
28 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

FOCUS: GUEST EDITORS’ INTRODUCTION

ALL SOFTWARE IS designed. No soft-
ware is put to use without someone
thinking about what it should do and
how it should do it. Such thought might
be explicit, deliberate, and collabora-
tive, such as when a group of program-
mers meet around a table. Alternatively,
it might be more implicit and personal,
such as when a lone programmer pon-
ders a particular piece of the code. It
might even happen subconsciously—a
sudden thought or insight during an ar-
chitect’s morning shower.

Throughout the life cycle, decisions
are made that shape the software to be

produced, and hence the experiences
that users will have with it. These deci-
sions must be made with care—making
them is a design activity.

Given design’s crucial role, one
would expect our field to have a “cul-
ture of design,” as more mature design
disciplines do, with a rich portfolio of
well-understood design approaches
and methods, and an appreciation for
both the commonalities and variations
in practice. When faced with a design
problem, a software engineer should
be able to draw from a rich array of
techniques that help match familiar

problems to effective solutions and help
explore unfamiliar problems systemati-
cally in a way that reveals key consider-
ations and alternatives.

Unfortunately, this simply isn’t true
at this time. Although we have quite a
few high-level design methodologies,
we don’t have a sufficient understand-
ing of what effective professional soft-
ware designers do when they design,
nor much well-founded guidance about
how to match method to context. How
software developers (whether address-
ing requirements, architecture, imple-
mentation, maintenance, or any other

Studying Professional
Software Design

Alex Baker, Visitrend • André van der Hoek, University of California, Irvine
Harold Ossher, IBM Research • Marian Petre, The Open University

 JANUARY/FEBRUARY 2012 | IEEE SOFTWARE 29

aspect of development) truly engage in
design is a relative mystery. We have re-
flective pieces written by experienced
developers,1 –3 but relatively little sys-
tematic empirical investigation that
reveals the mechanisms of designerly
thinking4 about software, especially
early in the design process. What rep-
resentations do software designers use?
What strategies do they employ? How
do they work collaboratively and com-
municate to address a problem effec-
tively? How do they accommodate con-
text in their practice and thinking?

This special issue emerged from
“Studying Professional Software De-
sign,” a 2010 workshop at the Univer-
sity of California, Irvine, that studied
software designers in action to fuel the
discussion and determine what software
designers actually do when faced with a
design problem. Three pairs of profes-
sional designers were asked to design
a traffic simulator for civil engineering
students (see www.ics.uci.edu/design-
workshop). Each pair took the design
prompt, worked together at a white-
board for two hours, and discussed sev-
eral aspects of both the problem and its
potential solutions. The sessions were
videotaped, and all workshop partici-
pants analyzed one or more of the tapes,
resulting in many different perspectives,
including cognition, representation, dis-
course, collaboration, requirements,
problem analysis, interaction design,
assumptions, rationale, coordination,
tools, and design theory. We present
some of these perspectives here; several
others appear in a special issue of De-
sign Studies (www.sciencedirect.com/
science/journal/0142694X/31/6).

A Dialogue
Our goal with this special issue of IEEE
Software is to encourage dialogue be-
tween practitioners and researchers.
All too often, researchers propose de-
sign methods disconnected from prac-
tice (and, indeed, teach those in their
university classes). Practitioners, on

the other hand, tend to be too busy to
look for new approaches—so focused
on their own practices that they aren’t
concerned with others or simply not
tuned in to help steer academia toward
innovations that could actually help
them in their daily work. Neither prac-
titioners nor researchers are helped by
this lack of connection.

The discipline can benefit from sys-
temic investigations by outsiders look-
ing in, a necessity to reveal what we
ourselves do not see. A range of em-
pirical studies have emerged (for ex-
ample, from the Empirical Studies of
Programmers [ESP] and the Psychology
of Programming Interest Group [PPIG]
communities) that have focused on pro-
gramming and on software develop-
ment more broadly. We have seen these
contributions build new knowledge,
challenge previous assumptions, and
lead to new kinds of tools that slowly
make their way into practice, thereby
providing evidence that research
grounded in actual practices and build-
ing on observed problems and opportu-
nities can have real impact.

But similar empirical studies of soft-
ware design—particularly of early, for-
mative design—are less common, and
we haven’t yet achieved a cohesive body
of work nor a coordinated community
of researchers or a regular dialogue
between researchers and practitioners.
Our hope is that the articles in this
special issue—and the workshop from
which they emerged—can provide the
seeds for such an ongoing dialogue.

The workshop itself provided evi-
dence of the power of dialogue between
researchers and practitioners. Several
designers who were videotaped par-
ticipated in the workshop alongside the
researchers. In a wonderfully coopera-
tive environment, a dialogue emerged
in which the researchers reflected on
their observations and analyses with
the software designers who provided
the basis for them. Sometimes, find-
ings were contradicted, sometimes

wholeheartedly affirmed, and some-
times clarifying interpretations resulted
in new insight. Similarly, the practitio-
ners were able to reflect on their own
practices and strategies. Once they
came to terms with being the subject
of so much scrutiny by the research-
ers, they returned their own challenges
and questions. They reported that they
found the discussions enlightening,
delivering insights that were useful to
take back into practice.

This kind of dialogue needs to take
place much more frequently and more
broadly in order for our community’s
understanding and practices of design
to advance.

Early Evidence
Some early work provides interest-
ing observations that show the poten-
tial impact of the study of professional
software designers at work, especially
through the kind of dialogues we envi-
sion. A sample (our introductory anno-
tated bibliography on the IEEE Soft-
ware website contains a larger set of
readings; http://doi.ieeecomputersociety.
org/10.1109/MS.2011.155):

•	 Raymonde Guindon and colleagues
were among the first to study in
great detail how software design-
ers work through a design problem,
showing a relative absence of the
exploration of alternatives.5

•	 Bill Curtis and colleagues showed
how the linear notion of design be-
ing a phase in the life cycle was a
fallacy.6

•	 Mauro Cherubini and colleagues
highlighted just how prevalent and
transient whiteboard software de-
sign is, serving a crucial role in the
development process.7

•	 Uri Dekel and Jim Herbsleb dem-
onstrated that designers engaged
in collaborative design used formal
notations much less than expected,
although the notations they did use
resembled existing notations.8

30 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: GUEST EDITORS’ INTRODUCTION

•	 Robin Jeffries and colleagues stud-
ied differences between experts and
novices, observing that experts tend
to work initially to understand the
problem at hand and have better
insight into how to decompose a
problem into subproblems, for ex-
ample, by choosing the appropriate
subproblem to work on next.9

•	 Marian Petre documented several
strategies that designers use, often
subconsciously, as part of their de-
sign repertoire and experience (for
instance, by using provisionality
in designs to leave room for future
options).10

•	 Alex Baker and André van der
Hoek showed how designers work
in design cycles, progressing in their
design work by juxtaposing differ-
ent design topics for relatively short
periods of time.11

•	 Sabine Sonnentag found that high-
performing professional software
designers structured their design
process using local planning and
attention to feedback, whereas
lower performers were more en-
gaged in analyzing requirements
and more distracted by irrelevant
observations.12

•	 Willemien Visser argued, with em-
pirical support, that the organi-
zation of actual design activities,
even by experts involved in routine
tasks, is opportunistic—in part, be-
cause opportunistic design provides
cognitive economy.13

•	 Linden Ball and Thomas Ormerod,
on the other hand, argued that
opportunistic design behavior is
actually a mix of breadth- and

depth-first solution development,
and that expert behavior is in-
formed by longer-term consider-
ations of cost-effectiveness.14

•	 Carmen Zannier and colleagues
proposed an empirically based
model of design decision-making
in which the nature of the design
problem determines the structure

of the designer’s decision-making
processes. The more certain and fa-
miliar the design problem, the less a
designer considers options.15

More is needed. Actually studying
what software designers do and how
they express themselves while they de-
sign is necessary if we’re to build ap-
propriate support tools, document ef-
fective design techniques for the current
generation of software designers, and
educate the next generation effectively.

Challenges
Significant challenges lie in conducting
this kind of work. First, data collec-
tion is difficult. Unlike the large body
of work that mines preexisting soft-
ware repositories to study development
practices and patterns, no equivalent
data source exists for design processes.
Many design activities result in tran-
sient artifacts, such as paper notes and
sketches, whiteboard drawings, and
even conversations. These transient ar-
tifacts disappear, often quickly, and the
researcher is left with personal recollec-
tions and, perhaps, more formal design
documents produced after the fact. Al-
though these can provide important in-
sights, they tell only part of the story.

Second, design is socially embedded,

and important collaborative discus-
sions can occur unpredictably. We’re all
familiar with design meetings in which
a group of developers are brought to-
gether to discuss a certain aspect of the
architecture or impromptu meetings in
which a developer gets stuck working
on some code, gathers one or two other
developers, and retreats to a conference
room to work through the issue. But
design takes place less overtly, too. The
stuck developer might just have a quick
IM conversation, possibly supported by
some screen-sharing software, during
which the issue is resolved and certain
critical design decisions are made. Or
design might take place during a team
lunch, when some developers spontane-
ously discuss a feature or issue.

Third, design isn’t “pure”: it in-
volves intuition, engineering, drawing
upon domain knowledge, explorations
of multiple lines of thought, and mis-
takes. Furthermore, it’s influenced by
a large number of human factors that
confound what’s already a muddled
picture of how design truly progresses.
Consequently, the study of software de-
sign is inherently an interdisciplinary
study.

Essentially, “studying software de-
sign” must mean studying design over
time, over many authentic contexts,
and from a variety of perspectives.
This entails abandoning any notion of
a single definitive study and commit-
ting instead to accumulating a body of
studies that aggregate in meaningful
ways to give a rich overview and cross-
cutting insights. It also requires accom-
modating the balance between detailed
study and breadth; attending to the
trade-offs between focused studies that
give attention to context and studies
that might generalize beyond context;
taking account of the impact of the
problem domain; and so on. This is an-
other reason why the dialogue between
researchers and practitioners is crucial:
we must access meaningful data that
represents effective practice.

Design isn’t “pure”: it involves intuition,
engineering, drawing upon domain

knowledge, explorations of multiple lines
of thought, and mistakes.

 JANUARY/FEBRUARY 2012 | IEEE SOFTWARE 31

Agenda
With a few exceptions, earlier works
have been at a relatively high level of
abstraction, not diving too deeply into
design as a human activity. The stud-
ies tend to have a single focus and don’t
attempt to crosslink different perspec-
tives on early software design. Our
agenda, then, calls for studies that ex-
amine the following:

•	 Commonalities and variations in
design approaches across the life cy-
cle. Early design might or might not
share techniques, characteristics,
and attitudes with maintenance de-
sign; similarly, aspects of the design
of a set of requirements might or
might not reflect the design of a set
of test cases. Moreover, the ques-
tion of how design decisions made
in one part of the process influence
the design decisions made in other
parts is highly pertinent.

•	 The various modes of working.
Design is sometimes solitary and
other times highly collaborative.
It’s sometimes advanced through
introspective thought and reflec-
tion and at other times through the
creation of diagrams, documents,
and other artifacts. Design might
be wildly creative and free-form, or
it might involve the careful analysis
of trade-offs. How can each form of
design be leveraged? How do they
support and interleave? Can we de-
termine what sort of design is ap-
propriate when?

•	 Different roles and expertise. Sub-
stantial work on novice-expert dif-
ferences in programming has re-
sulted in insights about both the
nature of expertise and what sorts
of expert strategies might be articu-
lated and transferred to others. We
need similar novice-expert compari-
sons for the design reasoning and
practice that takes place elsewhere
in the process. Can we learn how
experts approach a design task and

navigate a design problem—and
from that, extract patterns in their
behavior that can be described and
taught? Are there common mistakes,
oversights, or biases that can be rec-
ognized, detected, and thus avoided?

Cutting across such studies is the is-
sue of software development context.
Early studies in the psychology of the
programming community focused on
programming-in-the-small, examining
how programmers program and make
decisions that affect the structure of the
software they’re developing. Today, this
activity still takes place, but the nature
of software has changed rapidly toward
complex, often distributed and rapidly
evolving systems. How does this influ-
ence the nature of design, both in-the-
small, where program-level decisions
must take into account the massive
software infrastructure upon which
they build, and in-the-large, where de-
cisions about the infrastructure must
live up to years of highly varied use?

In This Issue
For this special issue, we selected five
articles representing a range of perspec-
tives on professional software design
and how designers work. The first, “To-
ward Unweaving Streams of Thought

for Reflection in Professional Software
Design,” by Kumiyo Nakakoji, Yas-
uhiro Yamamoto, Nobuto Matsubara,
and Yoshinari Shirai, seeks to address
the challenge that design meetings are
fleeting, with no opportunity to return
to what was said or decided other than
through the memory of individuals
present or through the notes that might

have been taken and distilled. Their
tool, design practice streams, provides
an inventive method of accessing video-
taped design meetings by allowing de-
signers to choose a region of the white-
board or to alternatively select a few
keywords from the transcript, upon
which the tool retrieves the segments
where pertinent design aspects were
discussed in order to reconsider design
decisions in the context in which they
were made.

“Strategies for Early-Stage Collabor-
ative Design,” by Ania Dilmaghani and
Jim Dibble, recognizes that much of de-
sign takes place in a collaborative man-
ner. Based on their collective decades of
experience in interaction design, they
prescribe 10 strategies for managing
effective design meetings. These strate-
gies, ranging from “agree on an agenda
and goals for each session” and “work
from a shared understanding of user re-
quirements” to “sketch the problem do-
main” and “mine disagreements,” are
appropriate in any meeting. However,
as the self-evaluation of their own per-
formance in addressing the workshop
design prompt shows, without explic-
itly recognizing and working with the
strategies, it’s easy (yet problematic!) to
forget one or two.

Mary Shaw’s article on “The Role

of Design Spaces” rekindles the topic
of design spaces, presenting an explicit
analysis of the alternatives for each of
the main design decisions to be made
in the prompt that was used in the de-
sign workshop. She then highlights how
each of the three teams chose quite dif-
ferent points in the design space and
compares the three designs to that of a

The nature of software has changed
rapidly toward complex, often distributed

and rapidly evolving systems.

32 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: GUEST EDITORS’ INTRODUCTION

commercial simulator. The implication
is that the exploration of design spaces,
and indeed their articulation up front
when faced with a design problem, is
extremely important in order to make
proper design decisions.

The fourth article, “Design Strategy
and Software Design Effectiveness” by
Antony Tang and Hans van Vliet, ex-
amines design from a two-dimensional
space of breadth- or depth-fi rst design
versus problem- or solution-oriented
design. They articulate four distinct
design strategies (scoping/questioning,

scoping/solving, no scoping/questions,
no scoping/solving) that they observed
the designer pairs engage in at differ-
ent times during the recorded design
meetings. They suggest that software
designers match their design strategy to
the requirements of the situation.

Finally, John Rooksby and Nozomi
Ikeya present a detailed analysis of one
designer pair in “Collaboration in For-
mative Design: Working Together at a
Whiteboard.” The article echoes, from
a researcher’s perspective, the refl ective
observations made by Dilmaghani and

Dibble. However, Rooksby and Ikeya
carefully analyze the transcripts and
videos and add some lessons of their
own, the most important, perhaps, be-
ing that a sense of humor plays a key
role. Design, after all, remains a hu-
man and often social activity, and thus,
the cooperation and openness among
those in a design meeting will shape
the give and take of the design dialogue
that ultimately determines a design’s
effectiveness.

T he concept of “design” has de-
veloped for decades, spanning
a variety of approaches, prod-

uct types, and fi elds. Software is often
compared to a broad range of other
fi elds (architecture, engineering, movie
creation), and we have lessons to learn
from the study of design in other disci-
plines: similarities emerge in how peo-
ple navigate design problems that could
well inspire how we should proceed in
software design. We suggest a more en-
thusiastic embrace of a design-oriented
perspective in software research, start-
ing with the rejection of notions that
design can only exist in a phase, in
code, or in a system’s interface. What if
we considered requirements engineering
from a design-oriented perspective? Or
the creation of a suite of test cases, or
the development of incremental changes
during maintenance? Design is a power-
ful way of considering creative endeav-
ors with a long history of research and
practice. We believe that applying this
perspective to software development
stands to improve signifi cantly how it is
researched and practiced.

We also argue that effective study
of software design requires dialogue
between practitioners and researchers.
To produce insights that are relevant to
practice, researchers need to relate to
practice and be informed by it. We need
to understand the contexts in which
software design is conducted, in order
to address both technical and social

ALEX BAKER is a senior software engineer at Visitrend in Boston,
Massachusetts. His professional focus is on information visualization
and user interface design, and his research interests include empiri-
cal study of software design processes and software engineering
education. Baker has a PhD in computer science from the University of
California, Irvine. Contact him at abaker@visitrend.com.

ANDRÉ VAN DER HOEK serves as chair of the Department of
Informatics at the University of California, Irvine. He heads the Software
Design and Collaboration Laboratory, which focuses on understand-
ing and advancing the roles of design, collaboration, and education in
software development. Van der Hoek has a PhD in computer science
from the University of Colorado at Boulder. Contact him at andrew@ics.
uci.edu.

HAROLD OSSHER is a researcher at the IBM Thomas J. Watson
Research Center, currently in the Services Innovation Laboratory work-
ing on tool support for solution engineering in the smarter commerce
domain. His research interests include modularity and separation of
concerns, software development tools and environments, and fl exible
modeling. Ossher has a PhD in computer science from Stanford Univer-
sity. Contact him at ossher@us.ibm.com.

MARIAN PETRE is a professor of computing at the Open University
and a Royal Society Wolfson Research Merit Award holder, in recogni-
tion of her research on expertise in software design. Petre has a PhD
in computer science from University College London. Contact her at
m.petre@open.ac.uk.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

 JANUARY/FEBRUARY 2012 | IEEE SOFTWARE 33

aspects. Existing reports reflect a re-
luctance by practitioners to adopt tools
that are at odds with their professional
ethos and practice. Grounding research
in dialogue between practitioners and
researchers should inspire tools that
suit existing cultures in industry—or
that are profound enough to warrant
the transitional cost of adopting new
ways of thinking.

References
 1. B. Boehm, Software Engineering: Barry

Boehm’s Lifetime Contributions to Software
Development, Management, and Research,
Wiley/IEEE CS, 2007.

 2. F.P. Brooks Jr., The Design of Design: Essays
from a Computer Scientist, Addison-Wesley/
Pearson Education, 2010.

 3. T. Winograd, Bringing Design to Software,
ACM Press, 1996.

 4. N. Cross, Designerly Ways of Knowing,

Springer, 2007.
 5. R. Guindon, H. Krasner, and B. Curtis,

Breakdowns and Processes during the Early
Activities of Software Design by Profession-
als, Empirical Studies of Programmers: Second
Workshop, Ablex Publishing, 1987.

 6. B. Curtis et al., “A Field Study of the Software
Design Process for Large Systems,” Comm.
ACM, vol. 31, no. 11, 1988, pp. 1268–1287.

 7. M. Cherubini et al., “Let’s Go to the White-
board: How and Why Software Developers
Use Drawings,” Proc. CHI 2007, ACM Press,
2007, pp. 557–566.

 8. U. Dekel and J.D. Herbsleb, “Notation and
Representation in Collaborative Object-
Oriented Design: An Observational Study,”
SIG-PLAN Notices, vol. 42, no. 10, 2007, pp.
261–280.

 9. R. Jeffries et al., “The Processes Involved in
Designing Software,” Cognitive Skills and
Their Acquisition, J.R. Anderson, ed., Erl-
baum, 1981, pp. 225–283.

 10. M. Petre, “Insights from Expert Software De-
sign Practice,” Proc. European Software Eng.
Conf./Foundations of Software Eng. (ESEC/
FSE), ACM, 2009, pp. 233–242.

 11. A. Baker and A. van der Hoek, “Ideas, Sub-

jects, and Cycles as Lenses for Understanding
the Software Design Process,” Design Studies,
vol. 31, no. 6, 2010, pp. 590–613.

 12. S. Sonnetag, “Expertise in Professional Soft-
ware Design,” J. Applied Psychology, vol. 83,
no. 5, 1998, pp. 703–715.

 13. W. Visser, “Designers’ Activities Examined
at Three Levels: Organization, Strategies and
Problem-Solving Processes,” Knowledge-
Based Systems, vol. 5, no. 1, 1992, pp.
92–104.

 14. L.J. Ball and T.C. Ormerod, “Structured and
Opportunistic Processing in Design: A Critical
Discussion,” Int’l J. Human-Computer Stud-
ies, vol. 43, 1995, pp. 131–151.

 15. C. Zannier, M. Chiasson, and F. Maurer, “A
Model of Design Decision Making Based on
Empirical Results of Interviews with Software
Designers,” Information and Software Tech-
nology, vol. 49, no. 6, 2007, pp. 637–653.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

I E E E S O F T W A R E C A L L F O R P A P E R S

Special Issue on Technical Debt
SubmiSSion deadline: 1 april 2012 • publication: november/december 2012

The ability to deliver increasingly complex software-
reliant systems demands better ways to manage the long-
term effects of short-term expedient decisions. The idea of
technical debt is that developers sometimes accept compro-
mises in a system in one dimension (for example, modular-
ity and code quality) to meet an urgent demand in another
dimension (such as a deadline). Such compromises incur a
“debt.” Time spent dealing with the compromised code is
considered “interest” that has to be paid, and the cost of
building in the originally planned quality is the “princi-
pal” that should be repaid at some point for the long-term
health of the project.

IEEE Software seeks submissions for a special issue on
technical debt in software development. Possible topics
include

•	 Definitions, models, or theories behind the concept of
technical debt

•	 Case studies and lessons learned on technical debt in
large-scale software development

•	 Practical guidelines, strategies, and frameworks for
evaluating and paying back technical debt

•	 How to integrate technical debt management with soft-

ware development practices (for example, Scrum, archi-
tecture analysis, design/code review and documentation,
test-driven development, evolution, and maintenance)

•	 Approaches, applications, and tools for visualizing, ana-
lyzing, and managing technical debt

•	 Types, taxonomy, symptoms, and root causes of techni-
cal debt

QueStionS?
For more information about the special issue,
contact the guest editors:

•	 Philippe Kruchten, University of British Columbia,
Canada; pbk@ece.ubc.ca

•	 Robert L. Nord, Carnegie Mellon University,
Software Engineering Institute; rn@sei.cmu.edu

•	 Ipek Ozkaya, Carnegie Mellon University,
Software Engineering Institute; ozkaya@sei.cmu.edu

For full call for papers: www.computer.org/software/cfp6
For full author guidelines: www.computer.org/software/

author.htm
For submission details: software@computer.org

