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T
raditionally, software evolution took place 
after software development put a system in 
place.1 There were even separate budgets, 
teams, and procedures for doing it. How-
ever, the pace of change in technology and 
competition has changed the nature of soft-

ware evolution to a continuous process,2 in which 
there’s no neat boundary between development 

and evolution.3–4

Many traditional software 
development assumptions and 
practices haven’t recognized this 
changing nature and increas-
ingly find themselves in deep 
trouble as a result. The assump-
tion that your project can be de-
veloped to a fixed-price, build- 
to-prespecification contract that 
treats “requirements creep” as 

something to be discouraged will increasingly re-
sult in an obsolete, brittle system that you can’t 
evolve into something better. Dismissing your ar-
chitects after the total-system design review means 
that nobody qualified to evolve it will still be avail-
able. Building the easiest parts first frequently 
makes it impossible to evolve into a scalable, safe, 
or secure system. Minimizing development costs 
by adopting numerous off-the-shelf products of-
ten leads to unaffordable evolution costs as your 
vendors ship new releases and stop supporting the 
old ones. Assuming that a single form of evolution-
ary development covers all situations often leads to 
unrealistic commitments and dead-end systems as 
situations change. 

Evolutionary development takes several forms. 
Craig Larman’s historical summary traces the ear-
liest incarnations back to the early 1950s,5 when 

Herbert D. Benington documented the Semi- 
Automatic Ground Environment (SAGE) project’s 
“stagewise development.”6 Even all these years 
later, there are still times when this traditional 
one-step, build-to-spec approach is best. As much 
as one would like there to be, there’s no one-size-
fits-all software evolution approach that’s best for 
all situations. For rapid-fielding, narrow-market-
window situations, an easiest-first, “get something 
working quickly and productize it later” approach 
is best. But for enduring systems, an easiest-first 
approach is likely to produce an unscalable system 
whose architecture is unable to achieve high levels 
of performance, safety, or security. In general, soft-
ware evolution now requires 

■■ much higher sustained levels of systems engi-
neering efforts, 

■■ earlier and continuous integration, 
■■ test and proactive approaches to address 
sources of system change, and

■■ greater levels of concurrent engineering and 
achievement reviews based on evidence of feasi-
bility versus evidence of plans, activity, and sys-
tem descriptions.4 

Table 1 provides criteria for deciding which of 
the four primary classes of incremental and evo-
lutionary development to use, in addition to the 
choice of single-step development.

The single-step-to-full-capability process ex-
emplified by the traditional waterfall or sequential  
V-model (perhaps accompanied by early prototyp-
ing of high-risk features) is appropriate if the prod-
uct’s requirements are prespecifiable and have a low 
probability of significant change—and if there’s 
no value or chance to deliver a partial product  
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capability. A good example would be the 
hardware for an Earth resources monitor-
ing satellite whose altitude is too high for 
practical modification, or a decision to em-
body various standard mathematical soft-
ware functions into a hardware chip for 
top performance. In general, though, soft-
ware developed for human applications 
will undergo continuing evolution.1

The prespecified sequential process 
splits up the development to field an early 
initial operational capability and several 
preplanned product improvements (P3Is). 
It’s best if the product’s requirements are 
prespecifiable (again, perhaps after some 
early prototyping of high-risk features) and 
have a low probability of significant change 
(either because of stable subject matter or a 
short useful lifetime), and if waiting for de-
velopment of the full system incurs a loss of 
important and deliverable early mission ca-
pabilities. A good example would be a well-
understood and well-prioritized sequence 
of software upgrades that you could elec-
tronically upload for the high-altitude sat-
ellite’s onboard Earth resources monitoring 
capabilities.

The evolutionary sequential process 
develops an initial operational capability 
and upgrades it on the basis of operational 
experience (as exemplified by agile meth-
ods3) or more plan-driven evolutionary 
methods.7 It’s best when there’s a need to 
get operational feedback on an initial ca-
pability before defining and developing the 
next increment’s content. A good example 
would be the software upgrades suggested 
by experiences with the satellite’s payload, 
such as what kind of multispectral data 
collection and analysis capabilities are best 
for what kind of agriculture under what 
weather conditions.

The evolutionary overlapped process de-
fers the next increment until its needed ca-
pabilities are available and mature enough 
to be added. It’s best when you don’t need 
to wait for operational feedback, but might 
need to wait for next-increment enablers 
such as technology maturity, external sys-
tem capabilities, or needed resources. A 
good example would be the need to wait 
for some agent-based satellite safety trend 
analysis and mission adaptation software to 
become predictably stable before incorpo-
rating it in a scheduled increment.

Figure 1 shows that the evolutionary 
concurrent process, as realized in the incre-
mental commitment model, has a continu-
ing team of systems engineers handling the 
change traffic and rebaselining the plans 

and specifications for the next increment, 
while keeping a development team stabi-
lized for on-time, high-assurance delivery 
of the current increment and employing a 
concurrent verification and validation team 
to perform continuous defect detection 
to enable even higher-assurance levels.8,9 
A good example would be the satellite’s 
ground-based mission control software’s re-
baselining to adapt to new COTS releases 
and continuing user requests for data pro-
cessing upgrades. The solid lines in Figure 
1 represent inputs and outputs, and the dot-
ted lines represent strategic implications, 
although the foreseeable and unforeseeable 
changes also represent inputs. The ellipses 
represent goals, and the rectangles repre-
sent activities.

Table 1
Incremental and evolutionary development decision table*

Type Stable, prespecifiable 
requirements?

OK to wait for full system 
to be developed?

Need to wait for next-
increment priorities?

Need to wait for next-
increment enablers**?

Single step Yes Yes

Prespecified sequential Yes No

Evolutionary sequential No No Yes

Evolutionary overlapped No No No Yes

Evolutionary concurrent No No No No

* Source: Barry Boehm and Jo Ann Lane, used with permission.10

** Example enablers: technology maturity, external-system capabilities, and needed resources.
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Figure 1. Evolutionary concurrent process. This process provides rapid 
change handling and high assurance. The solid lines represent inputs and 
outputs, and the dotted lines represent strategic implications (the foreseeable 
and unforeseeable changes also represent inputs). The ellipses represent 
goals, and the rectangles represent activities. (Source: Barry Boehm and Jo 
Ann Lane, used with permission.10)
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E
conomic stimulus money is hard at work 
here in southern Oregon. Crumbling free-
way bridges are being replaced at an aston-
ishing rate. While waiting for the flaggers to 
turn their signs, I’ve had plenty of chances 
to meditate on evolutionary design in action.

Design evolution is absolutely inevitable (see the 
“Recommended Reading” sidebar). Only failed 

projects are satisfied with their 
initial design. Success breeds 
change, change is unpredictable, 
and the design that seemed suf-
ficient yesterday becomes today’s 
bottleneck.

Somehow the story got out 
that if we were just good enough 
designers, we wouldn’t have to 
change designs, we’d get it right 
the first time. My father’s genera-
tion of programmers knew this 

was ridiculous. They were designing software to 
solve problems that hadn’t ever been solved before. 
Design change was a natural part of the learning 
process. My daughter’s generation of programmers 

likewise sees design evolution as a natural part of 
development. Businesses don’t have time to wait for 
a perfect design, the kind you can imagine never 
having to change. They need feedback, and they 
need to respond. Design change again is a natural 
part of development. Perhaps the yearning for the 
“right” design is a generational anomaly, but it’s 
nevertheless present in daily development.

The Challenge
What makes changing software hard? Cost, time, 
and risk.

Cost checks change. At the end of the life of ev-
ery system, there’s a point where changing it further 
becomes too expensive. The system is abandoned 
and (perhaps) another takes its place. These costs 
aren’t linear. Small changes at the beginning of a 
project can have large effects on the cost of change 
later. Some systems, like the hardware on the satel-
lite that Boehm mentions, can’t change at all after 
a certain point. Balancing the desire to change the 
system are the costs to make that change and the ef-
fort required to enable those changes.

Timing plays with change. Some options might 

T he satellite example shows that for the 
complex systems of the future, differ-
ent parts of the system and its software 

might evolve in different ways, again indi-
cating that there will be no one-size-fits-all 
process for software evolution. However, 
Table 1 can be quite helpful in determining 
which processes are the best fits for evolving 
each part of the system, and the three-team 
model in Figure 1 provides a way for proj-
ects to develop the challenging software- 
intensive systems of the future that will 
need both adaptability to rapid change and 
high levels of assurance. 
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be easier to change but take longer to de-
liver. The cost of that time might exceed 
the value of the flexibility. Just to make the 
designer’s job more interesting, though, 
sometimes the more flexible design actually 
reduces the time to deliver. The right foun-
dational component can simplify the devel-
opment of the rest of the system and pro-
duce a fertile resource for further changes.

The future has a way of mocking our 
attempts to anticipate change. You can an-
ticipate that certain avenues are likely for 
future evolution. Sometimes you’re right. 
Sometimes, though, the system proves to 
have unanticipated utility that invalidates 
those original assumptions. This, which 
we carefully made flexible, never changes 
while that, which seemed concrete, needs to 
morph a hundred ways.

These are the elements that designers 
need to understand to thoughtfully evolve 
software: cost, time, and risk. What makes 
software design and evolution such a joy (by 
which I mean maddening, frustrating, and 
confusing) is juggling these elements. There 
are seldom single right answers. There are, 
however, principles and experience that can 
inform the discussion (by which I mean 
fight) of design between designers.

Succession
One particular topic I haven’t seen ad-
dressed adequately in software design was 
brought home to me during my enforced 
design meditations at freeway bridge con-
struction sites. Upgrading the design of a 
bridge is a story. First, traffic is diverted to 
one side, and then the other bridge is de-
molished and replaced. Traffic is diverted to 
the new bridge, the other side is demolished 
and replaced, and traffic is restored. This is 
the simplest scenario. Some changes require 
much more elaborate sequences of changes 
to accomplish.

The engineers clearly spend substantial 
time and effort planning the succession of 
changes required to get to the design. It’s 
not enough to imagine what kind of bridge 
you want to end up with, you also need 
to be able to get from here to there. Some 
potentially acceptable designs need to be 
discarded not because of any technical de-
sign fault, but simply because they violate 
the need for succession. You can’t get there 
from here. Design needs to be informed as 
much by the disruption of the change pro-
cess as it is by the value of the end result.

W e’re just beginning to understand soft-
ware evolution. Just how frequently 
can I release design changes? Annu-

ally? Weekly? Hourly? How can I use au-
tomation and better technique to lower the 
cost and risk of changes? How can I main-
tain focus as I make large changes in small, 
safe steps over a long period of time, inter-
leaved with feature development? My goal 
is to make microscale incremental change, 
what I call responsive design, a safe and 
inexpensive way to evolve designs. My Re-
sponsive Design Project includes a system-
atic study of succession (named after the 
permaculture principle). 

Knowing both where to go with de-
sign evolution and how to get there in safe 

steps will make software development 
more effective.
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