
96	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Sounding Board

continued on p. 93

Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

Embracing the
Engineering Side of
Software Engineering
Lionel Briand

I have now been a professional researcher
in software engineering for roughly 20 years.
Throughout that time, I’ve worked at univer-
sities and in research institutes and collabo-
rated on research projects with 30-odd pri-
vate companies and public institutions. Over
the years, I have increasingly questioned and
reflected on the impact and usefulness of my
research work and, as a result, made it a pri-
ority to combine my research with a genu-
ine involvement in actual engineering prob-
lems. This short piece aims to reflect on my
experiences in performing industry-relevant
software engineering research across several
countries and institutions.

Not So Hot Anymore
I suppose a logical start for this article is to
assess, albeit concisely, the current state of
software engineering research. As software
engineering is widely taught in many univer-
sities, due in large part to a strong demand
for software engineers in industry, the num-
ber of software engineering academics is sub-
stantial. The Journal of Systems and Soft-
ware ranks researchers every year, usually
accounting for roughly 4,000 individuals ac-
tively publishing in major journals.

When I started my career, software en-
gineering was definitely a hot topic in aca-
demia: funding was plentiful, and universi-
ties and research institutes were hiring in
record numbers. This clearly isn’t the case
anymore. Public funding for software engi-
neering research has at best stagnated, and
in many countries, declined significantly.

Hiring for research positions is limited and
falls far below the number of software engi-
neering graduates seeking research careers.
Industry attendance at scientific software
engineering conferences is roughly 10 per-
cent, including the scientists from corporate
research centers. Adding insult to injury, in
many academic and industry circles, soft-
ware engineering research isn’t even consid-
ered to be a real scientific discipline. I’ll spare
you the numerous unpleasant comments
about the credibility and scientific underpin-
ning of software engineering research that
I’ve heard over the years.

This situation isn’t due to the subject mat-
ter’s lack of relevance. Software systems are
pervasive in all industry sectors and have be-
come increasingly complex and critical. The
software engineering profession repeatedly
tops job-ranking surveys. In many cases, most
of a product’s innovation lies in its software
components—for an example, think of the
automotive industry. In all my recent industry
collaborations, I’ve observed that all the is-
sues and challenges traditionally faced in soft-
ware development are becoming more acute.

So how can we explain the paradox of
being both highly relevant and increasingly
underfunded and discredited?

Looking for Some Answers
Like other disciplines before us, because
we’re a young and still-maturing engineer-
ing field, we lack the credibility of more

	 July/August 2012 | IEEE Software � 93

Sounding Board

continued from p. 96

established disciplines. After all, even
the term software engineering was first
coined in 1968.

But surely, there’s more to it than
that, and we, as a research commu-
nity, must take some of the blame. En-
gineering is about the “application of
scientific and mathematical principles
to practical ends” (American Heritage
Dictionary). In our case, the scientific
disciplines of reference include not only
computer science but also certain areas
of discrete mathematics and operation
research, statistics, psychology, and
economics. Because software develop-
ment is tightly coupled with economic
considerations—with an overarching
effect on all project decisions—and
software development is still largely
performed by humans, the latter two
disciplines shouldn’t come as a surprise.

How about the “practical ends” part
of the engineering definition? Bertrand
Meyer stated in one of his recent blog
posts, “academic research has had its
part, honorable but limited” (http://
bertrandmeyer.com/2010/04/), refer-
ring to the impact of software engineer-
ing research on practice. Many others
have made such comments over the
years, and I tend to agree with them,
based on my observations of software
development practices.

The “impact project,” launched
by ACM SIGSOFT, aimed to dem-
onstrate the (indirect) impact of soft-
ware engineering research through a
number of articles by research lead-
ers. Although some impact can cer-
tainly be credited to research, I’ve
talked to many of my engineering col-
leagues, and I’ve never heard of an-
other engineering discipline trying to
demonstrate its impact through such
an initiative. This in itself is a symp-
tom of a lack of impact as the benefits
of engineering research should be self-
evident. Of course, I’m not suggesting
that all the research in other engineer-

ing disciplines bears fruit in the form
of industrial applications—for every
industrial success achieved through
research, there are many failures, ir-
respective of the discipline. That said,
software engineering research is not
yet on par with other engineering dis-
ciplines in terms of industrial success
stories. This is clearly visible to public
funding agencies, which, after years
of massive investments in software en-
gineering research, have seen little re-
turn. It’s also clearly perceptible from
the many reactions that I’ve witnessed
when discussing collaborations with
practitioners.

Root Causes
There are several root causes for the
limited impact of software engineering
research. I’ll cover what I believe are
the main culprits. It’s fair to say that
the field has many highly educated and
competent researchers. There’s no rea-
son to doubt the ability of individual re-
searchers in this community.

However, does academia—where
most researchers are employed—value
research impact? We have to admit that
in most computer science departments,
to which most software engineering
researchers belong, this isn’t the case.
People are typically evaluated based on
their number of publications in high-
quality venues and acquired funding.
In contrast, in other engineering fac-
ulties, factors such as filed patents and
industry collaborations and impact are
more highly regarded. In fact, many
engineering faculty members I’ve met,
across several disciplines, see them-
selves primarily as inventors. It should
therefore not be surprising that when
under pressure, software engineering
researchers focus on what they’re re-
warded for.

Another related issue is that the
paradigm of research in engineering is
somewhat different from that in natu-
ral sciences or applied mathematics.
Engineering research must be problem-

driven, account for real-world require-
ments and constraints, address scal-
ability and various human factors, and
ensure that the end result hits the right
trade-offs, for example, between qual-
ity and cost. This has significant im-
plications as it isn’t possible to follow
such a paradigm without a thorough
understanding of the challenges in
practical settings and therefore without
some form of collaboration with actual
software development organizations.
Some aspects of software engineering
research are more theoretical in na-
ture, but even these are initially based
on formalizing the problem or solution
for analysis. However, the largest pro-
portion of software engineering papers
needs to address these engineering re-
search concerns, and such papers are
much fewer than they should be in our
research community.

One problem in promoting an engi-
neering vision of software engineering
research is the field’s relative immatu-
rity. Most institutions don’t have soft-
ware engineering departments; soft-
ware engineering research tends to be
part of the computer science depart-
ments, often in science faculties. Just
imagine mechanical or civil engineer-
ing being part of a physics department.
Would that work? No wonder many
software engineering researchers find
it difficult to perform high-impact re-
search—they have to comply with com-
puter science expectations in terms of
research contributions.

A second problem is that a typical
university department isn’t an ideal en-
vironment for establishing tight collab-
orations with industry or public institu-
tions. Furthermore, such collaborations
can’t involve just students and profes-
sors—they also require professional sci-
entists and engineers in charge of tool
development, knowledge transfer, and
project management. This is why my
current employer (University of Lux-
embourg) has created an interdisciplin-
ary, cross-faculty center focusing on

94	 IEEE Software | www.computer.org/software

Sounding Board

system dependability. There are many
requirements for such an initiative to
be successful, which I can’t discuss here
due to space limitations.

Examples
Two brief examples illustrate my
points, both negative and positive.
First, over the past decade, a very large
number of papers have been dedicated
to debugging, for example, by ranking
statements in programs. At the Inter-
national Symposium on Software Test-
ing and Analysis (ISSTA 2011), Chris
Parnin and Alex Orso reported on a
survey and study they performed on
that subject. From 50 years of research
on automated debugging techniques,
they found that only five papers in-
volved studies with real programmers.

The authors’ experiment also showed
that only low performers strictly fol-
lowed the provided statement ranking,
only one programmer out of 10 stopped
when checking the buggy statement,
automated support didn’t speed up de-
bugging, and programmers preferred
an explanation rather than recommen-
dations on fault locations. How could
such a substantial research endeavor—
one that spanned several decades—be
misled to such an extent? The human
factor was abstracted away from most
of the research, and the research com-
munity had a rather superficial under-
standing of the problems facing practi-
tioners while debugging. Nevertheless,
literally dozens of published papers re-
ported solutions that were a mismatch
to the problem.

As a positive example, I use a project
in which my colleagues and I focused
on an application of model-based test-
ing in close collaboration with an indus-
try partner (most recently reported in a
Transactions on Software Engineering
and Methodology article by Hadi Hem-
mati and colleagues; http://simula.no/
publications/Simula.simula.120. Our
focus was on automating the testing
of a video-conferencing system, with a
particular focus on testing its robust-
ness to network and hardware prob-
lems. We developed a sophisticated
automation strategy that satisfied the
requirements as specified. However, as
our industry partners applied our tool,
we learned that it tended to lead to too
many test cases given the allocated
test time. We had overlooked the need

Advertiser PAge
ABB AB 15
ICSE 2013 74
Shell 7
SPLC 2012 Cover 2

Advertising Personnel
Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email: sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising sales representatives (display)

Central, Northwest, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
Ann & David Schissler

Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising sales representatives (Classified Line)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising sales representatives (Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

AdvertiSer informAtion • july/AuguSt 2012

	 July/August 2012 | IEEE Software � 95

Sounding Board

to access a specific testing infrastruc-
ture to perform system testing (for ex-
ample, to simulate IP network traffic).
In other words, what was most impor-
tant to them was the ability to adjust
the amount of testing—regardless of
the test strategy—to the test infrastruc-
ture’s available access time. We devised
a solution based on similarity measure-
ment of test cases and found an effec-
tive way to satisfy this requirement. But
we never would have thought of focus-
ing on that problem without interacting
with this industry partner. This also
shows how, to a large extent, context
matters in our research discipline as it
greatly affects a solution’s applicabil-
ity. Researchers must therefore show
due diligence in understanding relevant
contextual factors, an activity that’s
both time-consuming and essential in
software engineering research.

A larger proportion of software
engineering research should
focus on solutions to real en-

gineering problems. But this requires
first and foremost a conscious effort by
our research community to understand
the problems and priorities of the many
industry sectors that develop software.
Such an understanding can come only
through a closer collaboration; it re-
quires a change of organization and

research paradigms in many academic
institutions, as well as mechanisms to
reward industrial impact and not just
scientific publishing. Note that closer
interactions between academia and in-
dustry don’t prevent high-risk, long-
term research—rather, they ensure that
such endeavors are, to the extent pos-
sible, rooted in a thorough understand-
ing of the reality of software develop-
ment practice.

Software engineering isn’t a branch
of computer science; it’s an engineer-
ing discipline relying in part on com-
puter science, in the same way that me-
chanical engineering relies on physics.
One possibility, already implemented
in some institutions, is to create “sys-
tem engineering” departments, with
various faculties contributing to system
design and verification, including soft-
ware at various levels, electronics, and
mechanical areas.

As software engineering researchers,
we also need to work on ourselves. In
particular, we should stop seeing our-
selves as computer scientists. Instead,
we should place more value on the ap-
plication and evaluation of new tech-
nologies in realistic contexts and on the
combination of techniques from mul-
tiple disciplines to solve well-defined
engineering problems. There are signs
of progress in this regard. One notice-
able change is that most conferences

now have “application” tracks (under
various names), which are essentially
engineering research tracks. Several
major conferences also now have an in-
terdisciplinary focus, including SSBSE
(evolutionary computing and optimiza-
tion) and ESEM (empirical studies and
human factors).

Whether we successfully address
the challenge of transforming ourselves
into a true engineering research dis-
cipline will determine our impact and
therefore the success of our profession
in the future. We owe this to our stu-
dents and the society at large, which is
financing our research.

Acknowledgments
I’m grateful to the following people for
their reviews and valuable discussions: Vic-
tor Basili, Davide Falessi, Arnaud Gotlieb,
Jacques Klein, Philippe Kruchten, Sandro
Morasca, James Miller, Richard Torkar,
Mehrdad Sabetzadeh, and Tao Xie.

Lionel Briand is professor and FNR PEARL
Chair at the University of Luxembourg’s Interdisci-
plinary Centre for ICT Security, Reliability, and Trust
(SnT). Briand is an IEEE Fellow and recently received
the IEEE Computer Society Harlan Mills award for
his work on model-based testing and verification.
Contact him at lionel.briand@uni.lu.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer So-
ciety. IEEE headquarters: Three Park Ave., 17th Floor, New York, NY 10016-5997.
IEEE Computer Society Publications Office: 10662 Los Vaqueros Cir., Los Alamitos,
CA 90720-1314; +1 714 821 8380; fax +1 714 821 4010. IEEE Computer Society
headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscription rates: IEEE
Computer Society members get the lowest rate of US$56 per year, which includes
printed issues plus online access to all issues published since 1984. Go to www.com-
puter.org/subscribe to order and for more information on other subscription prices.
Back issues: $20 for members, $193 for nonmembers (plus shipping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Mem-
bership Processing Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ
08854-4141. Periodicals Postage Paid at New York, NY, and at additional mail-
ing offices. Canadian GST #125634188. Canada Post Publications Mail Agreement
Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Ni-
agara Falls, ON L2E 6S8, Canada. Printed in the USA.
Reuse Rights and Reprint Permissions: Educational or personal use of this ma-
terial is permitted without fee, provided such use: 1) is not made for profit; 2)
includes this notice and a full citation to the original work on the first page of the

copy; and 3) does not imply IEEE endorsement of any third-party products or ser-
vices. Authors and their companies are permitted to post the accepted version of
IEEE-copyrighted material on their own webservers without permission, provided
that the IEEE copyright notice and a full citation to the original work appear on
the first screen of the posted copy. An accepted manuscript is a version which has
been revised by the author to incorporate review suggestions, but not the pub-
lished version with copyediting, proofreading, and formatting added by IEEE.
For more information, please go to: http://www.ieee.org/publications_standards/
publications/rights/paperversionpolicy.html. Permission to reprint/republish this
material for commercial, advertising, or promotional purposes or for creating
new collective works for resale or redistribution must be obtained from IEEE by
writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscat-
away, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2012 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Li-
braries are permitted to photocopy for private use of patrons, provided the per-copy
fee indicated in the code at the bottom of the first page is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

