
16	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

focus

Major organizations such as Cummins, Philips
HealthCare, Hewlett Packard, and others have suc-
cessfully applied these techniques.

The software product line strategy is a blend of
business and technical actions that lets an organiza-
tion satisfy a wide range of customers, gain leverage
with suppliers, meet the threats of substitute prod-
ucts, and deter other companies seeking to enter the
market. The strategy is robust over a wide range of
technologies, domains, and organizations of differ-
ent structures, cultures, and goals. Service-oriented
architectures, agile development methods, and open
source business models have all played roles in suc-
cessful product line organizations.

Software Product
Line Differences
We’ll follow the path of a successful product line
organization and use a brief commonality and

variability analysis (see the sidebar “A Bit of Ter-
minology”) to characterize successful product line
organizations. Successful software product line
organizations differ in many ways.

First, the size of the product line and its indi-
vidual products can vary. With reuse percentages
running above 50 percent, a product line organi-
zation will typically recoup the extra cost of mak-
ing assets reusable after two or three products. In
this context, even product lines of a few products
can be very profitable. Some organizations build a
few large products that take months or even years,
while others build many small products that each
take a matter of hours.

Second, the organization’s structure and agil-
ity can vary. Some successful product line orga-
nizations are self-contained within a business
unit while others span business units, contract
with strategic partners, or form consortia out-

A software product line is a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particu-
lar market segment or mission and that are developed from a common set
of core assets in a prescribed way in place.1 Organizations adopting product

development strategies that include a software product line have achieved impressive re-
sults, reducing product cycle time and increasing productivity by an order of magnitude.

John D. McGregor, Clemson University

Dirk Muthig, Lufthansa Systems

Kentaro Yoshimura, Hitachi

Paul Jensen, OverWatch Textron

Successful
Software Product
Line Practices

gue s t e d i t or s ’ i n t r o duc t i on

	 May/June 2010 I E E E S O F T W A R E � 17

side the existing organizations. Even large orga-
nizations, such as Philips Healthcare and Hewlett
Packard, have developed innovative approaches
to integrating the efforts of various internal and
external organizational units into a product line
organization.

Finally, different product lines use different
production methods. Some software product line
organizations have successfully used traditional
programming languages and largely manual de-
velopment techniques, while others have auto-
mated portions of the code generation for their
products using model-driven techniques. Various
aspects of agile development methods have been
integrated into product line practices. Success-
ful product line organizations intentionally select
techniques and tools, models, and processes that
match their goals.

Software Product
Line Commonalities
Several elements are common to successful soft-
ware product lines.

First, the scope of the product line is well de-
fined, but not rigidly so. The definition of which
products belong to the product line—its scope—
provides the context within which many other de-
cisions are made. For example, the decision about
whether a particular module should be designed
to accommodate a certain variation is made by
determining whether the scope definition permits
a product that would need that variation to be in
the product line. It’s critical to clearly define the
scope of the product line, but it’s equally critical
to realize that the scope will change over time.

Second, the organization uses a common
software product line architecture as the basis
for each product. This architecture is a refer-
ence that guides production and describes those
portions of products that are common and those
that vary from one product instantiation to an-
other. The architecture provides the basis for ex-
ploiting commonality and managing variation.

Third, commonality is sufficiently defined
to realize the economies of scale. Commonality
lowers costs and increases productivity through
the repeated use of assets. The software prod-
uct line strategy can significantly improve pro-
ductivity if many different products can share
assets. Economies of scale are realized via the
same factoring of required behaviors as econo-
mies of scope.

Fourth, variation is sufficiently well managed
to realize the economies of scope. Managing
variation reduces the time required to meet the

needs of a diverse audience by using preexisting,
configurable assets. Product line requirements
must be factored sufficiently so Core asset devel-
opers can understand the variety of behaviors,
which must be supported by each asset, and can
translate that variety into appropriate variation
mechanisms in the Core assets.

Finally, the organization is structured and
operated to facilitate building reusable assets
and building products using those assets. Each
role brings a unique perspective to bear on the
organization’s activities. Core asset development
requires a broad perspective that encompasses
issues across the entire scope of the product line.
Product building requires a focused perspective
that gives highest priority to the activities needed
to construct the product. The activities of these
two roles are coordinated by a management
team that views the organization’s capability to
produce products as its most important asset.

The Literature
Since the previous IEEE Software special is-
sue on software product lines in 2002, successes
have multiplied, the community has broadened,
and the experience base has diversified. There
were numerous success stories in 2002, but they
tended to originate from the research departments
of large, technical companies. For example, Stef-
fen Thiel and Andreas Hein illustrated the use of
variability in automotive systems.2 Frank van der
Linden provided a view of a cooperative research
program among several companies and research

A Bit of Terminology
Although there’s great diversity within the software product line community, a
number of terms are in common use.

Core asset: This is an artifact that’s designed with sufficient configurabil-
ity for use in multiple products. For example, a software architecture can be
designed to be the reference architecture for the product line. Each product
architecture is instantiated using that architecture.

Scope: The scope of the software product line is determined by the capa-
bilities and qualities available for a product definition. Including too much in
the product line’s scope requires assets that could only be used in a few prod-
ucts, while narrowing the scope too much results in a product line that might
not attract sufficient customers.

Variation point: A variation point is a design decision that identifies where
products can vary from one another. The product specifier chooses among
multiple capabilities to determine a product’s definition.

Variant: Each choice that can be made at a variation point is a variant.
Commonality and variability analysis: This analysis examines proposed ca-

pabilities and determines which will be shared by all products and which will
only be included in some of the products.

18	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

universities.3 Ari Jaaksi described Nokia’s re-
search into using a product line approach to build
browsers for cellular telephones.4 Issues related to
introducing product line concepts into organiza-
tions were major concerns. Linda Northrop’s ar-
ticle “SEI’s Software Product Line Tenets” and
Klaus Schmid and Martin Verlage’s article “The
Economic Impact of Product Line Adoption and
Evolution” provided practical advice based on
experience.5–6 The “Point/Counterpoint” discus-
sion by Paul Clements and Charles Krueger con-
sidered a fundamental strategic issue: whether to
build assets before or as products are built.7–8
Kyo C. Kang, Jaejoon Lee, and Patrick Donohue
illustrated the emergence of specialized technical
approaches by describing the feature modeling
method for specifying products.9 Since that spe-
cial issue there’s been a special issue of the Com-
munications of the ACM, and the proceedings
of the annual Software Product Line Conference
continues to provide an important venue for soft-
ware product line research.

In 2010, the software product line context
has matured and broadened considerably. There
are success stories about software product lines
in the production departments of small as well
as large companies, a variety of business mod-
els, product lines of product lines, and complex
ecosystems of interdependent suppliers that
support the product line.

The Software Product Line Conference
(SPLC) has become an annual conference run by
an international steering committee and rotat-
ing among diverse parts of the world. There are a
growing number of specialized product line ven-
ues beyond SPLC including the Practical Product
Lines conference and a research workshop on
software product lines at the International Con-
ference on Software Engineering 2010.

Product line practices have matured to the
point where standards can be identified and in-
stitutionalized. In late 2009 the Object Manage-
ment Group approved an RFP for a standard
variability modeling language. Standards for
tools and methods for software product lines
have been proposed to ISO/IEC JTC1 and are
under discussion.

Other communities have expressed interest in
software product line engineering. The Journal
of Systems and Software included a special issue
on integrating agile and product lines practices in
2008. In November 2009, the Product Managers
View, an online community of product manag-
ers, produced a series of webinars introducing
software product lines to their community.

This Special Issue
The articles in this special issue address many of
the aspects of software product line development
we’ve identified.

In “Clearing the Way for Software Prod-
uct Line Success,” Lawrence Jones and Linda
Northrop draw on 15 years of software product
line experience at the Software Engineering In-
stitute ranging from companies of less than 50
people to global corporations, including numer-
ous instances of applying diagnostic instruments.
They identify two key problems that many orga-
nizations have when initiating their first software
product line.

Experiences with the first generation of suc-
cessful product lines have led to proposals for
new approaches. Jan Bosch describes a composi-
tional approach to product line development that
addresses perceived problems with the evolution
of assets over the life time of the product line.

Software product line development is architec-
ture-centric. Jaejoon Lee and Gerald Kotonya de-
scribe the influence of service-oriented architec-
tures on software product line development.

Isabel John presents the commonality and
variability extraction (CAVE) technique. CAVE
aims to reduce the need for domain experts to
obtain the information needed for scoping during
product line initiation by using existing product
documentation to create initial models.

Kannan Mohan, Balasubramaniam Ramesh,
and Vijayan Sugumaran analyze factors that af-
fect the integration of product line and agile de-
velopment methods. They use experience from
complex adaptive systems to describe the inte-
gration and provide an additional analysis of
a previously published case study of successful
integration.

Successful Software
Product Line Organizations
Here, we present five vignettes of successful soft-
ware product line practices. Each has a different
story to tell about the context in which the prod-
uct lines were implemented and what made them
successful.

Cummins
In 1994, Cummins adopted a software product
line approach, creating the Core product line
from existing software assets. The initial prod-
uct line was a base set of components shared
via source code with each product. Application
teams then tailored this base software to meet
their specific needs. While this approach success-

Successes
have multiplied,
the community
has broadened,

and the
experience
base has

diversified.

	 May/June 2010 I E E E S O F T W A R E � 19

fully delivered new products rapidly, concerns
arose around the maintenance expense and sus-
tainability of the architecture as the code bases
diverged for products over time.

In response to those concerns, Cummins de-
signed a second-generation product line, Core 2,
to support a wide range of diesel and alternative-
fueled engines for a wide range of markets and
a broad domain of customer features, engine
configurations, and emissions levels. Special-
ized tools were designed to manage the product
line, apply its assets to new products, and ensure
the code base is maintained as a common asset
throughout the product life cycle. First intro-
duced on a product in 2004, the Core 2 product
line has reduced product cost through a strong
use of common assets. The broad existing base
of common assets also means that time to market
for new product is significantly reduced because
much of a new product’s software is already writ-
ten. Common assets also ensure that Cummins
can maintain a common feature set, as well as a
common “look and feel” across its product line.

Overall, the conversion to Core 2 has been a
success for Cummins. Compared to Core, Core 2
supports more than three times as many products
with 25 percent fewer software developers per
product. The product line and its toolsets con-
tinue to evolve and add support for new products
and markets while supporting systems of increas-
ing complexity. For further reading, see the work
of Scott Decker and Jim Dager.10

Hewlett-Packard
Hewlett-Packard’s consumer and small and me-
dium business inkjet printers and all-in-ones
have been using the Owen software product
line for more than ten years. Owen, which is an
embedded software, had its beginning in 1997
when the San Diego and Vancouver divisions de-
cided to cooperate on a common architecture for
print-engine firmware developed in Vancouver
and leveraged by San Diego. Owen has grown
from the first year supporting two products to
supporting 20–25 new products each year. Pe-
ter Toft and his colleagues first described how
Owen started out as a firmware cooperative.11
A cooperative is “an autonomous collection of
projects, voluntarily united to meet their com-
mon needs and aspirations.”12 Originally, proj-
ects would choose to join Owen and choose
which code to accept; they were encouraged
to make code changes so other members could
benefit from them.11 Over the years, changes in
business objectives have resulted in the expecta-

tion that all inkjet products use Owen, that all
products share a common code base, and code
changes are always done in the interest of Owen
(and hence the overall business) and not for a
specific product.

The Owen architecture is a component-based
architecture. Each component can require or
provide services (via interfaces) to the rest of the
system. Components in related functional areas
are grouped into larger subsystems. One of Ow-
en’s key subsystems has been the “framework,”
which provides services like persistent stor-
age, resource and job management, and system
startup/shutdown and power orchestration.

Over the years, many subsystems have
emerged that tend to fall into two categories—an
end-user function (print, scan, fax, copy, photo,
and so on) or an infrastructure subsystem that
serves many others (connectivity, security, and
so on). The subsystems focused on end-user
functions tend to evolve more (in response to
evolving product or customer needs) whereas in-
frastructure subsystems tend to be more stable.

A key factor that’s made Owen successful
has been a continued focus on decoupling. This
is partially enforced in the Owen architecture
by not allowing cyclic dependencies between
components. At a subsystem level, Owen seeks
to have clean, well-defined subsystem interfaces
and architectural rules around which subsystems
can build on top of other subsystems.

In the coming years, Owen will stretch fur-
ther in terms of the number and types of prod-
ucts it supports as well as their complexity, and
also in terms of development agility and higher
development efficiencies. Owen will accomplish
this by adopting and refining more agile prac-
tices and evolving the architecture as required.

Hitachi
Hitachi is a leading global electronics conglomer-
ate that offers a wide range of products including
medical systems, automotive components, and
consumer products. The size of software develop-
ment organizations range from a few developers
to hundreds of developers depending on product
domains. Hitachi noticed that there’s no one-
size-fits-all approach. One of the most important
factors is the scalability of the software product
line engineering (SPLE) approach.

In the case of small to medium-scale organiza-
tions, Hitachi often faces adoption challenges. For
example, we applied SPLE to a medical device de-
velopment department.13 The business unit found
it difficult for the department to set up a Core asset

20	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

development team to adopt SPLE. To do this, the
business unit organized a cross-product develop-
ment-team organization as a champion team. The
team is in charge of decision making on Core asset
issues. Each product development team member
does actual development tasks. The overhead of
coordinating with the product development team
is affordable considering the customer-oriented ad-
vantages of this method.

For a large-scale organization that’s already
produced a large number of products, Hitachi de-
veloped a method to evolve its Core asset based
on the product release history.14 The product
configuration transactions are analyzed statisti-
cally to extract configuration constraints such as
co-change patterns. The constraints are imported
into the Core asset and applied for future product
configurations.

Sharing the SPLE experiences across busi-
ness units is crucial for success. Hitachi has set up

workshops where engineers report their experi-
ences and researchers integrate SPLE knowledge as
a Core asset.

OverWatch
Overwatch Systems focuses on the development
and fielding of multidiscipline data analysis soft-
ware systems. Areas of expertise include data fu-
sion, all-source analysis, signal intelligence acqui-
sition and analysis, sensor network technology,
and visualization. In 2003, the company adopted
a software product line approach, producing the
Overwatch Intelligence Center software product
line over a period of several years. As of 2009,
multiple members of the software product line
have been fielded to combat environments includ-
ing a signals intelligence collection and analysis
system and two all-source intelligence analysis
systems.

From 2003 to 2009, Overwatch Systems’ soft-
ware product line has grown from two to ten
products. In that same time period, the compa-
ny’s revenue has grown by a factor of 3.6. Man-
agement believes that this couldn’t have been
achieved without the speed and reduced costs
that a software product line approach enabled.
This success has been keyed by the development
of a flexible product line software architecture,
but tempered by continuing difficulties related
to delivering products to the government from
a company-owned software product line. At the
most fundamental level, these struggles involve
a lack of complete control over the alignment of
product features, delivery schedules and quality
requirements with multiple, disparate government
organizations.

The future of Overwatch Systems’ software
product line lies in embracing the concepts of
composite applications and a government cloud-
computing environment. In a cloud-computing
environment, computing, resources, and appli-
cations are available as services through the net-
work with new functionality emerging constantly.
Composite applications let the user create appli-
cations from preexisting functions to satisfy new
requirements quickly. By embracing these con-
cepts, the Overwatch Intelligence Center software
product line will move the assembly and testing
of product line members from a centralized orga-
nization to the end user in the field. For further
reading, see the work of Paul Jensen.15

SystemForge
SystemsForge is a software product line for de-
veloping e-commerce, content management, and

About the Authors
John D. McGregor is an associate professor of computer science at Clemson Univer-
sity, a partner in Luminary Software, and a visiting scientist at the Software Engineering
Institute. His research interests include software product lines, systems engineering, and
software architecture. McGregor has a PhD in mathematics from Vanderbilt University.
Contact him at johnmc@cs.clemson.edu.

Kentaro Yoshimura is a researcher at Hitachi. His research interests include
software product line engineering, software repository mining, and software visualization.
Yoshimura has a PhD in information science and technology from Osaka University. Contact
him at kentaro.yoshimura.jr@hitachi.com.

Dirk Muthig is chief platform architect in the domain of passenger services at Luf-
thansa Systems. He previously worked at the Fraunhofer Institute for Experimental Software
Engineering, focusing on product line engineering (the PuLSE method). Muthig has a PhD
in computer science from the Technical University of Kaiserslautern. Contact him at dirk.
muthig@lhsystems.com.

Paul Jensen is the chief architect at Overwatch Systems, an operating unit of the
Textron Corporation. His research interests include software product lines and cloud comput-
ing in government defense environments. Jensen has a PhD in physics from the University of
Texas at Austin. Contact him at pjensen@overwatch.textron.com.

	 May/June 2010 I E E E S O F T W A R E � 21

other custom Web applications. It’s been used to
build over 200 Web applications over the last four
years.

Initially, we developed a component-based solu-
tion with reusable components for common func-
tionality such as shopping carts, event calendars,
and content management. Over time, the number
of configuration options became unmanageable,
so we moved to a domain specific modeling solu-
tion with domain specific languages (DSLs) for de-
scribing controller, view, and model functionality
including DSLs for describing object relationships
and contextual validation rules. The problem with
DSLs was that to build a comprehensive e-com-
merce system with 30–40 distinct business objects,
15–20 controllers and 50–60 distinct views took a
day or two (which was too slow), even though 80
percent of the functionality was common among
projects.

We then moved to a hybrid model using feature
modeling for selecting common functionality. In-
stead of using the feature models to configure com-
ponents, each node on the feature tree represented
0.n statements in each of the DSLs and the feature
model allows us to passively generate a first cut of
the application described in the model, view, and
controller DSLs. We then customize the DSL state-
ments with unique requirements for a specific proj-
ect and use a combination of subclassing and AOP
for adding custom code while still allowing for ac-
tive regeneration of code from the DSL statements.
The main issue we’re now focusing on is DSL evo-
lution so we can evolve our metamodels and au-
tomatically transform existing projects as back-
wards compatibility isn’t an option indefinitely
and versioning of DSLs becomes unwieldy over
time. We’re developing tooling for automatically
transforming DSL statements based on metamodel
transformations. We’re also doing research on the
best approaches to handle validation of DSL state-
ments and generate of meaningful tests for gener-
ated code. For further reading, see the work of Pe-
ter Bell.16–18

T he articles in this special issue, the vi-
gnettes, and recent conference papers
are part of a growing body of knowl-

edge and experience on how to successfully
implement software product lines in various
contexts to meet different business goals. Orga-
nizations are pushing the envelope by creating
new organizational structures and introducing
technologies that haven’t been used in a product
line context.

Acknowledgements
We thank Zachary Schwab and Randy Lyvers for
the Cummins vignette; Jacob Refstrup, Holt Me-
bane, and Joe Bauman for the Hewlett-Packard vi-
gnette; Kentaro Yoshimura and Yasuaki Takebe for
the Hitachi vignette; and Peter Bell for the System-
Forge vignette.

References
	 1.	 P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns, Addison-Wesley, 2001.
	 2.	 S. Theil and A. Hein, “Modeling and Using Product

Line Variability in Automotive Systems,” IEEE Soft-
ware, vol. 10, no. 4, 2002, pp. 66–72.

	 3.	 F. van der Linden, “Software Product Families in
Europe: The Esaps and Café Projects,” IEEE Software,
vol. 10, no. 4, 2002, pp. 41–49.

	 4.	 A. Jaaksi, “Developing Mobile Browsers in a Product
Line,” IEEE Software, vol. 10, no. 4, 2002, pp. 73–80.

	 5.	 L. Northrop, “SEI’s Software Product Line Tenets,”
IEEE Software, vol. 10, no. 4, 2002, pp. 32–40.

	 6.	 K. Schmid and M. Verlage, “The Economic Impact of
Product Line Adoption and Evolution,” IEEE Software,
vol. 10, no. 4, 2002, pp. 50–57.

	 7.	 P. Clements, “Being Proactive Pays Off,” IEEE Soft-
ware, vol. 10, no. 4, 2002, pp. 28–31.

	 8.	 C. Krueger, “Eliminating the Adoption Barrier,” IEEE
Software, vol. 10, no. 4, 2002, pp. 29–31.

	 9.	 K.C. Kang, J. Lee, and P. Donohue, “Feature-Oriented
Product Line Engineering,” IEEE Software, vol. 10, no.
4, 2002, pp. 58–65.

	10.	 S.G. Decker and J. Dager, “Software Product Lines Be-
yond Software Development,” Proc. 11th Int’l Software
Product Line Conf. (SPLC 07), IEEE CS Press, 2007,
pp. 275–280.

	11.	 P. Toft, D. Coleman, and J. Ohta, “HP Product Genera-
tion Consulting, A Cooperative Model for Cross-Di-
visional Product Development for a Software Product
Line,” Proc. 1st Software Product Lines Conference
(SPLC 1), P. Donohoe, ed., Kluwer Academic Publish-
ers, 2000, pp. 111–132.

	12.	 P. Toft, “Hewlett-Packard: The HP Owen Firmware
Cooperative—A Software Product Line Success
Story,” Software Product Lines, 2004; www.
softwareproductlines.com/successes/hp.html.

	13.	 Y. Takebe et al., “Experiences with Software Product
Line Engineering in Product-Development-Oriented
Organizations,” Proc. 13th Int’l Software Product
Line Conf. (SPLC 2009), Software Eng. Inst., 2009,
pp. 275–284.

	14.	 K. Yoshimura et al., “Factor Analysis Based Approach
for Detecting Product Line Variability from Change
History,” Proc. 5th Working Conf. Mining Software
Repositories (MSR 08), 2008, pp. 11–18.

	15.	 P. Jensen, “Experiences With Software Product Line
Development,” Crosstalk, vol. 22, no. 1, 2009, pp.
11–14.

	16.	 P. Bell, “A Practical High Volume Software Product
Line,” Proc. Conf. Object-Oriented Programming Sys-
tems Languages and Applications (OOPSLA 07), ACM
Press, 2007, pp. 994–1003.

	17.	 P. Bell, “Automating the Transformation of Statements
in Evolving Domain Specific Languages,” Domain-
Specific Modeling Workshop, Conf. Object-Oriented
Programming Systems Languages and Applications
(OOPSLA 07); www.dsmforum.org/events/DSM07/
papers/bell.pdf

	18.	 P. Bell, “DSL Evolution,” InfoQ; www.infoq.com/
articles/dsl-evolution.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

