
26	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

C o n t a c t E d i t o r : D a l e S t r o k n d s t r o k @ c o m p u t e r . o r g

perspectives

T
raditionally, software evolution took place
after software development put a system in
place.1 There were even separate budgets,
teams, and procedures for doing it. How-
ever, the pace of change in technology and
competition has changed the nature of soft-

ware evolution to a continuous process,2 in which
there’s no neat boundary between development

and evolution.3–4

Many traditional software
development assumptions and
practices haven’t recognized this
changing nature and increas-
ingly find themselves in deep
trouble as a result. The assump-
tion that your project can be de-
veloped to a fixed-price, build-
to-prespecification contract that
treats “requirements creep” as

something to be discouraged will increasingly re-
sult in an obsolete, brittle system that you can’t
evolve into something better. Dismissing your ar-
chitects after the total-system design review means
that nobody qualified to evolve it will still be avail-
able. Building the easiest parts first frequently
makes it impossible to evolve into a scalable, safe,
or secure system. Minimizing development costs
by adopting numerous off-the-shelf products of-
ten leads to unaffordable evolution costs as your
vendors ship new releases and stop supporting the
old ones. Assuming that a single form of evolution-
ary development covers all situations often leads to
unrealistic commitments and dead-end systems as
situations change.

Evolutionary development takes several forms.
Craig Larman’s historical summary traces the ear-
liest incarnations back to the early 1950s,5 when

Herbert D. Benington documented the Semi-
Automatic Ground Environment (SAGE) project’s
“stagewise development.”6 Even all these years
later, there are still times when this traditional
one-step, build-to-spec approach is best. As much
as one would like there to be, there’s no one-size-
fits-all software evolution approach that’s best for
all situations. For rapid-fielding, narrow-market-
window situations, an easiest-first, “get something
working quickly and productize it later” approach
is best. But for enduring systems, an easiest-first
approach is likely to produce an unscalable system
whose architecture is unable to achieve high levels
of performance, safety, or security. In general, soft-
ware evolution now requires

■■ much higher sustained levels of systems engi-
neering efforts,

■■ earlier and continuous integration,
■■ test and proactive approaches to address
sources of system change, and

■■ greater levels of concurrent engineering and
achievement reviews based on evidence of feasi-
bility versus evidence of plans, activity, and sys-
tem descriptions.4

Table 1 provides criteria for deciding which of
the four primary classes of incremental and evo-
lutionary development to use, in addition to the
choice of single-step development.

The single-step-to-full-capability process ex-
emplified by the traditional waterfall or sequential
V-model (perhaps accompanied by early prototyp-
ing of high-risk features) is appropriate if the prod-
uct’s requirements are prespecifiable and have a low
probability of significant change—and if there’s
no value or chance to deliver a partial product

Barry Boehm

The Changing Nature
of Software Evolution

	 July/August 2010 I E E E S O F T W A R E � 27

PERSPECTIVES

capability. A good example would be the
hardware for an Earth resources monitor-
ing satellite whose altitude is too high for
practical modification, or a decision to em-
body various standard mathematical soft-
ware functions into a hardware chip for
top performance. In general, though, soft-
ware developed for human applications
will undergo continuing evolution.1

The prespecified sequential process
splits up the development to field an early
initial operational capability and several
preplanned product improvements (P3Is).
It’s best if the product’s requirements are
prespecifiable (again, perhaps after some
early prototyping of high-risk features) and
have a low probability of significant change
(either because of stable subject matter or a
short useful lifetime), and if waiting for de-
velopment of the full system incurs a loss of
important and deliverable early mission ca-
pabilities. A good example would be a well-
understood and well-prioritized sequence
of software upgrades that you could elec-
tronically upload for the high-altitude sat-
ellite’s onboard Earth resources monitoring
capabilities.

The evolutionary sequential process
develops an initial operational capability
and upgrades it on the basis of operational
experience (as exemplified by agile meth-
ods3) or more plan-driven evolutionary
methods.7 It’s best when there’s a need to
get operational feedback on an initial ca-
pability before defining and developing the
next increment’s content. A good example
would be the software upgrades suggested
by experiences with the satellite’s payload,
such as what kind of multispectral data
collection and analysis capabilities are best
for what kind of agriculture under what
weather conditions.

The evolutionary overlapped process de-
fers the next increment until its needed ca-
pabilities are available and mature enough
to be added. It’s best when you don’t need
to wait for operational feedback, but might
need to wait for next-increment enablers
such as technology maturity, external sys-
tem capabilities, or needed resources. A
good example would be the need to wait
for some agent-based satellite safety trend
analysis and mission adaptation software to
become predictably stable before incorpo-
rating it in a scheduled increment.

Figure 1 shows that the evolutionary
concurrent process, as realized in the incre-
mental commitment model, has a continu-
ing team of systems engineers handling the
change traffic and rebaselining the plans

and specifications for the next increment,
while keeping a development team stabi-
lized for on-time, high-assurance delivery
of the current increment and employing a
concurrent verification and validation team
to perform continuous defect detection
to enable even higher-assurance levels.8,9
A good example would be the satellite’s
ground-based mission control software’s re-
baselining to adapt to new COTS releases
and continuing user requests for data pro-
cessing upgrades. The solid lines in Figure
1 represent inputs and outputs, and the dot-
ted lines represent strategic implications,
although the foreseeable and unforeseeable
changes also represent inputs. The ellipses
represent goals, and the rectangles repre-
sent activities.

Table 1
Incremental and evolutionary development decision table*

Type Stable, prespecifiable
requirements?

OK to wait for full system
to be developed?

Need to wait for next-
increment priorities?

Need to wait for next-
increment enablers**?

Single step Yes Yes

Prespecified sequential Yes No

Evolutionary sequential No No Yes

Evolutionary overlapped No No No Yes

Evolutionary concurrent No No No No

* Source: Barry Boehm and Jo Ann Lane, used with permission.10

** Example enablers: technology maturity, external-system capabilities, and needed resources.

Evolutionary concurrent:
rapid change with high assurance

Agile rebaselining
for future

increments

Short, stabilized
development of

increment N

Veri�cation and
validation (V&V)
of increment N

Deferrals

Artifacts Concerns

High assurance

Future increment baselines

Increment N transition/
operations and maintenance

Future V&V resources

Increment N baseline

Current V&V
resources

Unforeseeable change (adapt)

Short
development
increments

Foreseeable
change (plan)

Stable development
increments

Continuous V&V

Rapid change

Figure 1. Evolutionary concurrent process. This process provides rapid
change handling and high assurance. The solid lines represent inputs and
outputs, and the dotted lines represent strategic implications (the foreseeable
and unforeseeable changes also represent inputs). The ellipses represent
goals, and the rectangles represent activities. (Source: Barry Boehm and Jo
Ann Lane, used with permission.10)

28	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

PERSPECTIVES

E
conomic stimulus money is hard at work
here in southern Oregon. Crumbling free-
way bridges are being replaced at an aston-
ishing rate. While waiting for the flaggers to
turn their signs, I’ve had plenty of chances
to meditate on evolutionary design in action.

Design evolution is absolutely inevitable (see the
“Recommended Reading” sidebar). Only failed

projects are satisfied with their
initial design. Success breeds
change, change is unpredictable,
and the design that seemed suf-
ficient yesterday becomes today’s
bottleneck.

Somehow the story got out
that if we were just good enough
designers, we wouldn’t have to
change designs, we’d get it right
the first time. My father’s genera-
tion of programmers knew this

was ridiculous. They were designing software to
solve problems that hadn’t ever been solved before.
Design change was a natural part of the learning
process. My daughter’s generation of programmers

likewise sees design evolution as a natural part of
development. Businesses don’t have time to wait for
a perfect design, the kind you can imagine never
having to change. They need feedback, and they
need to respond. Design change again is a natural
part of development. Perhaps the yearning for the
“right” design is a generational anomaly, but it’s
nevertheless present in daily development.

The Challenge
What makes changing software hard? Cost, time,
and risk.

Cost checks change. At the end of the life of ev-
ery system, there’s a point where changing it further
becomes too expensive. The system is abandoned
and (perhaps) another takes its place. These costs
aren’t linear. Small changes at the beginning of a
project can have large effects on the cost of change
later. Some systems, like the hardware on the satel-
lite that Boehm mentions, can’t change at all after
a certain point. Balancing the desire to change the
system are the costs to make that change and the ef-
fort required to enable those changes.

Timing plays with change. Some options might

T he satellite example shows that for the
complex systems of the future, differ-
ent parts of the system and its software

might evolve in different ways, again indi-
cating that there will be no one-size-fits-all
process for software evolution. However,
Table 1 can be quite helpful in determining
which processes are the best fits for evolving
each part of the system, and the three-team
model in Figure 1 provides a way for proj-
ects to develop the challenging software-
intensive systems of the future that will
need both adaptability to rapid change and
high levels of assurance.

References
	 1.	 Program Evolution—Processes of Software

Change, M. Lehman and L. Belady, eds.,

Academic Press, 1985.
	 2.	 M. Cusumano and D. Yoffee, Competing on

Internet Time: Lessons from Netscape and Its
Battle with Microsoft, Free Press, 1998.

	 3.	 K. Beck, Extreme Programming Explained,
Addison Wesley, 1999.

	 4.	 B. Boehm, “Some Future Trends and Implica-
tions for Systems and Software Engineering
Processes,” Systems Engineering, vol. 9, no. 1,
2006, pp. 1–19.

	 5.	 C. Larman, Agile and Iterative Development,
Addison Wesley, 2004.

	 6.	 H.D. Benington, “Production of Large Com-
puter Programs,” Proc. ONR Symp. Advanced
Program Methods for Digital Computers,
Office of Naval Research, 1956, pp. 15–27.

	 7.	 T. Gilb, Competitive Engineering, Elsevier
Butterworth Heinemann, 2005.

	 8.	 R.W. Pew and A.S. Mavor, Human-System In-
tegration in the System Development Process:
A New Look, National Academy Press, 2007.

	 9.	 B. Boehm and J. Lane, “Using the Incremental
Commitment Model to Integrate System Ac-

quisition, Systems Engineering, and Software
Engineering,” CrossTalk, October 2007, pp.
4–9.

	10.	 B. Boehm and J. Lane, DoD Systems Engi-
neering and Management Implications for
Evolutionary Acquisition of Major Defense
Systems, tech. report, Systems Eng. Research
Center, Univ. Southern California, 2010.

Barry Boehm is the TRW Professor in the University
of Southern California’s computer sciences and industrial
and systems engineering departments. He’s also the director
of research of the DoD-Stevens-USC Systems Engineering
Research Center, and the founding director emeritus of the
USC Center for Systems and Software Engineering. Boehm is
a fellow of the primary professional societies in computing
(ACM), aerospace (AIAA), electronics (IEEE), and systems
engineering (INCOSE), a member of the US National Academy
of Engineering, and the 2010 recipient of the IEEE Simon Ramo
Medal for exceptional achievement in systems engineering and
systems science. Contact him at boehm@usc.edu.

The Inevitability
of Evolution

Kent Beck

	 July/August 2010 I E E E S O F T W A R E � 29

PERSPECTIVES

be easier to change but take longer to de-
liver. The cost of that time might exceed
the value of the flexibility. Just to make the
designer’s job more interesting, though,
sometimes the more flexible design actually
reduces the time to deliver. The right foun-
dational component can simplify the devel-
opment of the rest of the system and pro-
duce a fertile resource for further changes.

The future has a way of mocking our
attempts to anticipate change. You can an-
ticipate that certain avenues are likely for
future evolution. Sometimes you’re right.
Sometimes, though, the system proves to
have unanticipated utility that invalidates
those original assumptions. This, which
we carefully made flexible, never changes
while that, which seemed concrete, needs to
morph a hundred ways.

These are the elements that designers
need to understand to thoughtfully evolve
software: cost, time, and risk. What makes
software design and evolution such a joy (by
which I mean maddening, frustrating, and
confusing) is juggling these elements. There
are seldom single right answers. There are,
however, principles and experience that can
inform the discussion (by which I mean
fight) of design between designers.

Succession
One particular topic I haven’t seen ad-
dressed adequately in software design was
brought home to me during my enforced
design meditations at freeway bridge con-
struction sites. Upgrading the design of a
bridge is a story. First, traffic is diverted to
one side, and then the other bridge is de-
molished and replaced. Traffic is diverted to
the new bridge, the other side is demolished
and replaced, and traffic is restored. This is
the simplest scenario. Some changes require
much more elaborate sequences of changes
to accomplish.

The engineers clearly spend substantial
time and effort planning the succession of
changes required to get to the design. It’s
not enough to imagine what kind of bridge
you want to end up with, you also need
to be able to get from here to there. Some
potentially acceptable designs need to be
discarded not because of any technical de-
sign fault, but simply because they violate
the need for succession. You can’t get there
from here. Design needs to be informed as
much by the disruption of the change pro-
cess as it is by the value of the end result.

W e’re just beginning to understand soft-
ware evolution. Just how frequently
can I release design changes? Annu-

ally? Weekly? Hourly? How can I use au-
tomation and better technique to lower the
cost and risk of changes? How can I main-
tain focus as I make large changes in small,
safe steps over a long period of time, inter-
leaved with feature development? My goal
is to make microscale incremental change,
what I call responsive design, a safe and
inexpensive way to evolve designs. My Re-
sponsive Design Project includes a system-
atic study of succession (named after the
permaculture principle).

Knowing both where to go with de-
sign evolution and how to get there in safe

steps will make software development
more effective.

Kent Beck is the founder and director of Three Rivers
Institute. His contributions to software development include
patterns for software, the rediscovery of test-first program-
ming, the xUnit family of developer testing tools, and Extreme
Programming. He currently divides his time between writing,
programming, and coaching. Beck is the author/coauthor of
Implementation Patterns and Extreme Programming Explained:
Embrace Change (Addison-Wesley, 2005). Contact him at
kent@threeriversinstitute.org.

Recommended Reading
■■ C. Alexander, The Timeless Way of Building, Oxford Univ. Press, 1979.
■■ E. Yourdon and L. Constantine, Structured Design: Fundamentals of a Disci-
pline of Computer Program and System Design, Prentice Hall, 1979.

■■ D. Thompson, On Growth and Form, Dover Publications, 1992.
■■ P. Whitefield, Permaculture in a Nutshell, Green Books, 1993.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

Next Board Meeting: 11 June 2010, Denver,
CO, USA

EXECUTIVE COMMITTEE
President: James D. Isaak*
President-Elect: Sorel Reisman;* Past President: Susan

K. (Kathy) Land, CSDP;* VP, Standards Activities:
Roger U. Fujii (1st VP);* Secretary: Jeffrey M. Voas
(2nd VP);* VP, Educational Activities: Elizabeth
L. Burd;* VP, Member & Geographic Activities:
Sattupathu V. Sankaran;† VP, Publications: David
Alan Grier;* VP, Professional Activities: James W.
Moore;* VP, Technical & Conference Activities: John
W. Walz;* Treasurer: Frank E. Ferrante;* 2010–2011
IEEE Division V Director: Michael R. Williams;†
2009–2010 IEEE Division VIII Director: Stephen L.
Diamond;† 2010 IEEE Division VIII Director-Elect:
Susan K. (Kathy) Land, CSDP;* Computer Editor in
Chief: Carl K. Chang†

*voting member, †nonvoting member of the Board of Governors

BOARD OF GOVERNORS
Term Expiring 2010: Piere Bourque; André Ivanov;

Phillip A. Laplante; Itaru Mimura; Jon G. Rokne;
Christina M. Schober; Ann E.K. Sobel

Term Expiring 2011: Elisa Bertino, George V. Cybenko,
Ann DeMarle, David S. Ebert, David A. Grier, Hironori
Kasahara, Steven L. Tanimoto

Term Expiring 2012: Elizabeth L. Burd, Thomas M.
Conte, Frank E. Ferrante, Jean-Luc Gaudiot, Luis Kun,
James W. Moore, John W. Walz

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate

Executive Director; Director, Governance: Anne
Marie Kelly; Director, Finance & Accounting:
John Miller; Director, Information Technology

& Services: Carl Scott; Director, Membership
Development: Violet S. Doan; Director, Products
& Services: Evan Butterfield; Director, Sales &
Marketing: Dick Price

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington,

D.C. 20036; Phone: +1 202 371 0101; Fax: +1 202 728
9614; Email: hq.ofc@computer.org

Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos,
CA 90720-1314; Phone: +1 714 821 8380; Email:
help@computer.org

Membership & Publication Orders:
Phone: +1 800 272 6657; Fax: +1 714 821 4641; Email:

help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-

Aoyama, Minato-ku, Tokyo 107-0062, Japan
Phone: +81 3 3408 3118; Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS
President: Pedro A. Ray; President-Elect: Moshe

Kam; Past President: John R. Vig; Secretary: David
G. Green; Treasurer: Peter W. Staecker; President,
Standards Association Board of Governors: ;
W. Charlston Adams; VP, Educational Activities:
Tariq S. Durrani; VP, Membership & Geographic
Activities: Barry L. Shoop; VP, Publication Services
& Products: Jon G. Rokne; VP, Technical Activities:
Roger D. Pollard; IEEE Division V Director: Michael
R. Williams; IEEE Division VIII Director: Stephen L.
Diamond; President, IEEE-USA: Evelyn H. Hirt

revised 20 Jan. 2010

PURPOSE: The IEEE Computer Society is the world’s largest association of computing professionals and is the leading
provider of technical information in the field. Visit our Web site at www.computer.org.
OMBUDSMAN: Email help@computer.org.

