
92	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

currents
F e a t u r e s E d i t o r : D a l e S t r o k n d s t r o k @ c o m p u t e r . o r g

[trends,
people,
projects

“Googling” Test Practices?
Web Giant’s Culture Encourages Process Improvement

Greg Goth

I
n the wider world, Google has become a com-
mon verb as well as a noun; you can “google”
any person, place, or thing, and more likely
than not obtain some sort of information.

But Google might also become a bench-
mark term for a new wave of improved soft-

ware-testing practices. Numerous emerging ele-
ments, beyond Google’s sheer size and cachet as
the Web’s most-used search engine, could make
this possible. For example, Google’s development
of Web-based applications and toolkits brings the
company’s code into the far reaches of the pub-
lic domain. In addition, the company’s stance on
testing has been made public at a higher level in
such places as its testing blog (http://googletesting.
blogspot.com) and in more detail in guidelines on
testing mobile-phone applications written by a
Google employee (www.stickyminds.com/sitewide.
asp?Function=WEEKLYCOLUMN&ObjectId=13
215&objecttype=ARTCOL).

And, as the predominant software architecture
shifts to service-oriented architectures (SOA) and
software-as-a-service (SaaS) models, developers in
widely disparate organizations will find that their
code is interdependent, often in ways the original
programmers can’t imagine. So, predicting which
pieces of code will need to interface will be ex-
tremely difficult, if not impossible. Thus, develop-
ment and testing will have to be reconsidered from
a new perspective. Google’s adoption of a new ap-
proach taking these dynamics into account is well
underway.

Early testing is integral
“In the past, we did sort of like two processes,”

says Mark Striebeck, an engineering project man-
ager at Google. “The engineers did their part with
unit and development testing; afterward, the test-

ing folks’ path was actually testing the overall ap-
plication deployed on a production-like or staging
environment.”

However, in 2006, Google began a more incre-
mental and granular testing approach.

“We tried to merge these two worlds much,
much closer together,” Striebeck says. “The engi-
neers work directly together with testers, and the
testers start testing much earlier and at a much
lower level—not just black box from the outside,
but really going into the application on the compo-
nent level.”

To accomplish that, Striebeck says, the testers
and developers must interact intensively, with the
developers creating numerous hooks into their code
to enable incremental testing. Google has also intro-
duced practices that institutionalize testing culture.
One example is “Testing on the Toilet,” in which
Google test experts regularly write fliers about ev-
erything from dependency injection to code cover-
age and then plaster them on Google’s bathroom
walls. Another is Test Mercenaries, teams of veteran
engineers who are also testing specialists. The mer-
cenaries are an outgrowth of a “20 percent” project
called the testing grouplet, founded by senior staff
engineer Bharat Mediratta. (Googlers get one day a
week, or 20 percent of their time, to devote to work
of their own choosing.) The mercenaries spend three
months maximum on a given project and are al-
lowed to test and refactor code as necessary. When
they leave that project, it’s assumed they have left
behind a legacy of good testing practices.

Google has also implemented a “test-certified”
program, a multitiered process of practice improve-
ment, which inculcates the emphasis on testing into
all the company’s developers. Also, in February
2007, Striebeck organized the first Testapalooza, a
conference where 800 Google employees worldwide

	 March/April 2008 I E E E S o f t w a r e � 93

Currents

who perform testing shared information.
All these efforts, Striebeck says, are

driven by Google’s bottom-up, engineer-
ing-driven culture. In theory, these elements
feed off each other. The Google approach
has received notice at development confer-
ences, engendering wider curiosity about
whether what works at Google will work
elsewhere. Google test experts, in turn,
bring back ideas from other enterprises and
adapt and adopt those they think will suc-
ceed at Google.

Time for a wider
discussion …

Industrywide, however, several experi-
enced testing-and-development experts say
the permutations and combinations of test-
ing, development, and quality assurance
are still falling short in defect control, cost
control, and user satisfaction. The whole-
hearted embrace of proven testing prac-
tices is more fantasy than reality, they say,
although there are signs of that changing.

Rex Black is president of the Inter
national Software Testing Qualifications
Board (www.istqb.org), a global organi-
zation created in 2002, and president of
Rex Black Consulting (www.rbcs-us.com).
Black says when he took over as Istqb presi-
dent in 2005, the organization had certified
20,000 testing professionals; by late 2007,
that number had grown to 65,000.

Black says the fast growth is symbolic of
a desire for change in a portion of the soft-
ware industry that runs well behind other
engineering areas. He says testing as a dis-
cipline might lag 25 to 30 years behind pro-
gramming. The vast majority of testers—up
to 90 percent—are ignorant of the practices
espoused by pioneers Glenford Myers, Bo-
ris Beizer, and Bill Hetzel in works going
back to the late ’70s.

“We have just not done a good job of
building on the foundations that our col-
leagues in the programming side of the
house have done,” Black says, “so Istqb’s
goal is to help build on foundations already
laid. We certainly do not want to be pro-
scriptive, to claim there’s only one way;
that’s not the way we work. We’re look-
ing for the lowest common denominator, if
you will, and filling people’s toolboxes with
tools they can use.”

Ottawa-based developer and entrepre-
neur Chris Justus says he encounters more
evidence of “seat-of-the-pants” testing prac-

tices—both on consulting jobs he contracts
for and in stories he hears from other devel-
opers—than well-documented instances of
quality testing practices. For instance, Jus-
tus says his wife worked as a software tester
at a large software firm.

“I asked her what the process was for
regression testing, and basically they just
sort of clicked around in the tool,” Justus
says. For example, testers weren’t required
to track new code against written test
cases. “That’s really stunning,” he says.
“Between builds there’s no way to know
as a developer, if I was changing code, if
the code was better today than yesterday. It
would be like you’re just guessing as to the
quality of the software, and I think that’s
pretty common still.”

Justus says that on more than half of his
consulting contracts, there’s no documented
regression test procedure. “We’re just really
at the beginning of people realizing they
have to do regression testing,” he says.

Justus also says he has been told that an-
other large Ottawa-based company has rec-
ognized the necessity for more rigorous test-
ing and is shifting its development model.

“The company has been around for
years, doing all sorts of different things,
and now they’re moving to test-driven de-
velopment through the whole organization,
moving from more of a waterfall model to
a more agile development space. And this
is not a company writing little 10,000-line
programs; it’s a company writing multimil-
lion-line programs.”

However, one software quality pioneer
is quite blunt about his perception of test-

driven development.
“You never get quality software with a

test-driven process,” says Watts Humphrey,
the “father” of the Software Engineering
Institute’s Personal Software Process and
Team Software Process (www.sei.cmu.edu/
tsp). “You can use testing as the ultimate
verification and evaluation process, and
that works.”

The foundational fallacy of test-depen-
dent methodology, Humphrey says, is that
“there are an extraordinary number of pos-
sible ways you can test a system, and you
literally cannot cover them all. So any test-
ing program is going to find a fraction of
the defects in the system.”

Humphrey says that, in addition to the
inherent inability of testing to discover all
the defects in a given program, backload-
ing the test procedure can “typically cost
five to 10 or more hours per defect. We can
show engineers how to find defects at an
average cost of six minutes each, which is
much, much lower, and you find the same
defects. This is what we’ve found with our
teams, that we have essentially found all
defects before testing.”

Superficially at least, many of the prin-
ciples behind the PSP/TSP methodology
and the Google bottom-up model, such
as team ownership of a project and colle-
gial negotiations of project goals between
project managers and developers, sound
similar. However, because PSP/TSP is a
vetted methodology spanning many orga-
nizations worldwide, detailed quality data
is available (www.sei.cmu.edu/tsp/results/
teradyne.html). Google’s results are, de-
spite the amount of granular information
and advice published, proprietary. Striebeck
and Mediratta say they unfortunately can’t
share information such as

how many defects they’ve found per
KLOC,
where in the development process
they’ve found defects, or
whether the testing-grouplet and Test
Mercenary programs have produced
demonstrable cost or time savings.

For Google users and partnering develop-
ers, ultimate satisfaction might be a matter
of intuitive perception plus simple quantita-
tive results. That is, is the application easy
to integrate code with? Does it work in a
pleasing way?

n

n

n

The vast majority
of testers—up to 90

percent—are ignorant
of the practices

espoused by pioneers
Glenford Myers, Boris
Beizer, and Bill Hetzel.

94	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Currents

As more applications are built and inte-
grated by discrete organizations with vari-
ous degrees of openness, assembling and
disassembling modules as needed, that less-
than-granular measure of quality might
become more prevalent—at least for public
consumption—for good or ill.

… And a wider definition?
Given this new distribution paradigm,

Google’s position as a leading Web-based
applications platform and its embrace of
rigorous incremental testing might be the
vanguard of a new definition of what soft-
ware testing encompasses.

“Things are simple when you can control
everything in your organization, but adding
even one external dependency makes the
project five times more complex,” Justus
says. “That’s where software quality testing
needs to be done really rigorously, because
you have these downstream impacts that
go not just to your immediate partner, but
partners downrange.”

The diminution of adverse effects fur-
ther downrange depends mostly on indi-
vidual developers learning to design, cre-
ate, and manage their own smaller piece of
a given project. Humphrey says that trend
has been sliding inexorably closer to the in-
dividual developer throughout his career.

“Fifty years ago, I was the architect and
program manager for a big computer sys-
tem we were developing at Sylvania,” he
says. “There was one other guy, a PhD in
electrical engineering, who did the circuit
design. We had a host of junior engineers
and technicians building all this stuff, but
I knew the logic and he knew the circuits.
We were really the two knowledge work-
ers. Later on, managing one of my early
software projects, no one really understood
everything. Individual developers were all
making detailed design decisions them-
selves, and that’s the essence of software.”

Google’s Striebeck points to two partic-
ular aspects of development at Google that
lend themselves to more granular testing.
First, Google uses the same production envi-
ronment to build, run, and test its software
instead of shunting tests onto a separate
(and usually less capable) infrastructure.

“That allows us to use the really big
clusters we have that we run our applica-
tions on—the CPU power, the memory, the
bandwidth, everything to make our testing
very, very fast and very efficient.”

This raw horsepower is becoming in-
creasingly important for Google as it grows
and is critical for the second aspect that’s
dictating faster testing at Google. As Strie-
beck says, “Our products are actually highly
integrated. It’s amazing, if you work with
one team, to see how much functionality
they use from other products.”

So, Google is building a companywide
technical capability to share information
about how code from one project interacts
with another early during development.

“We realized, when I started here two-
and-a-half years ago, individual project
testing is good, but with the platform we
have, it can’t stay that way,” Striebeck says.
“We have to have a more integrated system
that can test these things, almost test them
all in real time. We have some product re-
lease cycles that are one week, so if I have
to wait three or four days before I know I
broke someone else’s code, it doesn’t work
at all for us.”

Perhaps the next great test of how
Google’s internal quality assurance pro-
cess works in concert with code from ex-
ternal entities will be the upcoming launch
of Google’s OpenSocial social-networking
platform.

“Our commitment to that is to make
sure the OpenSocial framework is stable
and reliable and has the features people
need,” Mediratta says. “So to a certain
extent, you could argue that if each of the
contributors across the industry makes sure
of their own platform, then the combined
effort should be good.”

The next testing hurdle
Istqb’s Black says he discerns some con-

fusion in the industry surrounding the auto-
mation of early phases of unit testing.

“Unfortunately, a lot of that got wrapped
around agile, and the common perception
is, ‘You only do that if you’re doing agile,’”
he says. “One thing we’re trying to accom-
plish with Istqb and in my (separate) con-
sulting company [is that] no matter which
life cycle model you’re following, it’s a real
good idea to get bugs out when they’re
cheap and not on the critical path.”

In addition, as more programming is
done by developers who aren’t trained in
traditional computer science disciplines,
testing will have to become simultaneously
more rigorous and easier. So, more auto-
mation of unit tests at more frequent inter-
vals might be common.

“I’m convinced, long-term, except for
a small corner, that software engineering
is going to go away as a discipline,” Hum-
phrey says. “It will become a skill that ev-
erybody will have. You discover on most
of these systems, the knowledge of the do-
main is so much harder to pick up than the
knowledge of programming.”

Humphrey predicts that in the Web 2.0
era, “we’ll see a lot of pragmatic manage-
ment of quality,” with allowances being
made for code complexity and the ulti-
mate application for which that code is
intended.

“It’s really a question of cost/benefit
trade-off,” he says. “Sometimes things you
interface with are so poorly defined and so
dynamic, you don’t know until you try it.
On the other hand, [on] applications such
as weapons systems, you obviously have to
do exhaustive quality efforts.”

Black says software quality’s “eternal
verities” will endure.

“Fundamentals still apply,” he says.
“Things like testing throughout the de-
velopment life cycle and having a brim-
ming tool chest of test analysis and design
techniques to apply in different situations.
These are concepts that are well known
and driven by organizations with a track
record of releasing high-quality code, and
there’s no reason to think those same ideas
couldn’t be employed in creative ways in
SaaS, Web 2.0, or you name it. I’m bullish
on software testing, and the way we see
the growth of the Istqb program, I think
long-term prospects are good.”

Google is building
a companywide technical

capability to share
information about

how one project’s code
interacts with another’s

in development.

