in list_1 

sorted by their onset dates in ascending order; 

Set n to the number of nodes in list_1; 

//iteration of child and parent relationship detection for the 

nodes in list_1 

FOR i = n – 1 to 1 

   FOR j = i – 1 to 0 

     IF node i is a child of the infection tree of node j THEN 

          Record node i is a child of node j; 

          break; 

     ELSE IF j = 0 THEN 

          Record node i does not have a parent node; 

     ENDIF 

   ENDFOR 

ENDFOR        

Draw the tree(s) according to the detected child and parent 

relationship; 
Algorithm 3 – Algorithm of constructing the infection tree of an outbreak 

As an application of Algorithms 1–3, we have used the 

2003 Hong Kong SARS outbreak [9],[23] as a real case 

study and analyzed it with our three algorithms. The index 

case (or index patient) of this outbreak, n1, was a professor 

from Guangzhou, China who went to Hong Kong to cele-

brate the wedding of his nephew. After a family dinner, he 

checked into the Metropole Hotel. During the night, the 

professor felt feverish. The next day, the professor felt so ill 

that he was admitted to the nearest hospital, Kwong Wah 

Hospital. In the hospital, he infected a nurse, n4. 

Epidemiological investigation confirmed that n2 was the 

index case of St Paul’s Hospital in which n2 infected three 

nurses while n3 was the index case of Prince of Wales Hos-

pital (PWH) in which n3 infected three doctors and three 

nurses. In PWH, it then caused a SARS outbreak among the 

healthcare workers. Since then, SARS cases were prevalent 

in the community as the disease continued to propagate 

progressively on their down lines. 

Further epidemiological investigation showed that the 

infection of both n2 and n3 took place in the Metropole Hotel 

while the professor was staying there, so the clusters were 

linked together. 

We have taken data on the above cases and subjected 

them to our detection algorithms. Algorithm 1 revealed four 

clusters: {n1, n4}, {n1, n2, n3}, {n2, n5, n6, n7} and {n3, n8, 

n9, n10, n11, n12, n13}. Applying algorithms 2 and 3 pro-

duced a merged infection tree of these clusters. Our detection 

and visualization application displays the infection tree in 

graph form using the JUNG framework [22] as shown in Fig. 

5. We found that the detected result from our algorithms is 

identical to the observed and documented situation during 

the initial stage of the Hong Kong SARS outbreak. This is an 

initial but strong confirmation of the validity of our algo-

rithms for the detection of SARS infection trees, and thereby 

of the applicability and potential for use in contact tracing. 

Table 3 Onset dates of confirmed cases 

Person Onset Date 

A 2003-05-02 

B 2003-05-12 

C 2003-05-20 

D 2003-05-26 

E, F 2003-05-30 

 A

B

C

D

E

F

Fig. 4 Detected infection tree for the patients from Table 3 
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VII. CONCLUSIONS 

As an example of analysis of medical data that could 

become a valuable part of a digital health ecosystem, we 

have proposed a novel approach for contact tracing in find-

ing clusters of cases, transmission routes and hence the in-

fection tree of an infectious disease by incorporating its 

characteristics into algorithms. As a prototype to show our 

idea and due to the significant characteristics of SARS, in-

fectious period and incubation period are adequate for our 

implementation in this paper. Our paper contributes a simple 

and systematic way to find the clusters of cases and the in-

fection tree for SARS automatically. However, applying this 

novel approach to other infectious diseases, such as Tuber-

culosis, Dengue Fever, Swine Flu etc. may require further 

study of the characteristics of the infectious diseases in 

question. We hope that our paper can serve as a starting point 

and arouse attention of other researchers to do further re-

search in this area, as a simple yet accurate and systematic 

way to find clusters of cases, transmission routes and the 

infection tree may save lives of people during the outbreak of 

an infectious disease. 

The work described in this paper is part of our larger In-

fectious Disease Control and Quarantine Management 

(IDCQM) framework which has been developed with the 

help of Macau Centre for Control of Communicable Disease 

and Surveillance of Diseases. IDCQM includes modules for 

the extraction of detailed epidemiological history and pa-

tient’s activities, identification of the source of an outbreak, 

identifying and visualizing clusters of infections, quarantine 

management, and GIS for locating clusters of infection. As 

future work we are planning to extend this novel approach 

for contact tracing to the infectious diseases that will be 

studied and implemented in IDCQM. 
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