
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 5

from the editor
E d i t o r i n C h i e f : Wa r r e n H a r r i s o n ■ P o r t l a n d S t a t e U n i v. ■ w a r r e n . h a r r i s o n @ c o m p u t e r. o r g

I
f you’re like me, you can’t help but think
when you see famous and once-famous
celebrities endorsing products on TV if
they really use the product themselves.
Does that famous movie star really eat at
Pizza Hut? Does a wealthy businessman

really use H&R Block’s tax services?
Back in the 1980s when actor Lorne Greene

served as the pitchman for
Alpo dog food, the TV com-
mercials were careful to point
out that he indeed fed Alpo to
his dogs. Consequently, the idea
that someone would use the
products they were making be-
came known as “eating your
own dog food.” An alternative
explanation for the term I’ve
heard is that each year the pres-

ident of Kal Kan Pet Food would eat a can of
the company’s dog food at the annual share-
holders’ meeting.

Regardless of its genesis, the software in-
dustry has adopted the phrase to mean that a
company uses its own products. Somewhere
along the line, the noun “dog food” appears to
have morphed into a verb. It’s said that Mi-
crosoft has aggressively adopted the concept of
dogfooding, at least within its development
groups. Likewise, the Eclipse development
group will tell you that they all use Eclipse as
a development platform and therefore “eat
their own dog food.”

Of course, some companies are in markets
where it simply isn’t possible for them to use

their own software. For example, if your com-
pany makes embedded software for medical
devices, unless you have an in-house hospital
on your campus, you’re probably not going to
be able to dog food your product. But there
are many markets and applications where dog-
fooding might indeed be possible. In this case,
the question is, should we care?

Reasons for eating your own
dog food

From the customer’s point of view, perhaps
the most important reason for dogfooding is
that it provides some evidence that the com-
pany has confidence in its own software. How-
ever, we must temper this assumption with the
realization that (a) the company gets the soft-
ware for free and (b) the people who ultimately
select what software gets used are more likely
to be the ones paying for it rather than the ones
using it.

The second justification I often hear for
dogfooding is that widespread use within the
company will ferret out bugs. For instance, if
your company makes customer relationship
management software, using it internally might
uncover some heretofore unfound bugs. How-
ever, this makes me wonder how confident the
company is in its testing and quality assurance
processes. If the “thousand monkeys with a
thousand typewriters” process is indeed a sig-
nificant part of the company’s QA activities,
this would actually reduce my confidence in
the product. Not to mention, I have to wonder
about the effect on customers if the parts of

Eating Your Own Dog Food

Warren Harrison

6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

FROM THE EDITOR

the company they’re dealing with (for
example, technical support, billing,
and so on) are dogfooding to find bugs.
I’d much rather the company put more
resources into classical quality assurance
and give software that works to the parts
of the company I have to deal with.

Another common justification is so
that the people developing the products
will be familiar with them. But this only
goes so far. Certainly, if you build com-
pilers or development environments,
this might make sense, but then I have
to ask, why weren’t the developers fa-
miliar with the product before they got
to this point?

If you build products that can be used
within your company but not by the de-
velopers, dogfooding is effective only if
there’s a consistent feedback mechanism
between the internal users and the devel-
opers. More often than not, I’ve ob-
served more of an “over the wall” men-
tality, with little interaction with
developers. And even with the best feed-
back mechanisms in place, I still have
to wonder, what exactly is the per-
ceived benefit of dogfooding within the
context of being familiar with your
product? Does it help in establishing
the requirements? Is it used in refining
the user interface? Is it used to prepare
technical support by forewarning them
about the sorts of problems customers
might encounter? In the past, I’ve as-
sumed that developers engineer-in a
product’s features and behavior rather
than discovering them as if they were
explorers tromping around a vacant
house.

Of course, none of these issues sug-
gest that a company shouldn’t use their
own software internally. I’m only sug-
gesting that many of the reasons people
give for dogfooding may be a little sus-
pect under the best of circumstances;
they indicate a fundamental naivete
with respect to good software engineer-
ing practices when circumstances are
marginal.

Why dogfooding might be bad
There might actually be some rea-

sons not to dog food. In a market-driven
industry such as software development,
developers must understand not just
their product but the products of oth-
ers. It’s the rare company indeed that
can’t learn something from its competi-
tors. Engineers who use their own com-
pany’s tools exclusively tend to propa-
gate all the bad aspects of their tools
because they might not even realize an
alternative approach exists. At the same
time, they often fail to either under-
stand or appreciate the good points of
other companies’ tools. I recall a dis-
cussion I once had with a well-placed
manager at a dogfooding company I’ll
call ABC Corporation. He snorted that
it had been years since anyone at the
company had read anything that wasn’t
marked ‘ABC Confidential.’”

New engineers who come into a dog-
fooding company with exposure to other
toolsets are often forced by peer pressure
to conform to the party line that all
other tools are inferior and the com-
pany’s approach is superior. Often, when
hiring new engineers, managers consider

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s
Web-based system, Manuscript Central, at http://cs-ieee.
manuscriptcentral.com/index.html. Be sure to select the
right manuscript type when submitting. Articles must be
original and not exceed 5,400 words including figures and
tables, which count for 200 words each.

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Design: Rebecca Wirfs-Brock,
rebecca@wirfs-brock.com

Loyal Opposition: Robert Glass,
rglass@indiana.edu

Open Source: Christof Ebert,
christof.ebert@alcatel.com

Quality Time: Nancy Eickelmann,
nancy.eickelmann@motorola.com,

and Jane Hayes, hayes@cs.uky.edu

Requirements: Neil Maiden,
N.A.M.Maiden@city.ac.uk

Tools of the Trade: Diomidis Spinellis,
dds@aueb.gr

STAFF

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Group Managing Editor
Crystal Shif

Senior Editors
Shani Murray, Dennis Taylor, Linda World

Assistant Editor Editorial Assistant
Brooke Miner Molly Mraz

Magazine Assistant
Hilda Hosillos, software@computer.org

Art Director
Toni Van Buskirk

Technical Illustrator
Alex Torres

Production Artist
Carmen Flores-Garvey

Executive Director
David Hennage

Publisher
Angela Burgess

aburgess@computer.org

Associate Publisher
Dick Price

Membership/Circulation Marketing Manager
Georgann Carter

Business Development Manager
Sandra Brown

Senior Production Coordinator
Marian Anderson

CONTRIBUTING EDITORS

Cheryl Baltes, Robert Glass, Annette Ibrahim,
Keri Schreiner, Joan Taylor

Coming in the Next Issue: Software Testing

The software community knows how important V&V (validation and verifica-
tion) techniques, and particularly software testing techniques, are in the software
development process. However, software consumers and organizations continue
to sustain high losses due to defective software, which means that this is no
straightforward process.

This special issue will offer practical and proven solutions that help users ef-
fectively and efficiently address testing needs. It will focus on unit testing as one
of the first and crucial aspects for V&V. Topics include a survey of unit testing
techniques, agile software testing in large-scale projects, and more.

M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 7

FROM THE EDITOR

exposure to other companies’ toolsets as
negative rather than positive.

Some companies that proudly tout
their dogfooding simultaneously dis-
play a surprising degree of arrogance
along with a corresponding degree of
cluelessness. It isn’t clear, however, if
the arrogance begets the dogfooding or
the dogfooding begets the arrogance.
You’ll often find these companies ig-
noring industry standards and develop-
ing their own. This isn’t so much due to
maliciousness as it is simply not realiz-
ing what’s going on outside their clois-
tered campuses. To some extent, an
overreliance on eating your own dog
food could eventually lead to the equiv-
alent of a Hapsburg jaw (see http://en.
wikipedia.org/wiki/Prognathism) for a
software product.

Also, dogfooding encourages the
Not Invented Here syndrome. If the or-
ganization’s philosophy is that employ-
ees must always use its own tools,
scarce resources might get allocated to
building tools that could easily be pur-
chased from others, or worse yet, tools
might get rejected simply because the
company doesn’t make them.

Open source and dogfooding
In general, the open source commu-

nity appears to practice a weaker form
of dogfooding. Few open source devel-

opers use commercial software, yet com-
mercial developers sometimes list the
same product “benefits” the OSS com-
munity likes to tout: confidence in the
product and rapid discovery and correc-
tion of bugs. But these “benefits” are
equally dubious whether the software is
commercial or open source.

That said, at least up until now, an
open source developer still has available
a much more diverse toolset than the av-
erage dogfooding company does. If my
only constraint is that my tools must be
open source, I certainly have a great
deal more options than if I’m limited to
a single company’s tools.

However, that diversity might be slip-
ping away as more and more open
source software becomes “standard-
ized.” Is it possible we might reach the
point (if we aren’t already there) where
only a single operating system, compiler,
development environment, and database
is available to open source developers?
Will the OSS community suffer from its
own Hapsburg jaw?

What do you think?
What’s your opinion of dogfooding?

Does your company eat its own dog
food? Have you found it to be beneficial?
Please write me at warren.harrison@
computer.org—especially if your com-
pany actually manufactures dog food!

Meet the Next Editor in Chief: Hakan Erdogmus

The Computer Society’s bylaws limit the position of
editor in chief of IEEE Software to four years. I’ll be end-
ing my four years in December. I’m pleased to report
that on the recommendation of a rigorous search pro-
cess headed by Stephen Mellor, the Society has selected
Hakan Erdogmus to be the new IEEE Software EIC begin-
ning in January 2007. Hakan is a research officer with
the Software Engineering Group at the National Research
Council of Canada’s Institute for Information Technology

and is a prominent figure in the software engineering community. Hakan re-
ceived his PhD in telecommunications from the Université du Québec, his MSc
in computer science from McGill University, and his BSc from Bogazici University
in Istanbul. Please join me in welcoming Hakan as we ease him into his new
duties over the next six months.

EDITOR IN CHIEF

Warren Harrison
10662 Los Vaqueros Circle

Los Alamitos, CA 90720-1314
warren.harrison@computer.org

EDITOR IN CHIEF EMERITUS:
Steve McConnell, Construx Software

stevemcc@construx.com

ASSOCIATE EDITORS IN CHIEF

Education and Training: Don Bagert, Rose-Hulman
Inst. of Technology; don.bagert@rose-hulman.edu

Design: Philippe Kruchten, University of
British Columbia; kruchten@ieee.org

Requirements: Roel Wieringa, University of Twente;
roelw@cs.utwente.nl

Management: Don Reifer, Reifer Consultants;
dreifer@earthlink.net

Quality: Stan Rifkin, Master Systems;
sr@master-systems.com

Experience Reports: Wolfgang Strigel,
QA Labs; strigel@qalabs.com

EDITORIAL BOARD

Christof Ebert, Alcatel
Nancy Eickelmann, Motorola Labs
Jane Hayes, University of Kentucky

Warren Keuffel, independent consultant
Neil Maiden, City University, London
Diomidis Spinellis, Athens Univ. of

Economics and Business
Richard H. Thayer, Calif. State Univ. Sacramento
Rebecca Wirfs-Brock, Wirfs-Brock Associates

ADVISORY BOARD

Stephen Mellor, Mentor Graphics (chair)
Maarten Boasson, Quaerendo Invenietis

J. David Blaine, ViaSat
Robert Cochran, Catalyst Software

Annie Kuntzmann-Combelles, Q-Labs
David Dorenbos, Motorola Labs

Kaoru Hayashi, SRA
Simon Helsen, SAP

Juliana Herbert, ESICenter UNISINOS
Dehua Ju, ASTI Shanghai

Gargi Keeni, Tata Consultancy Services
Karen Mackey, Cisco Systems

Tomoo Matsubara, Matsubara Consulting
Dorothy McKinney, Lockheed Martin Space Systems

Bret Michael, Naval Postgraduate School
Susan Mickel, Lockheed Martin

Ann Miller, University of Missouri, Rolla
Deependra Moitra, Infosys Technologies, India
Melissa Murphy, Sandia National Laboratories
Suzanne Robertson, Atlantic Systems Guild
Grant Rule, Software Measurement Services

Girish Seshagiri, Advanced Information Services
Martyn Thomas, Praxis

Rob Thomsett, The Thomsett Company
Laurence Tratt, King’s College London

Jeffrey Voas, SAIC
John Vu, The Boeing Company

Simon Wright, SymTech

CS PUBLICATIONS BOARD

Jon G. Rokne (chair), Michael R. Blaha, Mark
Christensen, Frank E. Ferrante, Roger U. Fujii, Phillip
Laplante, Sorel Reisman, Jon Rokne, Bill N. Schilit,
Linda Shafer, Steven L. Tanimoto, Wenping Wang

MAGAZINE OPERATIONS COMMITTEE

Bill N. Schilit (chair), Jean Bacon, Pradip Bose,
Arnold (Jay) Bragg, Doris L. Carver, Kwang-ting

(Tim) Cheng, Norman Chonacky, George Cybenko,
John C. Dill, Robert E. Filman, David Alan Grier,

Warren Harrison, James Hendler,
Sethuraman (Panch) Panchanathan, Roy Want

