
16 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

focus 1

their own software solutions to redefine their work.
However, because many end-user programmers

lack training in software engineering practices such
as testing and revision control, their programs often
have costly errors. For example, in 2005, a number
from an old version of a spreadsheet was accidentally
sent to the US Federal Energy Regulation Commis-
sion, causing it to unnecessarily raise consumer nat-
ural gas prices by as much as $1 billion (see www.
eusprig.org/stories.htm, example 72). In other cases,
Web site or database query errors can prevent small
businesses from attracting customers or lead to em-
barrassment and loss of customer trust.

The traditional remedy for such software
problems is to apply well-known software engi-

neering practices to the design and maintenance
of these software solutions. But how can this be
done, given that end-user programmers rarely
have training in such practices and rarely have the
time (or desire) to acquire it?

In This Issue
Here we present articles, an interview, and a Point-
Counterpoint discussion that begin to answer this
question, as part of an area called end-user soft-
ware engineering. This content comes from several
perspectives. For example, in “Opportunistic Pro-
gramming: Writing Code to Prototype, Ideate, and
Discover,” Joel Brandt and his colleagues show
that when code is a means to an end (rather than

L anguages and tools such as Excel, Visual Basic, Alice, CoScripter, Matlab, and
JavaScript have brought programming to the masses. In fact, the number of
people using spreadsheets or databases at work in the US is expected to reach
55 million by 2012.1 Even today, the landscape of end-user programming tools

is incredibly diverse. People use ActionScript to create interactive Web content, and Mat-
lab and the R language to reinvent finance and science applications. These tools’ users
now number in the tens of millions, if not more. In all these cases, people are creating

Andrew J. Ko,
University
of Washington

Robin Abraham,
Microsoft

Margaret M. Burnett,
Oregon State University

Brad A. Myers,
Carnegie Mellon
University

End-User
Software Engineering

gue s t e d i t or s ’ i n t r o duc t i on

 September/October 2009 I E E E S o f t w a r E 17

a deliverable), opportunism is often quite rational.
They highlight the unique challenges that arise in
debugging, reuse, and version control for popula-
tions whose view of programming is often based
on a short-term, opportunistic mindset.

Two articles represent contrasting responses
to this opportunism. In “Software Engineering
for Spreadsheets,” Martin Erwig embraces the
opportunism, describing a pair of type-checking
and debugging systems for spreadsheets that work
with users’ opportunistic habits, instead of against
them. The systems he describes exploit patterns
in the underlying structure of spreadsheets and
spreadsheet formulas to automatically detect type
errors and recommend changes.

In contrast, in “Test-Driven Development for
Spreadsheet Risk Management,” Kevin McDaid
and Alan Rust describe how to train users in test-
driven development. They find that asking users to
learn even a small amount of software engineering
discipline goes a long way in improving dependabil-
ity and software quality. In the Point-Counterpoint
department, Janice Singer and Mark Vigder debate
this issue with Judith Segal and Steven Clarke, ex-
ploring whether tools should be adapted to users
or users should learn more-rigorous principles.

The other articles step back from these issues,
considering the larger problem of empowering the
masses to create real, robust software solutions. For
example, in “Metadesign: Guidelines for Support-
ing Domain Experts in Software Development,”
Gerhard Fischer and his colleagues argue that what
makes software design difficult these days is the
scarcity of domain expertise. They claim that the
only way to truly design software for the myriad
of domains is to empower domain experts to cre-
ate their own solutions. Their viewpoint has sev-
eral implications for the software that professional
developers create. For example, they propose
that systems must be “underdesigned” to support
“hackability” and “remixability,” making it easier
for domain experts to appropriate and adapt soft-
ware for their needs.

Christian Dörner and his colleagues provide an
example of this approach for the domain of enter-
prise resource planning (ERP) systems. In “End
Users at the Bazaar: Designing Next-Generation
Enterprise Resource Planning Systems,” they ana-
lyze the limitations of monolithic ERP systems
supported by SAP and Oracle’s service-oriented ar-
chitectures. They describe a new tool that lets us-
ers stitch together services to support their unique
business needs.

We also offer an interview with Tessa Lau,
who discusses CoScripter, which empowers Web

users to automate repetitive Web actions and
share their scripts. She discusses the challenges of
supporting script reuse and reflects on the hack-
ability of Web sites today and in the future.

T his diverse collection of articles reveals not
only that the masses need more helpful,
lightweight tools to catch bugs but also

that the software industry itself must adapt to these
shifting demands to truly serve user needs. If any
of these topics pique your interest, we encourage
you to dive deeper into the 10 years of R&D dur-
ing which the end-user software engineering field
has emerged (a useful collection of resources is at
http://eusesconsortium.org), and stay tuned for its
future.

Reference
 1. C. Scaffidi, M. Shaw, and B. Myers, “Estimating

the Numbers of End Users and End User Program-
mers,” Proc. 2005 IEEE Symp. Visual Languages and
Human-Centric Computing (VL/HCC 05), IEEE CS
Press, 2005, pp. 207–214.

About the Authors
Andrew J. Ko is an assistant professor at the University of Washington’s Information
School. His research interests include human and cooperative aspects of software engineer-
ing, end-user software engineering, end-user programming, user interface software and
technology, and programming language design. Ko has a PhD in human‐computer interac-
tion from Carnegie Mellon University’s Human-Computer Interaction Institute. Contact him
at ajko@u.washington.edu.

Robin Abraham is a program manager with Microsoft’s WinSE (Windows Service-
ability) group. His research interests include software engineering, end-user software
engineering, and programming language design. Abraham has a PhD in computer science
from Oregon State University. Contact him at robin.abraham@gmail.com.

Margaret M. Burnett is a professor in Oregon State University’s School of Electrical
Engineering and Computer Science. Her current research focuses on end-user programming,
end-user software engineering, information-foraging theory as applied to programming,
and gender issues in those contexts. Burnett has a PhD in computer science from the
University of Kansas. Contact her at burnett@eecs.oregonstate.edu.

Brad A. Myers is a professor in the Human-Computer Interaction Institute in Carnegie
Mellon University’s School of Computer Science. His research interests include software
development, end-user software engineering, natural programming, programming environ-
ments, user interface development systems, handheld computers, and programming by
example. Myers has a PhD in computer science from the University of Toronto and is an ACM
Fellow, a member of the CHI Academy, and a Senior Member of the IEEE. He also belongs
to the IEEE Computer Society, SIGCHI, the ACM, and Computer Professionals for Social
Responsibility. Contact him at bam@cs.cmu.edu.

