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A
good representation is usually the last
thing you think of, not the first!” (with
apologies to Harlan Mills, who spoke of
“design” rather than “representation.”)

The way we represent things often
has significant consequences. We com-

monly find that the choice of representation
seriously impacts the complexity and relative

difficulty of a task, the ease of
understanding and changing
what is represented, and the
likelihood of making mistakes.

Do software properties
block progress?

The language representa-
tion and means of composition
used in the early programming
languages (and still retained in

current languages) have influenced people in
the software engineering community to form
certain views about software that impede
progress with system modeling. Frederick
Brooks, in his influential “No Silver Bullet”
article, comments on software’s essential na-
ture: “The essence of a software entity is a
construct of interlocking concepts: data sets,
relationships among data items, algorithms,
and invocations of functions.”1 Taking his
lead from a classification that Aristotle used,
Brooks assesses the prospects of substantially
improving software technology by dividing its
difficulties into two categories:

■ properties inherent to software and
■ accidents or artifacts of the current state of

the technology’s evolution.

He sees complexity, conformity, changeability,
and invisibility as the inherent properties.

Brooks goes on to comment that “surely the
most powerful stroke for software productiv-
ity, reliability, and simplicity has been the pro-
gressive use of high-level languages for pro-
gramming.” He then asks, “What does a
high-level language accomplish?” His answer
is that “it frees a program from much of its ac-
cidental complexity.” If he’s right, and we’ve
gotten rid of most of the accidental complexity
that software imposes, then the best we can
hope for is only slow, incremental improve-
ment in our software engineering capability.

According to Brooks, another serious im-
pediment to advancing the discipline is that
“software is invisible and unvisualizable.” To
use his terminology, software doesn’t let us
capture a geometric reality in a geometric ab-
straction, as we do with other physical sys-
tems. He concludes, “The reality of software is
not inherently embedded in space.” Tony
Hoare made the related observation that al-
most all complex man-made structures (soft-
ware aside) possess the properties of clear spa-
tial separation and spatial organization of
their components.2

Climbing over the “No 
Silver Bullet” Brick Wall

R. Geoff Dromey

… in which I oppose the notion that we can’t hope to make significant gains in software development.
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If we accept these arguments, where
does this leave us? In summing up his
assessment of the prospects for soft-
ware engineering, Brooks suggests it’s
unlikely that there will be any “inven-
tions that will do for software produc-
tivity, reliability, and simplicity what
electronics, transistors, and large-scale
integration did for computer hard-
ware.” In other words, “building soft-
ware will always be hard. There is in-
herently no silver bullet”—we’ve run
into a brick wall.

Scaling the wall
Faced with a situation like this, our

greatest challenge in advancing any dis-
cipline is always to break free from the
shackles of our past. In this regard,
David Harel’s advice provides a sign-
post to where software engineering is
and should be heading: “It is our duty
to forge ahead to turn systems model-
ing into a predominantly visual and
graphical process.”3

What Brooks calls the “essence” of
software entities has little to do with
the conceptual view of systems. Sys-
tems are built out of a network of in-
teracting components (some of which
might be systems in their own right).
Such a view implies all systems might
have designs that can be embedded in
space. It doesn’t matter whether we’re
talking about systems we intend to im-
plement in software, hardware systems,
other physical systems, business sys-
tems, or any other conceptual systems.
In all cases, the system components en-
capsulate and exhibit individual behav-
ior, and they interact by passing control
and data to other components. This re-
sults in the overall system exhibiting in-
tegrated behavior.

An appropriate representation of
this behavior can provide the ladder
that lets us climb over the brick wall—
to get complexity and change under
control, to overcome the so-called in-
visibility of software, to make gains
with conformity, and, as a side benefit,
to detect requirements problems early.
With a suitable behavioral representa-
tion, we can systematize and simplify
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the task of going from a set of require-
ments to a design. We can consider in-
dividual functional requirements to
represent fragments of behavior, while
a design that satisfies a set of func-
tional requirements represents inte-
grated behavior. This perspective en-
ables us to construct a design out of its
requirements.

The behavior-tree ladder
A formal representation called behav-

ior trees makes this possible,4 thereby re-
moving a lot of accidental complexity
from the analysis and design phases. Be-
havior trees of individual functional re-
quirements (constructed by rigorous, in-
tention-preserving translation from their
natural-language representation) can be
composed, one at a time, to create an
integrated design behavior tree that
serves as a system’s formal behavior
specification. Because we only have to
deal with one requirement at a time,
the task’s complexity greatly decreases.
From this problem domain representa-
tion, we can then transition directly, sys-
tematically, and repeatably to a solution
domain representation of the system’s
architecture (its component integration
specification) and the behavior designs
of the system’s individual components—
both are emergent properties of the inte-
grated design behavior tree.4 We can
then implement the component behav-
ior designs (using design-by-contract)
and directly convert the diagrammatic
form of the architecture to an imple-
mentation, using a one-to-one mapping.
The result is an implementation in which
the components and interactions domi-
nate. This is the best we can do to em-
bed the architecture in the implementa-
tion—the goal we always seek when
designing and implementing physical
systems. Any other architecture imple-
mentation strategy is likely to introduce
unnecessary accidental complexity.

If we take the line of attack I’ve out-
lined, what progress do we make against
Brooks’ inherent properties of soft-
ware—complexity, changeability, invis-
ibility, and conformity—and the vexing
problem of requirements defects? We
make significant progress with com-
plexity because we only need to focus

on the detail in one requirement at a
time, greatly reducing the load on our
short-term memory. Change also be-
comes easier. If a system needs a new re-
quirement, we simply translate that re-
quirement to a behavior tree, integrate
it into the design behavior tree, and
carry out the systematic steps to obtain
the modified integration specification
and component behaviors.5 Invisibility
is alleviated because we can embed the
architecture in the implementation.
Conformity is addressed by using a sin-
gle behavioral representation for require-
ments, the design, and the individual
component designs and by completely
separating the integration of compo-
nents, as defined by the design behavior
tree, from the implementation of com-
ponents. And finally, we find require-
ments defects when we translate require-
ments to behavior trees and integrate the
behavior trees. We can also perform a
number of systematic checks, including
model-checking on the integrated design
behavior tree to find still other defects.
When we complement these strategies
with an integrated view of a system’s
compositional and data requirements,
we have all the information we need to
fully support the design (not discussed
here).

H igh-level programming languages
might have helped remove acciden-
tal complexity at one level. How-

ever, much accidental complexity re-
mains in most analysis and design
processes and in requirement and de-
sign representations. Simpler, more
well-defined processes and better, sim-
pler representations hold the key to
further substantial advances in soft-
ware engineering. This I’ve tried to do
using behavior trees.
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