
EpiSimdemics: an Efficient Algorithm for
Simulating the Spread of Infectious Disease over

Large Realistic Social Networks

Christopher L. Barrett, Keith R. Bisset, Stephen G. Eubank, Xizhou Feng, Madhav V. Marathe

Network Dynamics and Simulation Science Laboratory, Virginia Tech, Blacksburg, VA 24061

{cbarrett, kbisset, seubank, fengx, mmarathe}@vbi.vt.edu

Abstract—Preventing and controlling outbreaks of infectious
diseases such as pandemic influenza is a top public health priority.
We describe EpiSimdemics – a scalable parallel algorithm to
simulate the spread of contagion in large, realistic social contact
networks using individual-based models. EpiSimdemics is an
interaction-based simulation of a certain class of stochastic
reaction-diffusion processes. Straightforward simulations of such
process do not scale well, limiting the use of individual-based
models to very small populations. EpiSimdemics is specifically
designed to scale to social networks with 100 million individuals.
The scaling is obtained by exploiting the semantics of disease
evolution and disease propagation in large networks. We evaluate
an MPI-based parallel implementation of EpiSimdemics on a
mid-sized HPC system, demonstrating that EpiSimdemics scales
well. EpiSimdemics has been used in numerous sponsor defined
case studies targeted at policy planning and course of action anal-
ysis, demonstrating the usefulness of EpiSimdemics in practical
situations.

I. INTRODUCTION

Pandemic diseases such as avian influenza are extremely

serious threats to global public health security. Pandemic

influenza strains have demonstrated their ability to spread

worldwide quickly and to cause infections in all age groups.

According to the World Health Report 2007, every year

human influenza rapidly spreads around the world within

weeks, resulting in an estimated three to five million cases of

severe illness and between 250,000 and 500,000 deaths [1].

Although, the final number of infections, illnesses, and deaths

is unpredictable, and could vary tremendously depending on

multiple factors, it is certain that without adequate planning

and preparations, an influenza pandemic in the 21st century

has the potential to cause enough illnesses to overwhelm

the public health system at all levels. Certain modern trends

will likely exacerbate the situation and further underscore

the need for developing appropriate technologies to support

public health preparedness. These include: (i) a larger global

population and increased urbanization leading to a higher

density of individuals within cities; (ii) higher levels of long
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distance travel, including international travel; (iii) increased

numbers of elderly individuals and individuals with chronic

medical conditions.

Broadly speaking, computational epidemiology is defined as

the development and use of computer models to understand the

spatio-temporal diffusion of disease through populations. Until

recently, aggregate, or collective, computational epidemiology

models were used extensively. These models usually assume

that a population is partitioned into a few subpopulations (e.g.,

by age) with a regular interaction structure within and between

subpopulations. Although useful for obtaining analytical ex-

pressions for a number of interesting parameters such as the

total numbers of infections, these models can neither capture

the complexity of human interactions that serve as a major

transmission mechanism for infectious disease, nor provide

any causal explanation. Additionally, the number of different

subpopulation types considered is small and parameters such

as mixing rate and reproductive number are either unknown

or hard to observe.

Over the past several years, large-scale, individual-based,

disaggregate models have been studied [2]–[5]. These new

models use an endogenous representation of individual agents

together with explicit interactions between these agents to

generate and capture the disease spread across social net-

works. Developing HPC-based modeling approaches to sup-

port individual-based models is challenging for a number

of reasons. First, the underlying social contact network is

extremely large, irregular and dynamic. This lack of symmetry

and constantly changing structure rule out the possibility of

using model reduction techniques used often for physical

systems. Second, due to the stochastic nature of our models, a

typical experimental design used to support a public policy

question requires a large number of runs. The size of the

design often implies that we need computational steering

of experiments. Third, unlike physical systems, the diversity

amongst agents is crucial in understanding the spatial and

temporal spread of the disease.

A. Summary of Contributions and Significance.

In this paper, we introduce EpiSimdemics – a new parallel

algorithm for simulating the spread of infectious diseases in

large realistic social contact networks. We believe that com-

© IEEE 2008.  This article is free to access and download, along with rights for full text and data mining, re-use and analysis.



putational epidemiology represents a new application domain

for high performance computing. EpiSimdemics is one of

the first parallel algorithms (and implementation) with good

performance for simulating epidemics on large & realistic
social contact networks. It is also one of the few algorithms

that can be mapped efficiently onto a distributed memory

cluster. The major design goal of EpiSimdemics is to explore

the effects of complex pharmaceutical interventions (PIs) and

non-pharmaceutical interventions (NPIs) on the spread of

infectious disease through realistic populations.

We briefly describe our methodology to generate realistic

high resolution social contact networks; see [3], [6]–[9] for

more details. Our synthetic population is derived and statis-

tically indistinguishable from the United States Census. Each

individual in the population is unique, and is tagged with up

to 163 demographic variables from the census. Housing units

are individually represented, and are obtained by integrating

the Census and NAVTEQ street data. Non-housing locations

are taken from a commercial database provided by Dun and

Bradstreet, which represents most of the business locations

in the United States. School data, including locations and

enrollment, is taken from the Digest of Education Statistics

provided by the National Center for Education Statistics. Each

individual has a daily activity list with specific locations,

generated from the National Household Transportation Survey.

These data sets are combined using integrated statistical and

machine learning methods to produce an input data set of

100GB in size for the United States. This effectively represents

a labeled social contact network, discussed in the next section.

Recently, a number of other researchers have also proposed

the use of realistic social contact networks in studying the

spread of contagion [10]–[12]. To the best of our knowledge,

these networks do not have the same level of resolution as the

social network that we construct. The role of social networks

in epidemic simulations is twofold. First, the structure of

the social contact networks greatly influences how disease

spreads on these networks; see [6], [13], [14] for more

discussion. Second, the network structure plays an important

role in determining the efficiency of the parallel simulations

by affecting the inter-processor communication patterns of a

parallel algorithm and its implementation.

EpiSimdemics, in conjunction with an appropriate decision

support environment, provides public health officials new ways

to understand epidemics and for formulating and analyzing

public policies. It supports a wide range of disease models,

intervention strategies, agent diversities, and dynamic agent

behavior modeling. Each of these aspects are crucial when

using EpiSimdemics in practical settings.

We use a variant of finite state machines, called probabilistic

timed transition systems (PTTSs) to represent the within-

host disease progression. The model is general enough to

represent various types of airborne diseases. In the past, we

have modeled influenza, smallpox and SARS. Our ongoing

work [6] seeks to extend the model to vector borne diseases

such as malaria, as well as other reaction diffusion processes

such as the spread of social norms and fads [15]. Another

important feature is its ability to represent complex interven-

tions. An illustrative example of this is a triggered PI, the

administration of vaccines to all school children when 5% of

school children report sick. This intervention is not static – the

exact time when it will be enacted depends on how the disease

propagates. Another consideration, individual behavior such

as primary school closures is an important NPI. A realistic

representation of school closure requires modification of the

activity patterns (behaviors) not only of school children but

also of their caregivers. Representing such interventions using

aggregate models or even percolation-based models is usually

not possible.

We have performed extensive experimental analysis of

EpiSimdemics. Our results indicate that EpiSimdemics

achieves linear speedup (both in terms of strong scaling

and weak scaling) on several mid-sized HPC platforms and

instances that we have studied so far. For example, in our

performance test on a commodity Linux cluster , EpiSim-

demics achieves over 309 times speedup on 320 PEs (relative

to the execution time on 32 processors) for the California

network with roughly 39 million nodes and 182 million

edges. This scaling was obtained by developing a number

of new algorithmic ideas, and their efficient implementations,

which exploit the specific structure of the contagion processes

associated with infectious diseases. This allows us to decouple

the temporal and spatial interdependencies between network

nodes leading to improved parallelism. Two important techni-

cal ideas to consider are: (i) use of generic individual models

combined with context-based attribute evaluation for capturing

the heterogeneity amongst agents, (ii) implicit representation

of the social contact network, combined with differences in

the rate of disease evolution and network evolution, to obtain

highly parallel implementations. These ideas will be discussed

later in the paper.

EpiSimdemics has been extensively validated and used in

numerous real studies for DHS, DoD, and DHHS, among

others. These studies have led to novel scientific findings and

insights in the prevention and response to disease outbreaks.

In the next section, we provide a formal abstraction for the

problem of simulating the process of disease spread across

social contact networks. Then, in Section II, we describe

the EpiSimdemics algorithm and prove its correctness. We

present the parallel implementation in Section III, followed

by performance analysis in Section IV and an overview

of its applications in several real studies in Section V. In

Section VI, we provide a brief description of the work related

to EpiSimdemics. Finally, we summarize the findings and

conclusions of our work.

B. The Formal Model

We will use a discrete dynamical system framework as

a formal framework to describe the system [6], [8]. The

basic framework consists of the following components: (i)

a collection of entities with state values and local rules for

state transitions, (ii) an interaction graph capturing the local

dependency of an entity on its neighboring entities, and (iii)
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Fig. 1. An example social contact network: (a) the bipartite graph representation GPL with people 1-4 and locations a-d; (b) the temporal and spatial
projections GP , i.e., temporal people-to-people contacts; (c) the occupancy of location c overlaid with the health states of its occupants. The dark blue area
shows the time of possible disease transmission. (d) The event based representation of the information (+ for arrival, − for departure). The color of the events
represents the health state of the associated individuals, and correspond to those in Figure 2. A change in health state is modeled as a departure, followed by
an arrival with the new health state.

an update sequence or schedule such that the causality in the

system is represented by the composition of local mappings.

We can formalize this such that a Networked Discrete Dy-

namical System (NDDS) S over a given domain D of state

values is a triple (G(V,E),F ,W ), whose components are as

follows: G(V,E) is the basic underlying social network; V
is a set of vertices. For each vertex vi there is also a local

state transition function; the set of these functions is denoted

by F . The function fvi
at a vertex vi is used to map the

state of vertex vi at time t to its state at time t + 1, and the

input to this function is the state sub-configuration induced by

the vertex and its neighbors in the contact network at time t,
denoted by N(i, t). The final component is a string W over

the alphabet {v1, v2, . . . , vn}. The string W is a schedule.

It represents an order in which the state of a vertex or the

possible edges incident on the vertex will be updated. fvi

is usually stochastic and also depends on time. As detailed

below, we use a probabilistic timed transition system (PTTS)

to represent the local function. The formalism serves as a

mathematical abstraction on which EpiSimdemics is based.

From a modeling perspective, each vertex represents an agent.

Here, we will assume that the states of the agent come from

a finite domain D. The maps fvi are generally stochastic. A

step of an NDDS (i.e., the transition from one configuration to

another), involves updating the state associated with a subset

of vertices based on the schedule W .

Computationally, the functions fi in our NDDS are used

to decide if the disease will be transmitted between two

individuals. In the following, two components of S, namely

G(V,E) and F , will be described as part of our algorithm.

1) Social Network Representation: In EpiSimdemics, the

social network is represented by a labeled bipartite graph,

GPL, where P is the set of people and L is the set of locations.

If a person p ∈ P visits a location � ∈ L, there is an edge

(p, �, label) ∈ E(GPL) between them, where label is a record

of the type of activity and the time of the visit. Each node

(person and location) can also have labels. The labels attached

to persons correspond to his/her demographic attributes such

as age, income, etc. The labels attached to locations specify the

location’s attributes such as its x and y coordinates, the types

of activity performed, maximum capacity, etc. It is important

to note that there can be multiple edges between a person and

a location which record different visits.

Figure 1 shows an example of a social contact network that

captures the interaction between individuals moving through

a region [3]. Figure 1a is the bipartite graph representation of

the social network, GPL. It has four person nodes, denoted

by circles, four location nodes, denoted by squares, and seven

labeled edges. Figure 1b shows a temporal projection of the

network, GP , which provides location occupancy by time of

day, implying person-to-person contacts. Figure 1c shows the

occupancy of location c, along with the health states of the

occupants. In the system, both the contact network and the

health states of individuals change over time. Additionally,

a person’s health state change will affect his/her succeeding

activities, leading to a new network. This co-evolution is

important [8].

2) The Disease Model: EpiSimdemics uses a disease model

to specify the form of the local transition functions F explic-

itly. The dynamics of most infectious disease is captured by

two connected processes: within-host disease progression and

between-host disease transmission [3].

The within-host disease progression is modeled as a PTTS,

an extension of the well known finite state machine (FSM)

with two additional features: the state transitions are proba-

bilistic and timed. The model has the following components:

(i) each individual infected by a disease will progress through

a series of disease states, which are characterized by a set

of attributes such as susceptibility to disease, infectiousness,

severity of non-specific symptoms (prodromes), severity of

disease specific symptoms, and incapacitation; (ii) an individ-

ual stays in a state for a period of time (the dwell time) and

then transitions to a succeeding state. Both the dwell time and

the state transition are probabilistic, following distributions

that correspond to the statistics of the disease being studied.

(iii) The parameters of the distributions vary with the individ-

ual’s demographic characteristics (e.g., age, sex, and nutrition

level), treatments received, as well as the effectiveness of the

treatments. (iv) Once infected, the progression of states and

dwell times is purely a local calculation and is not affected

by any other individual. It can, however, be affected by

pharmaceutical interventions, such as antiviral drugs.
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Fig. 2. A simple disease model. Ovals represent disease state, while lines
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The line type represents the treatment applied to an individual. The states
contain a label and the dwell time within the state.

A simple example of this disease model is shown in Fig-

ure 2. This disease model has three paths from the uninfected

state to the recovered state. The upper path represents a

disease progression with a two day latent period, followed

by three to five days of illness, followed by recovery. In this

model, once recovered, an individual cannot become infected

a second time. A transition from the recovered state to the

uninfected state can be added to allow for reinfection. The

lower path represents a disease progression with a shorter

latent period, followed by two days in which the individual

does not show any symptoms, but can still infect others. For

untreated individuals, the upper path is taken 90% of the

time, while the bottom path is taken 10% of the time. For

individuals who have been vaccinated, there is a middle path

which represents the immunity conferred by the vaccine. The

disease model used in the results presented in Section IV was

used for the studies in [16]–[18], and has 17 states, 44 edges,

and three edge types.

Between-host transmission specifies the effects of inter-

actions between individuals, i.e., how does an uninfected

individual become infected after being exposed to the disease

by an infected individual. The effects are probabilistic and

captured by the probability function shown in (1) [13]:

pi = 1 − exp(τ
∑

r∈R

Nrln(1 − rsiρ)) (1)

This equation specifies the probability that a particular

susceptible individual i is infected at a given location, where

τ is the duration of exposure, R is the set of infectivities of

the infected individuals at the location, Nr is the number of

infectious individuals with infectivity r, si is the susceptibility

of i, ρ is the transmissibility, a disease specific property

defined as the probability of a single completely susceptible

person being infected by a single completely infections person

during one minute of exposure. The probability function is

q-symmetric, meaning it only cares about which of the q
equivalence classes an infectious individual that comes in

contact belongs to (depending only on infectivity level r). This

fact will turn out to be crucial in our parallel algorithm. We

observe the following disease specific properties:

1) Between-host transmission and within-host progression

can be viewed as two connected but independent pro-

cesses. Between-host transmission triggers the start of

within-host progression by causing an uninfected in-

dividual to transition to an infected state. The disease

progress of the infected individual is then fully deter-

mined by the local function governing the within-host

progression.

2) There is a latent period between the time an individual

gets infected and the time he/she has the capability

to infect others. In other words, during an individual’s

latent period, his/her infectivity is 0. We use Dmin

to denote the minimum latent period length for all

individuals.

As described in Section VII, we plan to extend the system to

support multiple interacting PTTSs.

II. THE EPISIMDEMICS ALGORITHM

A. The Simple DES simulation

This NDDS can be simulated with a simple discrete event

simulation (DES) algorithm in which the system only changes

its state upon the occurrence of an event. We will refer to this

as simple-DES. As shown in Figure 1d, there are two types

of events in the system: Arrive Events (person p arrives at

location l at time tarrive) and Depart Events (person p leaves

location l at time tdepart).

To ensure correctness, simple-DES has to adhere to

the following causality constraint: If an individual i leaves
location LA at time tdepart and arrives at location LB at time
tarrive, his/her health state when arriving at LB (denoted by
si(tarrive)) has to be decided prior to calculating the states of
other individuals at LB after time tB . This causality constraint

leads to temporal and spatial dependencies among nodes in the

simulated system.

For simplicity of exposition, travel between locations is

shown as instantaneous. In the actual system, there is a delay

between leaving one location and arriving at the next location.

This delay can be calculated with varying degrees of accuracy

within Simdemics. Typically, disease transmission on public

transportation vehicles has been ignored, but can be easily

modeled by adding buses, trains, etc., as additional locations.

By sorting all events by a global clock and updating the

health states of all individuals (according to the disease model)

as well as their next destination locations (according to their

original schedule and dynamic responses to the environment),

we can obtain an implementation for simulating a coupled

PTTS. However, for a large population consisting of tens of

millions of individuals, the computational resources provided

by a single machine are insufficient.

One alternative is to implement a parallel discrete event sim-

ulation (PDES) [19]. A second alternative, and the approach

taken in EpiSimdemics, is to design a novel algorithm that

takes advantage of the semantics of the underlying system. An

interesting question is how the performance of EpiSimdemics

compares to a generic PDES solution to the problem. A previ-

ous system, EpiSims, used a conservative PDES approach with

a relaxed causality constraint. Like EpiSimdemics, EpiSims

uses realistic social contact networks to simulate the spread



of infectious diseases. The primary difference between the

two simulations is their computational implementation. In

EpiSims, an arrival event is allowed to be processed up to

15 minutes (simulation time) late before considering it a

causality violation. Even with this addition, the system showed

poor scaling when run with a population containing more

than 10 million individuals. Recently, a number of important

advances have been made in the area of PDES [20]. These

advances have demonstrated the ability of generalized PDES

systems to scale to very large number of processors, despite the

generally known limitations of lookahead-based concurrency

or rollback-based overheads. Investigating the application of

these methods for simulating epidemics is an interesting topic

for future research.

B. A Semantics-aware, Sequential DES Algorithm

We first describe a semantics-aware DES algorithm called

Seq-EpiSimdemics. This will allow us to better explain our

parallel algorithm. Seq-EpiSimdemics uses an interaction-

based hybrid approach approach explained below,

1) Individuals can only affect other individuals through in-

teractions that occur when they are at the same location

at the same time.

2) An individual’s health state changes are deterministic,

and can be precomputed.

3) There is a minimum latent period, Dmin. This is the

amount of time that must pass between a person becom-

ing infected, and a person being able to infect others.

The above observations led to a semantics-oriented problem

decomposition. The existence of a latent period for newly

infected individuals in the disease model provides a basis for

relaxing the global clock. If the time period to be simulated

is divided into n phases, and if the length of single simulation
phase is less than Dmin, then all locations can be concur-

rently considered and interactions between individuals at these

locations can be simulated in parallel. This is the basis of

the EpiSimdemics algorithm EpiSimdemics, illustrated in

Figure 3. The benefit of this is that only O(n) synchronizations

are needed. n is generally small (120-360). A suitable length

for a single phase is 24 hours of simulation time. In fact, (i) the

state of an interactor when it enters a location can be precom-

puted at the start of a phase, and (ii) the overall effect of the

interaction between an interactor with other individuals at each

of the visited locations in a given phase can be decomposed,

i.e., the possible within-host state transitions at the start of a

phase can be computed by a simple computable function of

the state transitions that are suggested by the interactions at

each of the locations visited. The second property is intuitively

similar to the property used by parallel prefix computations.

Formally, let xv(t) denote the state of an interactor v at

time t and let v1, v2, . . . vk denote its neighbors at all the

locations in a given phase. Then, a sufficient condition for

the within host disease progression is that the update function

xv(t + 1) ← fv(xv(t), xv1(t), . . . , xvk
(t)) can be written as

fv,dv
(xv(t), xv1(t), . . . , xvk

(t)) ≡ g(xv(t)⊕xv1(t) . . .⊕xvk
(t))

Input: A social network G = (P,L, V ), a disease manifes-

tation M , an initial system state S(0), a set of scenarios C,

a simulation phase �t, and a total simulation time T
Output: A sequence of system states over time

S(�t), S(2�t), . . . , S(T )
initialization

for t = 0 to T increasing by �t do
foreach individual i ∈ P do

compute a set of visits vi,j =
(li,j , ti,j , di,j , si,j), 1 ≤ j ≤ Ni, where Ni is the

number of locations i will visit during the time interval

(t, t + �t), and li,j , ti,j , di,j and si,j denote the target

location, the start time, the duration, and i’s health state

during its jth visit

foreach vi,j do
if si,j changes value to s′i,j at time t′ and ti,j <

t′ < ti,j + di,j then
split vi,j into two visits va

i,j =
(li,j , ti,j , da

i,j , si,j) and vb
i,j = (li,j , t′, db

i,j , s
′
i,j), where

da
i,j = t′ − ti,j and db

i,j = di,j − da
i,j

end if
end for
foreach vi,j do

send vi,j to location lj
end for

end for
foreach location lj ∈ L do

compose a serial DES

foreach visit vi,j do
add an arrive event eA

i,j at time ti,j , and a depart

event eD
i,j at time ti,j +di,j to a priority queue Qj in which

events are ordered by processing time

end for
foreach event e ∈ Qj do

remove e from the head of QLj

compute the outcome ri,j of e
send ri,j to person pi

end for
end for
foreach individual i ∈ P do

receive and combine all results ri,j

update i’s health state

end for
end for
finalization

Fig. 3. A sequential version of the EpiSimdemics algorithm Seq-
EpiSimdemics

where ⊕ is an associative and commutative operator and g
is a simple computable function. For example, g could be

a probabilistic threshold function that has been often used

for modeling the spread of norms or fads [15]. Note that

Equation 1 used to compute state transitions from susceptible

to infected has this desirable form. All other state transitions

happen locally and are time triggered.



In the Seq-EpiSimdemics algorithm, the simulation pro-

cess is broken into an initialization phase and a sequence

of simulation phases with simulation phase interval �t. Dur-

ing each simulation phase, the coupled PTTS is simulated

with a collection of serial DESs. Instead of passing events

from location to location, all events that will occur during

a phase are pre-computed by each individual, concurrently,

during the beginning of each simulation phase. Dependencies

between two successively visited locations are decoupled and

all locations are simulated concurrently. At the end of each

simulation phase, each individual combines the outcomes of

all of interactions it was involved in and updates its local state.

C. The Correctness of the Algorithm Seq-EpiSimdemics

The correctness of Seq-EpiSimdemics is supported by

the following theorem:

Theorem 1: Given an NDDS described in Section I-B and a

disease M specified by the model in Section I-B2, Algorithm

Seq-EpiSimdemics simulates the dynamics described by

simple-DES correctly if and only if �t ≤ Dmin, where �t
is the simulation phase interval, Dmin is the minimum latent

period length.

Proof: Let us define Vi = {vi,1, . . . , vi,j , . . . , vi,Ni
} as

the set of visits for an individual i during the simulation phase

[t, t + �t], and si = {si,1, . . . , si,j , . . . , si,Ni
} as the set of

health states during the visits. All variables here have the same

meanings as those described in Figure 3.

The fundamental difference between the Seq-

EpiSimdemics and simple-DES algorithms is that

Seq-EpiSimdemics precomputes all si,j before any visit

during the current phase, while DES computes si,j when visit

vi,j−1 is completed. It is trivial that Seq-EpiSimdemics
and simple-DES are equivalent if and only if ∀i ∈ P , the

lookahead mechanism used by Seq-EpiSimdemics does

not change the effects of any visit, i.e., i’s interaction with

other individuals in the system. Let’s define si,0 = si(t) as

person i’s starting state before any visit in current simulation

phase. The proof consists of two parts:

Part I: ∀i ∈ P , the lookahead used by Seq-
EpiSimdemics does not impact the correctness of the
computation of other individual’s health states during each
simulation phase.

We show this statement is true for all three possible cases

listed as below:

Case 1: si,0 belongs to one of the infected states. According

to the disease model, once i becomes infected, i will not be

susceptible to any further between-host transmission and is

only determined by within-host progression. Thus all si,j can

be correctly precomputed from i’s local information prior to

any visit. Also, as all si,j for 1 ≤ Ni is known, Vi can be also

determined at the beginning of phase [t, t + �t]. This means

the network structure in current simulation phase also will be

known in advance.

Case 2: si,0 is in an uninfected state and i has not been

infected during any visit in current simulation phase. It is

obvious that all si,j can be correctly precomputed.

Case 3: si,0 is in an uninfected state and i becomes infected

during a visit si,jc . Then for j < jc, si,j will be same as case

2; otherwise the actual si,j will be different from the one

precomputed. However, since ∀j such that jc ≤ j ≤ Ni, we

have tj − tjc < Dmin. Thus, i will be in the latent period

and still have zero infectivity. Thus the discrepancies between

the precomputed health states and actual health states will not

impact the correctness of computing any other person’s health

states.

Part II: ∀i ∈ P , Seq-EpiSimdemics updates his/her
health states as well as infection time correctly at the end
of each simulation phase.

As discussed above, only Case 3 results in discrepancies

between the precomputed health states and actual health states.

Let’s denote tinfect,i as the occurring time of the infect event

and tinfect,i,j the occurring time of the infect event in visit

vi,j , both for individual i. We also use the notation tinfect,i,j =
∞ if p does not become infected in visit j.

The disease model has two properties: (i) all the between-

host transmission events are independent of each other;

(ii) an individual can only get infected once during a

simulation phase. The first property guarantees that Seq-

EpiSimdemics computes each tinfect,i,j correctly; the sec-

ond property guarantees that tinfect,i will always be smallest

tinfect,i,j , or the one output by DES. Once tinfect,i is known,

Seq-EpiSimdemics can apply the within-host progression

to update i’s health states after tinfect,i to their correct values.

Combining I and II, we conclude that Seq-

EpiSimdemics and DES are equivalent for the same

coupled PTTS problem. Thus the correctness of Algorithm

Seq-EpiSimdemics is proved.

D. The Complexity of Seq-EpiSimdemics

We denote kP the average degree (i.e., the number of

locations visited by the person) for all person nodes, kL the

average degree (i.e., the number of persons who visit the

location) for all location nodes, both for the bipartite graph

GPL. The computation of the Seq-EpiSimdemics consists

of two major parts: persons computing their schedules, and

locations simulating their local DESs. For a given disease, the

cost of computing state transition from one state to another

state after a certain amount of time can be treated as constant.

Similarly, the cost of simulating each arrival or departure

event is proportional to the number of infectious individuals as

described in (1). By denoting n = |P | as the number of person

nodes, m = |L| as the number of location nodes, and z = T
�t

as the number of total simulation phases, as well as assuming a

constant number of infectious individuals per location, we can

approximate the time complexity of Seq-EpiSimdemics as

o(z · n · kP + z · m · kL).
From the outline of the algorithm, it is trivial that each

person node only needs to store his/her own profile as well

as all locations he/she will visit. Similar, each location node

only needs to store the location information and schedules it

receives. The size of schedule data is much smaller then the
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Fig. 4. The computational structure of the sequential EpiSimdemics algo-
rithm.

personal profile data. Thus, we roughly approximate the space

complexity of Seq-EpiSimdemics as o(n · kP + m · kL).
Roughly speaking, Seq-EpiSimdemics has the same

order of sequential complexity as simple-DES, but is more

efficient because of the use of a larger simulation phase

interval. More importantly, because Seq-EpiSimdemics
exploits disease specific semantics in order to decouple the

temporal and spatial dependencies among network nodes, it

leads to a better parallel algorithm with substantially improved

parallel time complexity.

III. PARALLELIZATION OF EPISIMDEMICS

For an epidemiological study, parallel computing serves

three objectives: (i) enabling a large geographic area to be

studied (107 to 108 individuals); (ii) reducing the run time for

a single simulation run; and (iii) increasing the throughput for

a study with many simulation runs (a thousand runs is not

uncommon). In this paper, discussion is focused on the first

two objectives.

Based on discussions from the previous section, we organize

the operations of the sequential EpiSimdemics algorithm dur-

ing each simulation phase into the structure shown in Figure 4.

This structure depicts the three types of computational com-

ponents: persons, locations, and message brokers, as well as

concurrencies in their local computation and communications.

In this structure, message brokers mediate the communication

between processes, and are discussed in Section III-B.

Consider a parallel system consisting of N processing

elements {PE1, PE2, . . . , PEN}. We define a PE as the

smallest computing unit to run a single simulation process,

which could be a single core on a multi-core processor. We

employ the following parallelization strategy:

1) Partition persons into N groups, denoted by

P1, P2, . . . , PN ;

2) Partition locations into N groups, denoted by

L1, L2, . . . , LN ;

3) Duplicate the message broker with N copies, denoted

by MB1,MB2, . . . ,MBN ;

4) Distribute the object set (Pi, Li,MBi) to process ele-

ment PEi;

5) For each PEi, implement a person manager PMi for

Pi and a location manager LMi for Li.

initialization

for t = 0 to T increasing by �t do
foreach individual i ∈ Pi do

a. compute a set of visits for the period (t, t + �t)
b. send visits to message broker MBi

end for
c. MBi accept, retrieve, and forward visit messages

s1: synchronize

foreach location lj ∈ Li do
d. compose a serial DES by turning each visit

message into an arrive event and a depart event and process

events (infections are computed for periods of constant

location occupancy)

e. send outcomes to message broker MBi

end for
f. MBi accept, retrieve, and forward outcome messages

s2: synchronize

foreach person pi ∈ P do
g. combine received outcomes and update health

state

end for
s3: synchronize

end for
finalization

Fig. 5. A parallel version of the EpiSimdemics algorithm EpiSimdemics

6) For each PEi, run a parallel version of

EpiSimdemics shown in Figure 5 on its local

data (Pi, Li).
The parallel algorithm implements three global synchronize

operations. The first one is to guarantee that every location has

received all of its visits before computing the local DESs; the

second one is to guarantee that every person has received all

interaction outcomes before combining them to compute the

updated health states; the third one is required for updating

global simulation state (e.g., the total number of infected

individuals) and triggering dynamic interventions, which are

not discussed in this paper.

A. The network partition

For the above EpiSimdemics parallel algorithm, partition-

ing the person and location nodes and mapping them to

available PEs mainly affects the amount of communication

required. Ideally, an optimal partition strategy should minimize

the amount of messages between PEs, while keeping the

computational load balanced across PEs. This is difficult

without preprocessing the graph, especially when there are

significant number of edges corresponding to long-distance

trips. Currently, we distribute the data in a round-robin fashion.

This choice was made due to the fact that the initial studies

performed with this system were done on metropolitan areas,

which have a much more uniform geographic distribution of

travel. In our previous studies, we found that the commu-

nication cost is roughly 20% of the computation time for a

network with a few million nodes (e.g., the Alabama network



TABLE I
CHARACTERISTICS OF THE TWO BENCHMARK NETWORKS

Networks # of Persons # of Locations # of Daily Visits # of Daily Visit/Person # of Daily Visit/Location
Alabama 4,333,172 1,300,548 32,672,940 7.54 25.12
Data Size 120 MB 40 MB 1.2 GB
California 33,153,148 5,521,932 181,670,319 5.48 32.90
Data Size 890 MB 170 MB 9.5 GB

described in the following section) when running at 96 PEs.

This partially justifies the appropriateness of the round-robin

distribution schema. Additional benefits of using this round-

robin distribution include relatively even load balance among

computing nodes and simpler data management.

However, as the results show in the following section, we do

find that as the number of PEs or the population size increases,

communication cost starts to dominate the total execution

time. As part of our ongoing work, we are looking at several

partitioning strategies that group the locations according to

their geographic location and then place a person on the PEs

that holds most of the individual’s visited locations. As we

study larger and larger areas, an effective partitioning scheme

will become more important for good performance.

B. The Message Broker

A message broker connects to the person manager and the

location manager on its local PE and to a set of remote

message brokers. Each message broker keeps an incoming and

outgoing message buffer for each PE with which it has direct

communications. If an incoming message has a target location

or person hosted by a remote PE, the message broker forwards

the message to the corresponding message broker; otherwise,

it passes the message to local person manager or local location

manager, depending on the message type.

Essentially, the message broker is used to simplify the

EpiSimdemics parallel implementation by hiding the complex-

ity of routing interactions across many PEs. A message broker

works like a blackboard on which other components (persons

or locations) write messages without knowing how and when

the message will be delivered. This strategy leaves room for

further optimizations of the message broker implementation.

This approach is especially suited to EpiSimdemics, as the

simulation is very insensitive to network latency. Any message

sent during one of the three inner loops in Figure 5 is not

needed until after the next synchronization point.

In EpiSimdemics, we use a fully-connected network to

organize message brokers on all PEs. This is sufficient for

small and medium sized systems with up to several hundred

PEs, but insufficient for larger systems. We plan to convert to a

layered topology in a future version of the system. In a layered

topology, the local message brokers are organized into groups

that communicate with a single high-level message broker. The

topology of the high-level messages brokers can be optimized

for the topology of the underlying communications network

(e.g., a tree or hypercube), or can be fully connected.

C. Computation/communication overlapping

To reduce the overhead due to message passing between

two PEs, we overlap the computation and communication

as follows: (i) pipelining the sequence operations as shown

in Figure 4; (ii) using non-blocking send and receive to

overlap network communication with computation; and (iii)

combing active executions for operations generating messages

(e.g., operations a, d, and g) and event-based execution for

operations depending on incoming messages (e.g., operations

c and f ). To reduce the overhead of sending many small

messages, we group messages that have the same destination

PE into larger messages before sending them out. This takes

advantage of EpiSimdemic’s insensitivity to latency.

It is widely expected that the number of cores on a single

chip will continue to grow. As a result, we are interested

in further investigating how to improve the communication

of EpiSimdemics on multi-core architectures, by adopting a

hybrid programming model (e.g., mixed use of MPI and multi-

threading). The current MPI approach uses one single-threaded

MPI process per core. Each process has a group of assigned

people and locations, and an MPI subsystem responsible for

interprocess communication. A hybrid approach would have

k + 1 threads on a k core node. One thread would contain a

work queue of people or locations to be processed, and handle

all MPI related functions. The remaining k threads would

process jobs taken from the work queue. This approach would

allow more overlap between computation and communication,

and achieve a better load balance across the k cores. It would

also eliminate contention for access to the single network

interface. Again, this takes advantage of the insensitivity of

the simulation to network latency.

IV. PERFORMANCE EVALUATION

We have evaluated the performance of an MPI-based im-

plementation of EpiSimdemics on several tera-scale systems.

However, due to space limitations, we mainly discuss results

on a 112 node (448 core) Linux cluster. The cluster uses

Myrinet (Myri-10G) technology for interconnections. Each

node is an IBM Server Blade with two 2.2 GHz AMD

Opteron Model 275 dual-core processors and 8 GB memory,

running CentOS Linux with kernel 2.6.9. For all benchmark

runs, timings are collected by instrumenting the code with

gettimeofday function calls.

We first present performance results for the social contact

networks of two states in the United States, Alabama and

California. The characteristics of these two social contact

networks are summarized in Table I. These networks were

created by our research group using methods described in [6],



[9], and chosen to provide a good range of network sizes. A

similar dataset for Portland, OR containing 1.6 million people

has been made available from ndssl.vbi.vt.edu [21]. In the

benchmark runs, we simulate the spread of the H5N1 avian

influenza virus across each network. We set the simulation

duration as 120 days and set simulation phase interval as 24

hours. All simulations are run without additional interventions

and have an attack rate (total number of people infected in the

simulation) of about 40%.

We present results that investigate the following areas:

strong scaling (constant problem size with an increasing

number of PEs), weak scaling (scaling problem size propor-

tionately with the number of PEs), and the effects of multicore

architectures on performance. Strong scaling includes discus-

sion of the running time, memory footprint, and the ratio of

communication to computation.

Strong Scaling. The running time and memory usage for

both networks are shown in Figures 6 and 7. All figures,

unless otherwise noted, include results using from one core per

node (cpn=1) to four cores per node (cpn=4). For Alabama,

increasing the number of PEs by 48 times decreases the

running time by 42 times, while for California, increasing

the number of PEs by 13 times decreases the running time

by 19 times, achieving roughly linear speedup. Since the

system used for testing contains 8GB of memory per node,

the minimum number of PEs used is determined by the size

of the population used. Due to memory constraints and the lack

of a serial version of the code, true speedup numbers are not

available. The running time is apportioned to computation and

communication in Figures 9 and 10. While the computation

time shows a decrease across the entire range of PEs, the

time taken by communication reaches a plateau around 100

processors for Alabama and 200 processors for California.

This is also apparent in Figure 8, which shows the relative

speedup for both networks. While further study is needed,

one thought is that the synchronization overhead becomes

dominant once a certain number of processors are in use. A

proposed improvement to the communication architecture is

discussed in Section III-B. Additionally, the results are shown

for a simulation without disease interventions which, when

included, will increase the amount of computation time.

Multicore performance. The system used for testing has dual

processor, dual core nodes, for a total of four cores per node.

Figure 11 shows the effects of using various numbers of cores

per node. The default OS process scheduling algorithm was

used, and no attempt to alter either processor or core affinity

was made. The scaling results are calculated by assuming that

the smallest case (eight nodes, cpn=1) has perfect speedup.

The Alabama network is shown, results for the California

network are similar. The cpn=1 and cpn=2 cases show nearly

identical performance, while performance decreases as the

number of cores per node is increased past two. Possible rea-

sons for the performance degradation when multiple cores per

node are used include memory contention, cache poisoning,

network contention, and lack of processor or core affinity.

More study is required to determine the contribution, if any,
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Fig. 6. The execution time for a 120 day simulation of the Alabama and
California networks when using different numbers of PEs. Results are shown
for different values cpn, the number of cores per node that are used for the
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Fig. 7. Memory consumption per PE for a 120 day simulation for the
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Fig. 9. The breakdown of the execution time of EpiSimdemics for a 120
day simulation for the Alabama network.
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Fig. 10. The breakdown of the execution time of EpiSimdemics for a 120
day simulation for the California network.
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Fig. 12. The elapsed time for a range of population sizes. PEs were chosen
so that there were approximately 250,000 people per PE. The times are
normalized to exactly 250,000 individuals per PE.

of each of these possibilities.

Weak Scaling. In addition to studying the strong scalability

of EpiSimdemics, we are also particularly interested in the

capability provided by EpiSimdemics for analyzing the spread

of disease across very large contact networks. Figure 12

shows the results of running various sized networks, adjust-

ing the number of PEs so that the population size per PE

remains roughly constant. The results were further normalized

to exactly 2.5 × 105 individuals per PE. The experiment

is summarized in Table II. Unsurprisingly, the computation

remains constant across all problem sizes. The time spent in

communication increases as the problem size grows, however,

the increase is linear and total runtime only increases by a

factor of 2.5 for a 50 fold increase in problem size. We believe

that the planned changes described in Section VII, along with

better partitioning of the data, will be able to increase the

efficiency of communication for large problem sizes.

To summarize, by considering the semantics of the disease,

EpiSimdemics is able to partition and distribute the work-

load evenly among available processors and thereby has the

potential to scale linearly up to a reasonably large number

of processors and support massive social contact networks.

This conclusion has been further confirmed by the above

experimental results. The performance results also indicate

that multicore architectures may present a performance im-

pediment to EpiSimdemics, and that potential optimizations

on the communication part are both possible and necessary.

As described is the next section, the current version of

EpiSimdemics scales well enough to enable interesting and

important work in computational epidemiology.

V. SCIENTIFIC RESULTS

As a benefit of using a highly-resolved population model,

EpiSimdemics has the capability to provide fine details about

the disease spread in a population including information such

as, which specific set of individuals were infected, where were

they infected, and who infected them. This information not

only provides information about the severity of the overall

epidemic, but also its impact on a specific subpopulation, such

as school children or health care workers. Thus, the users can

identify the demographics of individuals most likely to become

infected, and those most likely to spread the infections, and the

locations where the disease is spread most easily. Such infor-

mation provides valuable insights to public health researchers

investigating the most effective interventions. Figure 13 shows

a snapshot of day 31 of a simulation run of EpiSimdemics for a

social contact network of individuals residing in the New River

Valley in southwestern Virginia, using the pandemic influenza

disease model. The figure illustrates the kind of information

that one can obtain from simulations using EpiSimdemics.

Over the past several years, we have used EpiSimdemics in

several user defined case studies, including recent pandemic

planning studies undertaken for DHS, DoD and DHHS [3],

[16]–[18].

For example, at the request of federal agencies involved in

preparing for an influenza pandemic, EpiSimdemics was used

by the NIH funded MIDAS group to analyze the effectiveness

of combined intervention strategies. Results of the MIDAS

analyses were reviewed in a Letter Report by the Institute of

Medicine, Modeling Community Containment for Pandemic

Influenza [22]. The MIDAS study considered both pharmaceu-

tical and non-pharmaceutical interventions targeted at those

parts of the population where they might most effectively

control the spread of disease [4].

Another study done for the DoD studied the military health

preparedness in the event of pandemics [17]. The results

demonstrated important differences between public health and

military health preparedness problems. When investigating



TABLE II
EXPERIMENTAL DATA FOR WEAK SCALING. STATES AND PES WERE CHOSEN SO THAT THERE WERE APPROXIMATELY 250,000 PEOPLE PER PE. COMP.
AND COMM. ARE THE WALLTIME USED FOR COMPUTATION AND COMMUNICATION, RESPECTIVELY. TOTAL IS THE SUM OF THESE TWO VALUES, AND

NORM. IS THE TOTAL EXECUTION TIME NORMALIZED TO EXACTLY 250,000 INDIVIDUALS PER PE, AND IS USED IN FIGURE 12.

States PEs Individuals Ind per PE Locations Visits Comp. Comm. Total Norm.
nv 8 1,973,281 246660 440,172 10,881,347 1869 867 2735 2773
co 16 4,213,168 263323 831,482 23,325,370 2025 1271 3296 3129
nj 32 8,063,771 251993 1,419,727 44,475,688 1776 925 2701 2680
ny 72 18,208,506 252896 2,916,179 79,706,069 1782 1306 3088 3053
ca 128 33,153,148 259009 5,520,197 181,681,732 1914 1785 3699 3570
ny, ca 200 51,361,654 256808 8,436,376 261,387,801 1760 2261 4021 3914
ny, ca, fl 260 65,640,135 252462 10,342,750 330,544,083 1790 2705 4495 4451
ny, ca, fl, il 308 77,761,415 252472 12,697,360 397,360,131 1822 3145 4967 4918
ny, ca, fl, il, mi, nj 376 99,602,570 264900 16,090,253 494,559,758 1934 4147 6081 5739

the efficacy of sequestering a military sub-population, we

found that sequestration might lead to more infections rather

than controlling them. Although counter-intuitive at first, a

more detailed analysis showed that such a situation occurred

due to a delicate inter-play between two competing factors:

(i) sequestration leads to fewer social contacts, but leads to

increased social contact within a smaller group of individuals

sharing military quarters, and (ii) diseases such as influenza

have the property that individuals can be infectious before

being symptomatic. It can thus happen that individuals who

are infectious can be unknowingly put in close proximity with

susceptible individuals for long periods of time. As a result,

depending on the size of the sequestration groups, it may be

more effective not to implement sequestration.

VI. RELATED WORK

Mathematical modeling and simulation provide powerful

tools to study how the course of disease spread will be

changed by interventions [22]. Several recent reviews on

currently used models can be found in [23], [24]. Roughly

speaking, these models can be classified into two categories:

population-based compartmental models and individual-based

Fig. 13. Snapshot of simulation of Pandemic Influenza in the New River
Valley in southwestern Virginia. The colored dots represent the number of
infected individuals who live in that geographic area, green for low through
red for for high.

networked models. Compartmental models divide a population

into subgroups according to people’s disease status (e.g., sus-

ceptible, exposed, infected, and recovered) and demographics,

and then use differential equations to describe the evolution of

disease in the system under the assumption of uniform mixing

of the population. In contrast, individual-based networked

models make explicit use of the idea of individual interaction

and only allow disease transmissions between persons who

have contacts. Over the last several years, it is becoming

increasingly clear that such models provide a new and useful

approach to computational epidemiology [2], [3].

EpiSimdemics is closely related to EpiSims — an earlier

model co-developed by members of our group [2], [3] and

described in Section II-A. Two other simulation methods that

are closely related to EpiSimdemics are the parallel simulation

systems developed by Longini et al [25], and Ferguson [24].

The system described by Ferguson is implemented to be

executed on a shared memory platform and, thus, is limited

by the amount of available shared memory. Emulated shared

memory machines can be used, but very few machines at

present exist that can store very large social networks in

such a form. The work of Longini et al is indeed a parallel

simulation like EpiSimdemics, but uses a very simple and

structured social contact network. The locations in these social

contact networks are not real but simply surrogates for simple

location types such as school, home, etc. This results in a

structured social contact network that is more amenable to

efficient parallel computation, but which, arguably, is less

representative of real-world social networks.

Physicists have also used a percolation-based approach

to simulate the spread of infectious diseases [14]. Such an

approach is quite efficient but only yields the final outbreak

size; the time varying information about disease dynamics

(information about transients) cannot be obtained by such

methods. But, from the standpoint of epidemic planning and

control, transients are the most important parts. For instance,

the number of hospital beds required during an epidemic de-

pends on the peak number of infected individuals, not the total

number. EpiSimdemics and other simulations discussed above

provide time varying information about disease dynamics and

are therefore much more useful for studying the effect of

interventions and other public policies.



VII. CONCLUSIONS AND FUTURE WORK

EpiSimdemics is a new HPC-based framework to model

the spread of infectious disease over large social networks. To

our knowledge, EpiSimdemics is one of the few simulation

algorithms that have the following unique capabilities. First,

it scales to 100 million node realistic social networks, using

an interaction-based approach to compute disease dynamics,

as opposed to traditional models that are based on differential

equations and mean field assumptions. Second, it can be easily

modified to study several general reaction diffusion systems

over unstructured networks (e.g., diffusion of norms, fads,

etc.). Third, it exploits disease-specific semantics in decou-

pling the temporal and spatial interdependencies existing in

the simulation — leading to a scalable parallel implementation

for typical distributed memory systems. And fourth, it is

specifically designed to be useful in evaluating the efficacy

of realistic intervention strategies, e.g., adaptively closing

schools, social distancing, etc.

The performance of EpiSimdemics was tested on a cluster

with 448 PEs. The results confirm that EpiSimdemics main-

tains linear scalability within the system size we typically

use for studies, showing a speedup of 329 on 300 PEs,

relative to the execution time on 32 PEs. This scaling does

not continue for larger numbers of processors for the current

implementation. Nevertheless, as a large adaptive epidemic

experiment usually consists of 100-1000 simulation runs with

different parameters, it is more efficient to use a large system

to adaptively explore the design space instead of making a

single simulation run extremely fast.

Motivated by the performance analysis described in Sec-

tion IV, there are three main areas for improvement: better

partitioning of the data (Section III-A), improved design of the

message brokers (Section III-B), and implementing a hybrid

MPI/multithreading model (Section III-C). Along with these

improvements, the epidemiological models will continue to be

improved and generalized. These additions will increase the

computational burden of the simulation, while having little

impact on the communication load. Additional capabilities

that will be added include: multiple co-circulating diseases,

enhanced sociological modeling in the agents, and the addition

of more complex interventions, such as contact tracing and

antiviral stockpiles. These capabilities will be modeled by

multiple interacting PTTSs. The Sociological modeling will

enable an individual to make choices about the locations that

they will visit during the day, based on demographics of the

individual, the health state of the individual, family members

and coworkers, and the perceived prevalence of disease in the

community.
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