
70 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

update

Our message was optimistic: software architec-
ture is a healthy engineering discipline, following
a classic technology maturation trajectory. Such
a trajectory begins (using the Redwine-Riddle
model of technology maturation2) with basic re-
search; passes through intermediate stages of con-
cept formulation, exploration, and codification;
and ends when nobody would consider building
a software system without the technology. “It will
be considered an unexceptional, essential part of
software system building,” we wrote, “taken for
granted, employed without fanfare, and assumed
as a natural base for further progress.”

Our analogy was aviation, whose golden age is
considered to have been the 1930s, when innova-
tion and concept exploration were at their peak.
All the aviation progress since then, as magnifi-

cent as it is, is basically just 70 years of incremen-
tal improvement in propulsion, materials, con-
trols, and production, with no seismic upheavals
in technology or principles. Today’s ultramodern
Airbus A-340 is in many ways nearly identical
to the Douglas DC-8-60 that rolled out almost
50 years ago.

Our article viewed software architecture as
having enjoyed a golden age of innovation and con-
cept formulation, and beginning to enter the more
mature stage of quiet discipline and unremarkable
utilization. For sure, mature technologies aren’t
as exciting as technologies in the midst of growth
spurts, but the next time you step aboard a com-
mercial jet, ask yourself how exciting you hope the
flight will be. And the next time you craft the soft-
ware architecture for a system on whose success
your company’s future might depend, ask yourself
how much adrenalin you really want to flow.

Recent Progress
Even in the relatively short time since the pub-
lication of “Golden Age,” we see evidence to
strengthen our belief that we’re in transition from
the exploration of concepts to routine application
of those concepts.

T he Golden Age of Software Architecture” was about the maturation of a field
of research and practice that has spanned over a quarter century, with roots
going back still farther.1 The article first appeared in spring 2006, only about
two-and-a-half years before IEEE Software invited us to write this follow-up.

In January 2009, I asked for follow-up pieces from several sets of authors
whose insightful and influential Software classics made the magazine’s
25th-anniversary top-picks list (Jan./Feb. 2009, pp. 9–11). Here, Paul Cle-
ments and Mary Shaw provide fresh perspectives on their winning ar-
ticle, addressing how their thinking has evolved over the years, what has
changed, and what has remained constant.
 —Hakan Erdogmus, Editor in Chief

Paul Clements, Carnegie Mellon University Software Engineering Institute

Mary Shaw, Carnegie Mellon University Institute for Software Research

“The Golden Age of
Software Architecture”
Revisited

2 5 t h - ann iver s ar y t op p i c k s

“

 July/August 2009 I E E E S o f t w a r E 71

For example, many organizational initiatives in
architecture competence have recently sprung up.3
These organizations are asking how they can help
their architects do their jobs more effectively, more
routinely, more predictably, and more profession-
ally. Approaches include standardized training,
certification, architect-specific career tracks, cre-
ation of forums for architects to share ideas and
solutions, repositories of architectural artifacts
such as style definitions and documentation tem-
plates, and mentoring of junior architects.4 No or-
ganization would undertake such an effort unless
it believed that the practice of architecture was es-
sential to its success and that there were mature
and proven practices to which it could appeal.

At an internal architecture conference held by
a major Indian IT service company—one of those
organizations with initiatives to improve its archi-
tecture competence—a senior architect confided
that his job was essentially complete as soon as he
decided whether SAP or Oracle would provide the
platform for his application. He wasn’t wrong.
Such is the happily unremarkable state of affairs
in some organizations and for some domains.

How did we arrive here? Software engineering
can be seen as a continuous journey to make the
primitives of software design more sophisticated
and capable. The primitives used to be the sub-
routine, then the module, then the object, then the
component, and then the service. Today’s primi-
tives are breathtaking in their sophistication and
include “relational database,” “shopping cart,”
“transaction manager,” “rules engine,” “online
auction,” “global-positioning navigation,” “search
engine,” and “user interface.” Along the way, soft-
ware architecture has been the essential unifying
concept to make the primitives (of whatever scope)
work together successfully.

In fact, you could argue that software archi-
tecture has been the conceptual foundation that
gave us the intellectual control to successfully
create and then piece together larger and larger
chunks of software, and do it unremarkably.
This has gotten us to the point where, in some
domains, the bulk of a multimillion-line system
comes wrapped in cellophane, and its architect
views his or her job as choosing which cello-
phane-wrapped package to buy.

Architecture Will Be Architecture
For other domains, we aren’t there yet. The new
generation of multicore computers might demand
whole new architecture styles, as will the increas-
ing assembly of third-party functionality over
the Web (going much beyond the current view of

software-as-a-service). We also need a systematic
understanding of the architectures—the concep-
tual architectures, not the port-level protocols—
for cyberspace and the emerging Web. Systems-of-
systems5 and ultra-large-scale systems6 are har-
bingers of a future in which we don’t have crisply
bounded systems so much as (possibly ad hoc) co-
alitions. These will require new models of governance
and organizational interaction (or lack thereof).

But even in this brave new world, these new cre-
ations’ architecture will still be architecture. Just as
the idea of architecture helped take us from sub-
routines to subsystems, it will provide the strong,
stable technical footing to let us work on the social
and organizational issues brought about by these
new paradigms. Yes, we might need new styles
or solution approaches as we enter new domains;
’twill always be so. But we won’t need to change
the fundamental principles of architecture.

For example, service-oriented architecture
(SOA) created a stir in the IT community the likes
of which were unseen since Y2K, but all the com-
motion was on the business and economics side.
Architecturally, SOA is just a style like any other,

with its own set of implications for quality attri-
butes.7 The concepts and foundations of architec-
ture let architects take SOA in stride—you could
almost feel architects around the world shrugging
their shoulders and getting on with it.

Continuing Opportunities
We closed “Golden Age” by listing a half dozen
“significant opportunities … for new contributions
in software architecture.” We close this follow-up
by reiterating three that have strong potential to
make real improvements.

object-oriented Programming
vs. architecture
Object-oriented (OO) programming is the lead-
ing software development paradigm of our time,
and it’s certainly an improvement over traditional
procedural programming. The resulting focus on
programming-level constructs and the avalanche
of tools and frameworks to support them ham-
per architectural thinking, though. Whereas pro-
cedural programming is architecture-agnostic,
the frameworks that support OO programming
embed architectural decisions. Architects, eager
to communicate with programmers and lacking
a true lingua franca for architecture, must do so
in the programmers’ terms. Language constrains
thought; here, the constraints undercut the design-
er’s imperative to choose the best architecture for
the job. Designers instead choose the (restricted

Software
engineering

can be seen as
a continuous

journey to make
the primitives
of software
design more
sophisticated
and capable.

72 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

and conceptually impoverished) architec-
tures they can most easily represent and
tool. It’s symptomatic that the typical con-
nector in these systems is still just the pro-
cedure call, although now often dynami-
cally bound.8

Yes, designs of current OO frameworks
are subtle and well reasoned and provide
some of those breathtaking primitives
we’ve mentioned. But in many cases, those
breathtaking primitives are purchased at
the cost of breathtaking complexity, much
of which we suspect is, in Frederick Brooks’
sense, accident rather than essence.9 Just
as a crop circle is hard to see when you’re
standing in the middle of it, we believe that
much of frameworks’ accidental complex-
ity comes from their bottom-up creation
intended to give programmers, not archi-
tects, more powerful, expressive forms.

Given the trade between readily avail-
able tools with a misfit architecture and the
right architecture with meager tools, which
would you choose? We would choose the
latter, but current standard practice tells us
we’re in the minority. Work remains to be
done so that we no longer have to choose
convenience over concept, and we look for-
ward to the day when the architectures of
OO systems transcend the workaday con-
structs of OO programming.

Design Decisions
and Quality attributes
The study of software architecture recog-
nizes the tight coupling between an archi-
tecture and a software system’s quality at-
tributes such as performance, modifiability,

and security. Architectural patterns10 and
tactics11 are prepackaged design decisions
created (and handily cataloged for use) to
achieve quality-attribute goals and require-
ments. We’re encouraged by recent signs
that these concepts are taking root and
being nurtured by practitioners whose pri-
mary purpose is to apply rather than cre-
ate them.12 Continuing to understand and
tighten the link between quality-attribute
requirements and architectural design de-
cisions brings us closer to making those de-
cisions more quickly and more assuredly.

Conformance Checking
and architecture recovery
The best architecture is worthless if the
code doesn’t follow it. This is a risk dur-
ing initial development; in many shops
the risk becomes a near certainty in post-
deployment maintenance. Tools to analyze
code for architecture conformance are still
woefully inadequate and rely on humans
making suggestions (read: guesses) about
architectural constructs that might be
lurking in the code. The problem is hard.
Many architectural patterns, fundamental
to the system’s design taken forward into
code, are undetectable once programmed.
Layers, for instance, usually compile right
out of existence. To our knowledge, no
one has even compiled a catalog detailing
which often-used patterns and tactics can
and can’t be tracked down in code. For
those that can’t, it would help to find a way
to tag the code with markers when they’re
used, to give code analyzer tools a fighting
chance to report their existence.

T he two-and-a-half years since
“Golden Age” was published
aren’t long enough for the field to

mature very much more, so we’ll need more
time to see whether our predictions hold
true. Stay tuned. But there are strong indi-
cations that software architecture is enjoy-
ing a time of both external exploration and
popularization. This tells us that it’s on the
cusp of passing from its golden age into its
period of reliable use and value. It’s on its
way to becoming unremarkable. And that’s
wonderful.

Acknowledgments
Mary Shaw’s work was supported by the A.J.
Perlis Chair of Computer Science at Carnegie
Mellon University. We thank our colleagues
at Carnegie Mellon for feedback on early
drafts.

References
 1. M. Shaw and P. Clements, “The Golden Age

of Software Architecture,” IEEE Software,
vol. 23, no. 2, 2006, pp. 31–39.

 2. S. Redwine and W. Riddle, “Software Tech-
nology Maturation,” Proc. 8th Int’l Conf.
Software Eng. (ICSE 85), IEEE CS Press,
1985, pp. 189–200.

 3. L. Bass et al., “A Workshop on Architecture
Competence,” tech. note CMU/SEI-2008-
TN-024, Software Eng. Inst., Carnegie Mel-
lon Univ., Oct. 2008.

 4. P. Clements et al., “The Duties, Skills, and
Knowledge of Software Architects,” Proc. 6th
Working IEEE/IFIP Conf. Software Architec-
ture (WICSA 07), IEEE CS Press, 2007,
pp. 44–47.

 5. M.W. Maier, “Architecting Principles for
Systems-of-Systems,” Systems Eng., vol. 1, no.
4, 1998, pp. 267–284.

 6. L. Northrop et al., Ultra-Large-Scale Systems:
The Software Challenge of the Future, Soft-
ware Eng. Inst., Carnegie Mellon Univ., 2006.

 7. M. Shaw and D. Garlan, Software Architec-
ture: Perspectives on an Emerging Discipline,
Prentice Hall, 1996.

 8. M. Shaw, “Procedure Calls Are the Assembly
Language of Software Interconnection: Con-
nectors Deserve First-Class Status,” Studies of
Software Design, LNCS 1078, Springer, 1996,
pp. 17–32.

 9. F.P. Brooks Jr., “No Silver Bullet: Essence and
Accidents of Software Engineering,” Com-
puter, Apr. 1987, pp. 10–19.

 10. F. Buschmann et al., Pattern-Oriented Soft-
ware Architecture: A System of Patterns, John
Wiley & Sons, 1996.

 11. L. Bass, P. Clements, and R. Kazman, Soft-
ware Architecture in Practice, Addison-
Wesley, 1993.

 12. J.P. Scott, “Evaluating Distributed Systems
Architectures for Fault-Tolerant Applications:
Saturn 2008,” Boeing, 2008; www.sei.cmu.
edu/architecture/saturn/2008/presentations/
SATURN08-jscott.pdf.

About the Authors
Paul Clements is a senior member of the technical staff at Carnegie Mellon University’s Soft-
ware Engineering Institute. His research interests involve software architectures and software product
lines. Clements has a PhD in computer sciences from the University of Texas at Austin. Contact him at
clements@sei.cmu.edu.

Mary Shaw is the Alan J. Perlis Professor of Computer Science at Carnegie Mellon University’s
School of Computer Science. Her research interests are value-based software engineering, everyday
software, software engineering research paradigms, and software architecture. Shaw has a PhD in
computer science from Carnegie Mellon University. She’s a fellow of the ACM, IEEE, and American As-
sociation for the Advancement of Science. Contact her at mary.shaw@cs.cmu.edu.

