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from the editor
E d i t o r  i n  C h i e f :  Wa r r e n  H a r r i s o n  ■ P o r t l a n d  S t a t e  U n i v.  ■ w a r r e n . h a r r i s o n @ c o m p u t e r. o r g

I
f you’re like me, you can’t help but think
when you see famous and once-famous
celebrities endorsing products on TV if
they really use the product themselves.
Does that famous movie star really eat at
Pizza Hut? Does a wealthy businessman

really use H&R Block’s tax services?
Back in the 1980s when actor Lorne Greene

served as the pitchman for
Alpo dog food, the TV com-
mercials were careful to point
out that he indeed fed Alpo to
his dogs. Consequently, the idea
that someone would use the
products they were making be-
came known as “eating your
own dog food.” An alternative
explanation for the term I’ve
heard is that each year the pres-

ident of Kal Kan Pet Food would eat a can of
the company’s dog food at the annual share-
holders’ meeting.

Regardless of its genesis, the software in-
dustry has adopted the phrase to mean that a
company uses its own products. Somewhere
along the line, the noun “dog food” appears to
have morphed into a verb. It’s said that Mi-
crosoft has aggressively adopted the concept of
dogfooding, at least within its development
groups. Likewise, the Eclipse development
group will tell you that they all use Eclipse as
a development platform and therefore “eat
their own dog food.” 

Of course, some companies are in markets
where it simply isn’t possible for them to use

their own software. For example, if your com-
pany makes embedded software for medical
devices, unless you have an in-house hospital
on your campus, you’re probably not going to
be able to dog food your product. But there
are many markets and applications where dog-
fooding might indeed be possible. In this case,
the question is, should we care?

Reasons for eating your own 
dog food

From the customer’s point of view, perhaps
the most important reason for dogfooding is
that it provides some evidence that the com-
pany has confidence in its own software. How-
ever, we must temper this assumption with the
realization that (a) the company gets the soft-
ware for free and (b) the people who ultimately
select what software gets used are more likely
to be the ones paying for it rather than the ones
using it.

The second justification I often hear for
dogfooding is that widespread use within the
company will ferret out bugs. For instance, if
your company makes customer relationship
management software, using it internally might
uncover some heretofore unfound bugs. How-
ever, this makes me wonder how confident the
company is in its testing and quality assurance
processes. If the “thousand monkeys with a
thousand typewriters” process is indeed a sig-
nificant part of the company’s QA activities,
this would actually reduce my confidence in
the product. Not to mention, I have to wonder
about the effect on customers if the parts of
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the company they’re dealing with (for
example, technical support, billing,
and so on) are dogfooding to find bugs.
I’d much rather the company put more
resources into classical quality assurance
and give software that works to the parts
of the company I have to deal with.

Another common justification is so
that the people developing the products
will be familiar with them. But this only
goes so far. Certainly, if you build com-
pilers or development environments,
this might make sense, but then I have
to ask, why weren’t the developers fa-
miliar with the product before they got
to this point?

If you build products that can be used
within your company but not by the de-
velopers, dogfooding is effective only if
there’s a consistent feedback mechanism
between the internal users and the devel-
opers. More often than not, I’ve ob-
served more of an “over the wall” men-
tality, with little interaction with
developers. And even with the best feed-
back mechanisms in place, I still have
to wonder, what exactly is the per-
ceived benefit of dogfooding within the
context of being familiar with your
product? Does it help in establishing
the requirements? Is it used in refining
the user interface? Is it used to prepare
technical support by forewarning them
about the sorts of problems customers
might encounter? In the past, I’ve as-
sumed that developers engineer-in a
product’s features and behavior rather
than discovering them as if they were
explorers tromping around a vacant
house.

Of course, none of these issues sug-
gest that a company shouldn’t use their
own software internally. I’m only sug-
gesting that many of the reasons people
give for dogfooding may be a little sus-
pect under the best of circumstances;
they indicate a fundamental naivete
with respect to good software engineer-
ing practices when circumstances are
marginal.

Why dogfooding might be bad
There might actually be some rea-

sons not to dog food. In a market-driven
industry such as software development,
developers must understand not just
their product but the products of oth-
ers. It’s the rare company indeed that
can’t learn something from its competi-
tors. Engineers who use their own com-
pany’s tools exclusively tend to propa-
gate all the bad aspects of their tools
because they might not even realize an
alternative approach exists. At the same
time, they often fail to either under-
stand or appreciate the good points of
other companies’ tools. I recall a dis-
cussion I once had with a well-placed
manager at a dogfooding company I’ll
call ABC Corporation. He snorted that
it had been years since anyone at the
company had read anything that wasn’t
marked ‘ABC Confidential.’”

New engineers who come into a dog-
fooding company with exposure to other
toolsets are often forced by peer pressure
to conform to the party line that all
other tools are inferior and the com-
pany’s approach is superior. Often, when
hiring new engineers, managers consider
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exposure to other companies’ toolsets as
negative rather than positive.

Some companies that proudly tout
their dogfooding simultaneously dis-
play a surprising degree of arrogance
along with a corresponding degree of
cluelessness. It isn’t clear, however, if
the arrogance begets the dogfooding or
the dogfooding begets the arrogance.
You’ll often find these companies ig-
noring industry standards and develop-
ing their own. This isn’t so much due to
maliciousness as it is simply not realiz-
ing what’s going on outside their clois-
tered campuses. To some extent, an
overreliance on eating your own dog
food could eventually lead to the equiv-
alent of a Hapsburg jaw (see http://en.
wikipedia.org/wiki/Prognathism) for a
software product.

Also, dogfooding encourages the
Not Invented Here syndrome. If the or-
ganization’s philosophy is that employ-
ees must always use its own tools,
scarce resources might get allocated to
building tools that could easily be pur-
chased from others, or worse yet, tools
might get rejected simply because the
company doesn’t make them.

Open source and dogfooding
In general, the open source commu-

nity appears to practice a weaker form
of dogfooding. Few open source devel-

opers use commercial software, yet com-
mercial developers sometimes list the
same product “benefits” the OSS com-
munity likes to tout: confidence in the
product and rapid discovery and correc-
tion of bugs. But these “benefits” are
equally dubious whether the software is
commercial or open source.

That said, at least up until now, an
open source developer still has available
a much more diverse toolset than the av-
erage dogfooding company does. If my
only constraint is that my tools must be
open source, I certainly have a great
deal more options than if I’m limited to
a single company’s tools.

However, that diversity might be slip-
ping away as more and more open
source software becomes “standard-
ized.” Is it possible we might reach the
point (if we aren’t already there) where
only a single operating system, compiler,
development environment, and database
is available to open source developers?
Will the OSS community suffer from its
own Hapsburg jaw?

What do you think?
What’s your opinion of dogfooding?

Does your company eat its own dog
food? Have you found it to be beneficial?
Please write me at warren.harrison@
computer.org—especially if your com-
pany actually manufactures dog food!
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The Computer Society’s bylaws limit the position of 
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ing my four years in December. I’m pleased to report 
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