
1 2 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

loyal opposition
E d i t o r : R o b e r t L . G l a s s ■ C o m p u t i n g T r e n d s ■ r l g l a s s @ a c m . o r g

A
good representation is usually the last
thing you think of, not the first!” (with
apologies to Harlan Mills, who spoke of
“design” rather than “representation.”)

The way we represent things often
has significant consequences. We com-

monly find that the choice of representation
seriously impacts the complexity and relative

difficulty of a task, the ease of
understanding and changing
what is represented, and the
likelihood of making mistakes.

Do software properties
block progress?

The language representa-
tion and means of composition
used in the early programming
languages (and still retained in

current languages) have influenced people in
the software engineering community to form
certain views about software that impede
progress with system modeling. Frederick
Brooks, in his influential “No Silver Bullet”
article, comments on software’s essential na-
ture: “The essence of a software entity is a
construct of interlocking concepts: data sets,
relationships among data items, algorithms,
and invocations of functions.”1 Taking his
lead from a classification that Aristotle used,
Brooks assesses the prospects of substantially
improving software technology by dividing its
difficulties into two categories:

■ properties inherent to software and
■ accidents or artifacts of the current state of

the technology’s evolution.

He sees complexity, conformity, changeability,
and invisibility as the inherent properties.

Brooks goes on to comment that “surely the
most powerful stroke for software productiv-
ity, reliability, and simplicity has been the pro-
gressive use of high-level languages for pro-
gramming.” He then asks, “What does a
high-level language accomplish?” His answer
is that “it frees a program from much of its ac-
cidental complexity.” If he’s right, and we’ve
gotten rid of most of the accidental complexity
that software imposes, then the best we can
hope for is only slow, incremental improve-
ment in our software engineering capability.

According to Brooks, another serious im-
pediment to advancing the discipline is that
“software is invisible and unvisualizable.” To
use his terminology, software doesn’t let us
capture a geometric reality in a geometric ab-
straction, as we do with other physical sys-
tems. He concludes, “The reality of software is
not inherently embedded in space.” Tony
Hoare made the related observation that al-
most all complex man-made structures (soft-
ware aside) possess the properties of clear spa-
tial separation and spatial organization of
their components.2

Climbing over the “No
Silver Bullet” Brick Wall

R. Geoff Dromey

… in which I oppose the notion that we can’t hope to make significant gains in software development.

Continued on p. 118

1 1 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

REVIEWER THANKS LOYAL OPPOSITION

If we accept these arguments, where
does this leave us? In summing up his
assessment of the prospects for soft-
ware engineering, Brooks suggests it’s
unlikely that there will be any “inven-
tions that will do for software produc-
tivity, reliability, and simplicity what
electronics, transistors, and large-scale
integration did for computer hard-
ware.” In other words, “building soft-
ware will always be hard. There is in-
herently no silver bullet”—we’ve run
into a brick wall.

Scaling the wall
Faced with a situation like this, our

greatest challenge in advancing any dis-
cipline is always to break free from the
shackles of our past. In this regard,
David Harel’s advice provides a sign-
post to where software engineering is
and should be heading: “It is our duty
to forge ahead to turn systems model-
ing into a predominantly visual and
graphical process.”3

What Brooks calls the “essence” of
software entities has little to do with
the conceptual view of systems. Sys-
tems are built out of a network of in-
teracting components (some of which
might be systems in their own right).
Such a view implies all systems might
have designs that can be embedded in
space. It doesn’t matter whether we’re
talking about systems we intend to im-
plement in software, hardware systems,
other physical systems, business sys-
tems, or any other conceptual systems.
In all cases, the system components en-
capsulate and exhibit individual behav-
ior, and they interact by passing control
and data to other components. This re-
sults in the overall system exhibiting in-
tegrated behavior.

An appropriate representation of
this behavior can provide the ladder
that lets us climb over the brick wall—
to get complexity and change under
control, to overcome the so-called in-
visibility of software, to make gains
with conformity, and, as a side benefit,
to detect requirements problems early.
With a suitable behavioral representa-
tion, we can systematize and simplify

Continued from p. 120Lawrence H. Putnam, Quantitative
Software Management

Hridesh Rajan, Iowa State Univ.
Guus Ramackers, Oracle
Subburaj Ramasamy, Electronics Test &

Development Centre
Jeremy Rand, Alcatel
Anand Ranganathan, Univ. of Illinois,

Urbana-Champaign
Awais Rashid, Lancaster Univ.
Bjorn Regnell, Lund Univ.
Donald Reifer, Reifer Consultants
Ralf Reussner, Univ. of Oldenburg/OFFIS
Bill Riddle, Software Deployment

Affiliates
Stan Rifkin, Master Systems
Suzanne Robertson, Atlantic Systems

Guild
Martin Robillard, McGill Univ.
Rob Rodgers, Northrop Grumman IT
Eelco Rommes, Philips Research
David Rosenblum, Univ. College, London
Mark Roth, Science Applications Int’l
Gregg Rothermel, Oregon State Univ.
Terence Rout, Griffith Univ.
Walker Royce, IBM
Ioana Rus, Univ. of Maryland
Hossein Saiedian, Univ. of Kansas
Julio Cesar Sampaio do Prado Leite,

Pontifícia Univ. Católica do Rio de
Janeiro

Arno Schmidmeier, AspectSoft
Robert Schwanke, Siemens
Sahra Sedighsarvestani, Univ. of Missouri-

Rolla
Ed Seidewitz, Data Access Technologies
Bran Selic, IBM Software Group
Bikram Sengupta, IBM India Research Lab
Johanneke Siljee, Univ. of Groningen
Alberto Sillitti, Free Univ. of Bozen
Nivedita Singhvi, IBM
Dennis Smith, Carnegie Mellon Univ.
Harold Smith III, Penn State Univ. New

Kensington
Angela Sodan, Univ. of Windsor
Martin Solari, Universidad ORT

Uruguay
Rini Solingen, LogicaCMG
Diomidis Spinellis, Athens Univ. of

Economics and Business
Judith Stafford, Tufts Univ.
Michael Stal, Siemens
Bernhard Steffen, Universität Dortmund
Dominik Stein, Univ. of Duisberg-Essen
Magdin Stoica, EngPath
Wolfgang Strigel, QA Labs
Christoph Strnadl, Atos Origin IT
Paul Strooper, Univ. of Queensland
Eleni Stroulia, Univ. of Alberta
Giancarlo Succi, Free Univ. of Bolzano-

Bozen
Mario Sudholt, EMN/INRIA
Kevin Sullivan, Univ. of Virginia
Håkan Sundell, Chalmers Univ. of Tech
Alistair Sutcliffe, Centre for HCI Design
Stanley Sutton, IBM T.J. Watson

Research Center
Clemens Szyperski, Microsoft
Mini TT, Philips Software Centre
Nejmeddine Tagoug, United Arab

Emirates Univ.

Mehdi Baradaran Tahoori, Northeastern
Univ.

Bedir Tekinerdogan, Bilkent Univ.
Thomas Thelin, Lund Univ.
Steffen Thiel, Robert Bosch Corporation
Martyn Thomas, Martyn Thomas

Associates
Stuart Thomason, Keele Univ.
Ciprian Ticea, QA Labs
Scott Tilley, Florida Inst. of Technology
Steve Tockey, Construx Software
Paolo Tonella, Istituto per la Ricerca

Scientifica e Tecnologica
Marco Torchiano, Politecnico di Torino
Kal Toth, Portland State Univ.
Will Tracz, Lockheed Martin
Laurence Tratt, King’s College London
Richard Turner, Systems and Software

Consortium
Virpi Tuunainen, Helsinki School of

Economics
Jeffrey Tyree, Capital One Financial
Naoyasu Ubayashi, Kyushu Inst. of

Technology
Sebastian Uchitel, Imperial College

London
Ricardo Valerdi, Univ. of Southern

California
Klaas van den Berg, Univ. of Twente
Frank van der Linden, Philips Medical
Wim Vanderperren, Vrije Universiteit

Brussel
William van der Sterren, Philips Medical
Jan van der Ven, Univ. of Groningen
Arie van Deursen, CWI and Delft Univ.

of Tech
Pascal Van Eck, Univ. of Twente
Rob Van Ommering, Philips Research
Hans van Vliet, Free Univ.
Tathagat Varma, Network Associates

India
Alexandre Vasseur, BEA Systems
Sira Vegas, Universidad Politecnica de

Madrid
Belen Vela Sanchez, Univ. Rey Juan Carlos
Jeffrey Voas, SAIC
Markus Voelter
Robert Walker, Univ. of Calgary
Dean Wampler, Rational Software
Julie Waterhouse, IBM
Matthew Webster, IBM UK
Elaine Weyuker, AT&T Laboratories

Research
David Whitlock, Portland State Univ.
James Whittaker, Florida Tech
David Wile, Teknowledge
Eric Wohlstadter, Univ. of British

Columbia
Alexander L. Wolf, Univ. of Colorado
Eric Wong, Univ. of Texas at Dallas
Kenny Wong, Univ. of Alberta
Eoin Woods, UBS Investment Bank
Simon Wright, Integrated Chipware
Tao Xie, North Carolina State Univ.
Alec Yasinsac, Florida State Univ.
Michal Young, Univ. of Oregon
Trevor Young, Univ. of British

Columbia
Yuen Tak Yu, City Univ. of Hong Kong
Marvin V. Zelkowitz, Univ. of Maryland
Peter Zimmerer, Siemens

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 1 1 9

LOYAL OPPOSITION

the task of going from a set of require-
ments to a design. We can consider in-
dividual functional requirements to
represent fragments of behavior, while
a design that satisfies a set of func-
tional requirements represents inte-
grated behavior. This perspective en-
ables us to construct a design out of its
requirements.

The behavior-tree ladder
A formal representation called behav-

ior trees makes this possible,4 thereby re-
moving a lot of accidental complexity
from the analysis and design phases. Be-
havior trees of individual functional re-
quirements (constructed by rigorous, in-
tention-preserving translation from their
natural-language representation) can be
composed, one at a time, to create an
integrated design behavior tree that
serves as a system’s formal behavior
specification. Because we only have to
deal with one requirement at a time,
the task’s complexity greatly decreases.
From this problem domain representa-
tion, we can then transition directly, sys-
tematically, and repeatably to a solution
domain representation of the system’s
architecture (its component integration
specification) and the behavior designs
of the system’s individual components—
both are emergent properties of the inte-
grated design behavior tree.4 We can
then implement the component behav-
ior designs (using design-by-contract)
and directly convert the diagrammatic
form of the architecture to an imple-
mentation, using a one-to-one mapping.
The result is an implementation in which
the components and interactions domi-
nate. This is the best we can do to em-
bed the architecture in the implementa-
tion—the goal we always seek when
designing and implementing physical
systems. Any other architecture imple-
mentation strategy is likely to introduce
unnecessary accidental complexity.

If we take the line of attack I’ve out-
lined, what progress do we make against
Brooks’ inherent properties of soft-
ware—complexity, changeability, invis-
ibility, and conformity—and the vexing
problem of requirements defects? We
make significant progress with com-
plexity because we only need to focus

on the detail in one requirement at a
time, greatly reducing the load on our
short-term memory. Change also be-
comes easier. If a system needs a new re-
quirement, we simply translate that re-
quirement to a behavior tree, integrate
it into the design behavior tree, and
carry out the systematic steps to obtain
the modified integration specification
and component behaviors.5 Invisibility
is alleviated because we can embed the
architecture in the implementation.
Conformity is addressed by using a sin-
gle behavioral representation for require-
ments, the design, and the individual
component designs and by completely
separating the integration of compo-
nents, as defined by the design behavior
tree, from the implementation of com-
ponents. And finally, we find require-
ments defects when we translate require-
ments to behavior trees and integrate the
behavior trees. We can also perform a
number of systematic checks, including
model-checking on the integrated design
behavior tree to find still other defects.
When we complement these strategies
with an integrated view of a system’s
compositional and data requirements,
we have all the information we need to
fully support the design (not discussed
here).

H igh-level programming languages
might have helped remove acciden-
tal complexity at one level. How-

ever, much accidental complexity re-
mains in most analysis and design
processes and in requirement and de-
sign representations. Simpler, more
well-defined processes and better, sim-
pler representations hold the key to
further substantial advances in soft-
ware engineering. This I’ve tried to do
using behavior trees.

References
1. F.P. Brooks Jr., “No Silver Bullet: Essence and

Accidents of Software Engineering,” Com-
puter, vol. 20, no. 4, 1987, pp. 10–19.

2. C.A.R. Hoare, “Programming: Sorcery or Sci-
ence?” IEEE Software, vol. 1, no. 2, 1984,
pp. 5–16.

3. D. Harel, “Biting the Silver Bullet,” Com-
puter, vol. 25, no. 1, 1992, pp. 8–20.

4. R.G. Dromey, “From Requirements to Design:
Formalizing the Key Steps,” Proc. 1st Int’l
Conf. Software Eng. and Formal Methods
(SEFM 03), IEEE CS Press, 2003, pp. 2–11.

5. L. Wen and R.G. Dromey, “From Require-
ments Change to Design Change: A Formal
Path,” Proc. 2nd Int’l Conf. Software Eng.
and Formal Methods (SEFM 04), IEEE CS
Press, 2004, pp. 104–113.

R. Geoff Dromey is a professor at Griffith University
and the director of the university’s Software Quality Institute.
Contact him at g.dromey@griffith.edu.au.

Copyright and reprint permission: Copyright © 2006 by the Institute of Electrical and Electronics En-
gineers, Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permit-
ted to photocopy beyond the limits of US copyright law for private use of patrons those post-1977 ar-
ticles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is
paid through the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying,
reprint, or republication permission, write to Copyright and Permissions Dept., IEEE Publications Ad-
min., 445 Hoes Ln., Piscataway, NJ 08855-1331.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE head-
quarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications
Office: 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; +1 714 821 8380; fax
+1 714 821 4010. IEEE Computer Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC
20036-1903. Subscription rates: IEEE Computer Society members get the lowest rate of US$46 per year,
which includes printed issues plus online access to all issues published since 1988. Go to www.computer.
org/subscribe to order and for more information on other subscription prices. Back issues: $20 for mem-
bers, $128 for nonmembers (plus shipping and handling). This magazine is available on microfiche.

Postmaster: Send undelivered copies and address changes to IEEE Software, Membership Processing
Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855-1331. Periodicals Postage Paid at New
York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail
Agreement Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls,
ON L2E 6S8, Canada. Printed in the USA.

