
1 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

requirements
E d i t o r : N e i l M a i d e n ■ C i t y U n i v e r s i t y , L o n d o n ■ n . a . m . m a i d e n @ c i t y . a c . u k

D
o you have trouble managing require-
ments changes in your projects? You
could benefit from making better use
of design traceability.

Systems engineers designing complex
products such as satellites, aircraft, and

weapons systems are increasingly attuned to the
value of tracing requirements through layers of
design. The key driver is change management.
In such development environments, rapidly as-

sessing the cost of change is vi-
tal to project success.

Practically every system in-
cludes software, and software
usually harbors the lion’s share
of complexity. So, traceability
through software design layers
is equally important.

What is traceability?
Traceability is about docu-

menting the relationships be-
tween layers of information—for instance, be-
tween system requirements and software
design. Broadly speaking, this has two benefits:

■ Increased understanding of design. Many
important questions about a project can
only be answered by understanding the re-
lationships between design layers. These
questions range from “How does the sys-
tem meet customer requirements?” to
“What is this component’s role?” to “What
are the system requirements associated
with this test step?” Documenting these re-
lationships engenders greater reflection
and subjects your thinking to peer review.

■ Semiautomated impact analysis. Appropri-
ate tool support for representing traceabil-
ity relationships can make automated analy-
sis of those relationships possible. When it
comes to assessing the potential impact of
change, your investment in documenting the
relationships will pay off by letting you cal-
culate and present graphs of interdependent
design artifacts at the push of a button.

Explicit traceability
Figure 1 is an example of explicit traceabil-

ity from a recent project. It shows a single cus-
tomer requirement and the four functional re-
quirements designed to satisfy it. The links are
purely for traceability, documenting the satis-
faction relationship.

Many software development tools manage
design relationships—for instance, between
modeling elements (such as classes) and source
code, or between tasks and source code files.
You can potentially treat all such associations
as traceability relationships and use them in
impact analysis. Such relationships are consid-
ered part of implicit tracing because traceabil-
ity isn’t their primary function.

Traceability rationale
In addition to linking artifacts, capturing

the rationale for relationships can help you un-
derstand and analyze those relationships. Con-
sider, for example, figure 1 with rationale
added. Since the relationship is one of satisfac-
tion, we could call the rationale a satisfaction
argument. In this case, the argument applies to
the set of links associated with the require-
ment, as shown in figure 2.

Design Traceability
Jeremy Dick

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 1 5

REQUIREMENTS

We can apply the approach—called
rich traceability1—to other relation-
ships, such as requirements validation,
through tests (using a validation argu-
ment) or by checking a product’s con-
formance to standards (using a compli-
ance argument).

Some organizations collect a partic-
ular layer’s traceability-rationale set
and publish it as a strategy, design, or
compliance document.

Reviewing traceability
Most review processes focus on the

documents’ or other artifacts’ content
and neglect the relationships between
artifacts. It’s just as important to re-
view the tracing between layers as it is
to review the layers themselves.

Again, the right tool support can
greatly assist you in the review process.
Rather than struggling with paper doc-
uments and a traceability matrix, a
tool can do all the donkey work by pre-
senting in electronic form just the in-
formation necessary to review the rela-
tionship between the documents.

We typically conduct such reviews
requirement by requirement. Suppose,
for instance, that we’re reviewing a
software design against customer re-
quirements. We examine each customer
requirement in turn and the design arti-
facts that trace to it. Then we consider
two aspects:

■ Sufficiency. Is the set of design arti-
facts sufficient to satisfy the cus-
tomer requirement? This question
ensures that the design covers and
satisfies the requirements.

■ Necessity. Is each design artifact nec-
essary to satisfy the customer require-
ment? This question protects against
overengineering the design.

Collecting the rationale for tracing
makes reviews even more effective. Sys-
tematically applying such a review can
give you greater confidence that re-
quirements will be met.

Change process
Using traceability, you can imple-

ment change management in the fol-
lowing stages:

1. Identify immediate impact. Deter-
mine which artifacts the change af-
fects most directly (for example,
which customer requirement has
changed or which test case has
failed).

2. Calculate the potential impact tree.
Using an appropriate tool, process
the traceability relationships to con-
struct a complete tree of related arti-
facts up and down the design layers.

3. Prune and elaborate the impact tree.

[961] It shall be possible for the user to
navigate from a parent CP to any of its
child CPs.

[1851] The CPS configure function will
create a view in the “Group Parent”
module that contains a column showing
object identifier and object text of each
CP in the Group Parent.

Customer requirement Functional requirements

[2059] The “Review Group” window will
have a “Show CPs” button, which will
open the “Show CPs” window.

[2060] The “Show CPs” window will list
all CPs in a Group Parent as a multilist,
showing CP object identifiers and CP titles.

[2063] The “Show CPs” window will have
an“Open” button, which will open and
filter the modules containing CPs selected
from the CP multilist.

Figure 1. An example of elementary traceability.

[961] It shall be possible for the user to
navigate from a parent CP to any of its
child CPs.

This requirement is satisfied by 2 means:

[1851] The CPS configure function will
create a view in the “Group Parent”
module that contains a column showing
object identifier and object text of each
CP in the Group Parent.

Customer requirement Functional requirements

[2059] The “Review Group” window will
have a “Show CPs” button, which will
open the “Show CPs” window.

[2060] The “Show CPs” window will list
all CPs in a Group Parent as a multilist,
showing CP object identifiers and CP titles.

[2063] The “Show CPs” window will have
an“Open” button, which will open and
filter the modules containing CPs selected
from the CP multilist.

• Providing a view of the Group Parent
 module that allows the user to navigate
 to child objects.
• Providing a review window that lists
 the child objects and allows the user to
 open the child CP modules.

Figure 2. Rich traceability applied to the example in figure 1.

1 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

REQUIREMENTS

DESIGN

Just because artifacts are linked
doesn’t mean that a change will prop-
agate. Engineering judgment is nec-
essary for determining which im-
pact-tree branches can be pruned or
where you must add new branches
because new artifacts are required.
Traceability rationale can help you
determine the precise nature of change
propagation.

4. Define change. Traverse the impact
tree, working out the precise details
of the changes at each point. A con-
figuration management tool can
help you do this.

5. Apply change. When the changes
are ready, apply them to the system
in all affected layers.

At each stage, you’ll gather more
precise information about the nature of
the change, including cost. A go/no-go
decision point can follow each stage.

W hatever development scale I en-
gage in, I systematically apply in-
formation traceability. It’s a vehi-

cle for thinking about the way the
software meets its requirements; it cap-
tures design rationale to help others

understand and review; and it gives me
far greater confidence in managing fu-
ture changes.

Reference
1. E. Hull, K. Jackson, and J. Dick, Require-

ments Engineering, 2nd ed., Springer, 2004.

Jeremy Dick is a principal analyst at Telelogic UK. Contact
him at jeremy.dick@telelogic.com.

are essential when evolving the design. In-
deed, many view testability as a vital de-
sign property, particularly with older sys-
tems (“Before Clarity”), leading to design
architectures that make the systems more
testable (“The Test Bus Imperative”).

Designers are people too
Design involves people, so in addi-

tion to considering how design fits into
a process, you also have to think about
how it fits with an organization’s peo-
ple. A common question is, What’s the
difference between architecture and de-
sign?—which raises the question of
what an architect’s role is (“Who
Needs an Architect?”). People often
view architects as holding a separate,
directing role. However, I strongly be-
lieve that technical leaders should
work closely with the developers on a
team, a principle that also applies to
enterprise-wide architects (“Enterprise
Architects Join the Team”).

This issue of design leadership goes
further. Architecture can be about the
technical software structure as well as
about how the software faces its users—
leading to questions that many technical
architects don’t consider as frequently as
they should (“The Difference between
Marketecture and Tarchitecture”).

Representing design
For a large part of my career, people

have talked about representing design
in terms of notations, particularly
graphical notations that try to tell you
important things about a program’s
structure. As someone who has written
books on one of these, I understand
both the capabilities and limitations of
graphical notations. A common prob-
lem with using these notations is that

people use them to represent different
kinds of perspectives—even for a single
system. Think of three primary pur-
poses for these models: conceptual,
specification, and implementation
(“Modeling with a Sense of Purpose”).
I’ve come to the conclusion that mod-
els are useful for certain tasks, such as
class structure or visualizing dependen-
cies (“Reducing Coupling”). However,
I don’t see them as absorbing the future
of software development (“MDA: Re-
venge of the Modelers or UML
Utopia?”).

Few of these design principles and
discussions are new. It’s long been
known that you should avoid prema-
ture optimization (“Yet Another Opti-
mization Article”), yet constantly we
see people doing just that. This is why
I spend so much energy simply trying
to find good design techniques that
have worked well in the past and trying
to explain them to others so they’ll use
them in the future (“Patterns”).

S o there it is—five years of writing
compressed into a single column. I
hope that my various authors and I

have given you a few useful ideas along
the way, and I’m pretty certain that Re-
becca will find a lot of good material and
be an excellent steward of this column. I
will, of course, continue to write on my
Web site (http://martinfowler.com), and I
hope to continue finding useful ideas to
write about.

Submit to RE’06!

14th IEEE International
Requirements Engineering
Conference

Minneapolis/St. Paul, MN, USA
September 11-15, 2006
http://www.re06.org

Details and submission instructions are provided on
the conference web pages.

Submission dates
Paper abstracts due
Papers due (all categories)
Tutorial / workshop / panel proposals
Doctoral symposium submissions
Posters and research demos

General Chair Program Chair
Robyn Lutz Martin Glinz
Iowa State University and University of Zurich
Jet Propulsion Lab, USA Switzerland

Feb 6, 2006
Feb 13, 2006
Mar 6, 2006
May 2, 2006
May 2, 2006

Continued from p. 13

