
0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 1 3

requirements
E d i t o r : N e i l M a i d e n ■ C i t y U n i v e r s i t y , L o n d o n ■ n . a . m . m a i d e n @ c i t y . a c . u k

I
n my software engineering interpretation
of Christopher Alexander’s statement,
form is the final result of a software de-
sign and implementation effort—the de-
livered software product. Context, then,
is everything else that’s relevant to the

given design problem, including the obvious,
the subtle, the invisible, and the unknowable—

the design’s environment.
Because the software design

environment contains limitless
numbers of ill-defined factors,
the key to our success is deter-
mining and incorporating “just
the right number” of design-rel-
evant factors.

The design
environment

Each context-relevant class is a source of
critical design ambiguity. We requirements an-
alysts, designers, clients, and end users can
avoid serious design errors by improving our
visibility in each case.

The obvious
Every project includes environmental rele-

vancies that are obvious to all interested par-
ties, from end users to designers. The difficulty
here is selecting the context issues for the de-
sign to address. The client and other users will
likely expect the design to address many, if not
all, of these issues, unless noted otherwise. The
designers must meet cost, time, technology,

and other constraints and therefore selectively
ignore all but the most important environmen-
tal factors. A brokerage firm that excluded
each investment instrument’s annual yield and
yearly income estimate from its newly format-
ted monthly account statements serves as an
actual case. The firm corrected this, but only
after several months of complaints and a few
lost customers.

A system scope statement—shared with and
signed by all interested parties or their surro-
gates—addresses this issue. It’s also important
to thoroughly describe out-of-scope system
limitations and the usual in-scope system fea-
tures in the system requirements.2

One way to bring user viewpoints into the
design process is to delegate user roles to the
design team members. In this case, these mem-
bers would sign important design documents
for their surrogates as well as for themselves as
designers.

The subtle
Other relevancies are obvious to some crit-

ical user constituencies but not to the design-
ers. So, the subtle isn’t likely to show up until
the delivered system lacks functions that some
constituencies are expecting.

This occurred recently in a financial system
developed for giving strategic financial infor-
mation to top management in real time. The
system provided a strategic financial document
to be presented to the monthly Board of Di-
rectors meeting. A remote data-entry mistake

Why Context Matters—
And What Can We Do about It?

Donald C. Gause

Every design problem begins with an effort to achieve fitness between two entities: the
form in question and its context. The form is the solution to the problem; the context de-
fines the problem.1

1 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DEPT TITLE

caused a substantial error in a widely
used financial indicator. Fortunately, a
staff member caught the error and cor-
rected it before the meeting. The busi-
ness requirements had specified out-of-
range data checking, which would
have flagged this error shortly after
data entry. However, the system re-
quirements didn’t convey this require-
ment to the design and implementation
organization, and therefore, it wasn’t
implemented. The design team, because
of an aggressive development schedule,
focused its attention on implementing
the functional transformations required
to perform the data-element to data-
element calculations, or the functional
requirements. Not enough effort went
to the nonfunctional aspects, or the
nonfunctional requirements (see the
Definitions sidebar).

We can improve our chances of
avoiding this kind of error by assigning
explicit responsibility for monitoring
conformance between business and
system requirements. We as designers
need to be more aware of the conse-
quences of focusing too heavily on the
functional specifications at the non-
functional requirements’ expense. De-
veloping use scenarios and test cases
early in the process and making them

an essential part of the system require-
ments also addresses this issue. Formal
reviews, including system require-
ments’ conformance to business re-
quirements, are indispensable.

The invisible
Some parts of the environment are

hard to see. We can ultimately recog-
nize them, but they take effort to tease
out. Imaginative, gee-whiz features
are likely candidates for the invisible
relevancies class, along with unincor-
porated and partially complete func-
tions—functions that do almost every-
thing required.

In the earlier example, the financial
system’s management requirements had
numerous gee-whiz features. One fea-
ture applied to all queries requiring more
than a 20-second response time. It re-
quired the long-running functions to
provide well-specified “rationalization
and pacification” information. Unfor-
tunately, for reasons stated earlier, the
functional requirements failed to in-
clude this gee-whiz feature, so the sys-
tem didn’t include it. Senior manage-
ment viewed a demonstration a few
weeks before the scheduled system
turnover, and luckily, the managers
asked for information requiring a long-

running routine. The developers were
embarrassed when the executives had
to wait 20 minutes for the information.
However, they were saved, this time, by
the reminder that the presystem time
for acquiring this same information
was six weeks after each quarter closed.

We can enhance the odds of catching
oversights by encouraging software en-
gineers to introduce brainstorming and
other ideation processes into require-
ments elicitation.3 Encouraging soft-
ware engineers to incorporate practices,
such as metaphorical thinking and idea
sketching, into their normal work envi-
ronment can also help.4 These mental
tools are commonplace in other (hard)
product design disciplines. In the Board
of Directors example, brainstorming
sessions created many features that
weren’t passed on to the developing
group, once again illustrating the need
to maintain level-to-level consistency of
the full system requirements.

The unknowable
The unknowable relevancies con-

sider those deep context factors that
become visible primarily after product
release. This includes the system’s
unanticipated impact on its environ-
ment as well as the environment’s im-
pact on the system. A multinational fi-
nancial firm developed a system to
improve customer loan services to
global corporate clients. It designed the
system to give loan officers the client
loan status information they would
need to answer queries and, if appro-
priate, offer tentative terms and advice.
A post-release product review revealed
only minor, fixable functional and us-
ability issues. The review deemed the
product a success with one nonfunc-
tional (or extra-functional) exception.
At marketing’s request, the system
tracked the phone-contact time for
each loan officer and client conversa-
tion and issued monthly statistics to
marketing, the loan officers, and their
managers. Marketing had requested
this information for demographic pur-
poses only. These statistics, along with
a recent organizational downsizing,
had produced an unintended competi-
tive situation that, in turn, made the

REQUIREMENTS

Definitions

Functional requirements are the basic, essential functional transformations for
the design team to implement. Nonfunctional requirements describe either modi-
fications of these basic, essential functions or critical systems context factors.
Functional requirements address more detailed issues just a step away from
functional specifications, while nonfunctional requirements address higher-level
issues (such as problem statements, users, attributes, limitations, or features).

Gee-whiz features are those features that are not just optional but outside the
realm of the developers’ imaginations. When developers discover and imple-
ment them, they can add substantial value to a product and differentiate it in
competitive situations.

Context-free questions can apply to any design problem, independent of de-
sign discipline or context. Examples include asking the client or other interested
parties, “What is the design solution really worth to you?” or “What have I for-
gotten to ask you?”1

Reference

1. D.C. Gause and G.M. Weinberg, “Chapter 6: Context-Free Questions,” Exploring Requirements:
Quality Before Design, Dorset House, 1989, pp. 59–67.

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 1 5

DEPT TITLE

loan officers more abrupt with their
clients. The system, designed to im-
prove customer service, was actually
degrading it. Once recognized, this de-
sign problem was easy to fix by aggre-
gating the loan officer phone time
while maintaining individual corporate
client statistics.

Polling all parties early on unin-
tended consequences is a useful way to
raise consciousness and potentially dis-
cover these deep-context regions. An-
other tool that I’ve found especially
useful is applying context-free ques-
tions. By their nature, such questions
focus our attention on nonfunctional
design aspects. We must continually re-
mind ourselves that some relevant re-
gions of context might reveal them-
selves only after product release.
First-use monitoring of help functions,
observing help-service activity, tracking
user satisfaction before, during, and af-
ter delivery,5 and periodic post-release

reviews can provide useful avenues for
discovering these hidden context issues
and information for proactively man-
aging design change activity.

W hy does context matter? It matters
because context, as I have used
the term, is the fully relevant en-

vironment to which we’re designing.
Our understanding of this context de-
fines our view of the design problem.
Business, systems, and functional re-
quirements—and, ultimately, func-
tional specifications—are this contex-
tual understanding’s instantiation,
which is our definition of the design
problem at hand.

I’ve explored using several heuristics
for getting a better look at relevant
context issues and communicating
these issues to all interested parties.
The common factor to these heuristics
is visibility. Anything that we can do to
make our design thinking and processes

more visible will give us an improved
look at relevant context issues, result-
ing in more complete design and better
fit of form to context.

References
1. C. Alexander, Notes on the Synthesis of Form,

Harvard Univ. Press, 1979, pp. 15–16.
2. A. LaPlante, “Managing Project Scope,” Com-

puterworld, 20 Mar. 1995, p. 81.
3. D.C. Gause and B. Lawrence, “User Driven

Design,” Software Testing & Quality Eng.,
vol. 1, no. 1, 1999, pp. 22–28.

4. D.C. Gause and G.M. Weinberg, “Part III: Ex-
ploring the Possibilities,” Exploring Require-
ments: Quality Before Design, Dorset House,
1989, pp. 105–145.

5. D.C. Gause and G.M. Weinberg, “Chapter
21: Measuring Satisfaction,” Exploring Re-
quirements: Quality Before Design, Dorset
House, 1989, pp. 238–248.

Donald C. Gause is a research professor of bioengi-
neering in the Thomas J. Watson School of Engineering, Bing-
hamton University, and principal of Savile Row, LLC. He teaches
and consults in systems engineering, design processes, require-
ments engineering, and organizational innovation. Contact him
at dgause@stny.rr.com.

REQUIREMENTS

Working at the frontiers of knowledge

Faculty of Mathematics and Natural
Sciences
Institute of Mathematics and Computing
Science

• Full Professor in
Software Engineering
VACANCY NUMBER 205152

The qualifications expected from candidates
are described on the web site
(www.math.rug.nl and www.cs.rug.nl) of
the institute, under vacancies.

The University of Groningen can offer you a
salary up to a maximum of € 6462 gross

The closing date for applications is

september 30, 2005.

Please send your written application,

including a cv and a list of publications

to: The University of Groningen

Personnel & Organisation Department

P.O. Box 72, 9700 AB Groningen

The Netherlands

Please state the vacancy number on the

envelope and at the top of your letter.

Additional information about vacancies

at the RUG is available on the university

web site:

(www.rug.nl)

per month for a full-time job (40 hours per
week), depending on qualifications and
work experience. Employment basis:
permanent (tenure).

Further information can be obtained by
prof. dr. D.K. Hammer,
phone +31 50 3633941,
e-mail: d.k.hammer@cs.rug.nl
Websites: http://www.rug.nl/informatica/
onderzoek/programmas/SoftwareEngineering
or http://www.rug.nl/informatica

Rijksuniversiteit Groningen

