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A software development team estimating the
effort needed to complete a complex project
divided it into activities, estimated the effort
required for each, and eventually arrived at a
total of about 17,000 work hours—20,000
maximum, 15,000 minimum. Then the team
leader asked a member with considerable do-
main expertise what his experience had been
on similar software projects. “I recall spending
at least 40,000 work hours,” the developer said.
“Even then, about 25 percent of them failed com-
pletely. In all projects, more than 50 percent of
the effort was due to unexpected events.”

From this seasoned developer’s answer to a
simple, almost off-the-cuff question, this team
realized their estimate was hugely overopti-
mistic, and the risk of total failure was much
higher than they’d previously thought. This
happens all too often in our field. To try to ad-
dress this, I’ve distilled seven guidelines for
producing realistic software development ef-
fort estimates. The guidelines derive from in-

dustrial experience and empirical studies. While
many other guidelines exist for software effort
estimation,1 these guidelines differ from them
in three ways: 

■ They base estimates on expert judgments
rather than models.

■ They are easy to implement.
■ They use the most recent findings regard-

ing judgment-based effort estimation. 

Estimating effort on the basis of expert judg-
ment is the most common approach today,2 and
the decision to use such processes instead of
formal estimation models shouldn’t be surpris-
ing. No substantial empirical evidence favors
using formal estimation models, which are typ-
ically more complex and less flexible. Among
15 empirical studies comparing the estimation
accuracy of expert judgment and formal mod-
els, five favored expert estimation, five found
no difference, and five favored formal models.2
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Practical Guidelines for
Expert-Judgment-Based
Software Effort Estimation

I
mproving software effort estimation doesn’t necessarily require intro-
ducing sophisticated formal estimation models or expensive project
experience databases. The following story shows that it can be as sim-
ple as reframing questions to more accurately capture the project’s

context and characteristics.
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Simple process
changes such as
reframing questions
can lead to more
realistic estimates 
of software
development
efforts.



Taken together, the guidelines here don’t
provide a complete estimation process or dis-
cuss all relevant variables, such as the impact of
schedule compression or the importance of
project management skills. They simply aim to
support the expert judgment process with some
useful, easily implemented practices. Although
fairly general, not all will prove relevant for all
software organizations and projects. An organ-
ization considering changing its software esti-
mation processes according to these guidelines
should therefore consider carefully how well
each fits its environment and goals.

Don’t mix estimation, planning, 
and bidding

What is a software development effort esti-
mate? Is it the most likely effort, the effort
with a 50-percent probability of not exceeding
the estimate, the planned effort, the effort used
as a basis for the bid, or something else? Peo-
ple use the term “effort estimate” for all these
purposes, even within the same organization
and the same project. 

But estimation, planning, and bidding have
different goals. When estimating the most-
likely effort, the goal must be accuracy alone.
Planning, however, should also focus on the
planned effort’s impact on work efficiency and
the risks of overrunning the schedule. Bidding
goals relate to winning bidding rounds and
profit.

Many software organizations have no dis-
tinct processes and tools for estimating, plan-
ning, and bidding, but merging these processes
ultimately reduces the estimate’s realism.2 This
reduction might be largely unconscious—for
example, client expectations can strongly af-
fect most-likely effort estimates.3 Yet software
professionals I’ve interviewed believed such
expectations hadn’t affected them at all, or
only slightly. Knowing that the clients’ price
expectations are unrealistic doesn’t eliminate
their effects on the estimate. Two ways exist to
avoid these effects: 

■ Don’t give the person estimating a project’s
most-likely effort any pricing-related infor-
mation, such as the expected price-to-win.

■ Always treat planning and bidding as
processes separate from effort estimation.

The “A Revised Terminology” sidebar de-
fines terminology that supports independent es-
timation, planning, and bidding processes and
improves the communication of estimation-
related information. A recommended technique
is the pX estimate. It defines the effort level that
the estimator believes has an X percent proba-
bility of not exceeding the estimated effort, and
it starts with the p50 effort estimate of most
likely effort (see the sidebar “Estimating pX Ef-
fort”). An alternative method starts with an es-
timate of most optimistic effort,4 but earlier ex-
periments showed this doesn’t significantly affect
accuracy, and little reason exists for changing the
common practice.

Combine estimation methods
One of the most robust findings in forecast-

ing, human judgment, and software estimation
studies is that “combination works.”5 Appar-
ently it doesn’t matter whether the combination
involves a simple average of estimates from dif-
ferent methods or a sophisticated weighting al-
gorithm. A simple average offers a robust com-
bination method unless one estimation method
or expert is obviously more reliable than an-
other. As shown elsewhere,6 though, an ex-
pert’s technical skill level can be a poor indica-
tor of accuracy, and it’s rarely obvious, in
advance, which expert will be the better esti-
mator. This is one reason a simple average of
outputs from different estimation experts and
methods frequently offers the most robust and
accurate combination method. 
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pX effort estimate: The effort level at which the estimator believes there’s X
percent probability of not exceeding the estimated effort. The goal when
providing a pX effort estimate should be accuracy alone. A project
leader might, for example, believe that 20,000 work hours is the pro-
ject’s p50 effort estimate—that is, there’s a 50 percent probability of not
exceeding 20,000 work hours.

Planned effort: The effort used in the project plans. For example, a project
leader wishing to emphasize a low risk of overrunning the plan might
use a p80 effort estimate. On the other hand, a project leader who be-
lieves that lower planned effort leads to more efficient work might use a
p30 effort estimate. Typically, the planned effort derives from a combi-
nation of goals related to accuracy, project management, and work effi-
ciency.

Effort-to-win: The effort accepted by a client or market—for example,
through a bidding round. The main concerns when assessing effort-to-
win are related to market price and financial profit. The pX effort esti-
mate is useful input when deriving the profit potential—that is, determin-
ing how likely it is that the project will be profitable.

A Revised Terminology



When combining estimates, it’s most im-
portant that the experts and methods repre-
sent different estimation principles and knowl-
edge. Fairly obviously, combining estimates
with the same strengths or weaknesses also
combines the same biases and won’t increase
the final estimate’s accuracy.

However, confidence in the estimate’s accu-
racy increases with the number of estimation
sources, regardless of the principles upon which
they are based. This is why combining estima-

tion methods based on similar principles or
judgments of experts with similar backgrounds
doesn’t increase estimation accuracy but might
lead to overconfidence in it. Figure 1 lists ex-
amples of useful and ineffective combinations
of p50 effort estimates. 

An evaluation of this guideline in a Web de-
velopment company showed that estimation
error dropped from 54 percent to 35 percent
when estimation teams solicited the opinions
of people in different organizational roles.7
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You can derive the pX effort estimate from the p50 effort es-
timate (estimate of most likely effort) and the distribution of pre-
vious effort estimation error using the following method.

First, find the p50 effort estimate. Many estimation methods
are available for this purpose, including some based on expert
judgment1 and others based on models.2 For example, the esti-
mate might reflect the typical effort of a set of completed proj-
ects similar to that being estimated (analogy based). Or, it might
be based on decomposing the project into activities and estimat-
ing each activity (bottom-up).

Next, develop the distribution of estimation error in similar
projects. Start by identifying a set of projects with uncertainty
levels similar to the project you want to estimate. These projects
need not closely resemble the one you’re estimating.3 It’s more
important that the project set be large. In fact, one proper set
seems to be all recent projects in an organization. Then develop
an estimation error distribution for these projects. Derive the es-
timation errors by comparing actual efforts with the p50 effort
estimates, not with the planned efforts or the efforts used as the
client price basis.

Finally, derive the pX effort estimate by calculating it as the
p50 effort estimate plus the estimation error, where previous
projects’ pX have an equally large or lower
error. The estimation team shouldn’t adjust
the pX estimates on the basis of their own
expert judgments of high X values. Although
current evidence doesn’t argue against ex-
pert judgment when estimating the p50 ef-
fort estimate, it does argue against it when
providing, for example, p80 effort estimates.

So, to find the p80 effort estimate, first
find the p50 effort estimate: suppose the
typical effort spent on similar projects has
been about 30,000 work hours, and you
decide to use this figure as the p50 effort
estimate. Next, develop the estimation error
distribution for similar projects. Examining
recently completed projects’ estimation er-

ror, you find that 20 percent had less than 10 percent effort
overrun, 50 percent had less than 25 percent overrun, 80 per-
cent had less than 50 percent overrun, 90 percent had less
than 100 percent overrun, and all projects had less than 200
percent effort overrun (see Figure A).

You might seek the p80 effort estimate for budgeting pur-
poses—that is, a contingency buffer leading to an 80 percent
probability that the project won’t go over budget. Applying the
distribution of estimation effort error (Figure A), you find that
80 percent of previous projects had effort overruns below 50
percent. So your p80 effort estimate is 30,000 work hours �
150 percent = 45,000 work hours.
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Ask for justification
A senior project leader who had overseen

several large industrial plant development
projects that included large software develop-
ment projects had two golden rules for esti-
mating costs on the basis of expert input:

■ Never accept cost estimates based solely
on gut feelings.

■ Always require justification of cost esti-
mates, so that they can be reviewed. 

Several empirical studies support these rules.8

Knowing that a p50 effort estimate requires jus-
tification leads to better estimation processes.
One study found that the only factor correlated
with software organizations’ estimation accu-
racy was the estimator’s accountability.9 Requir-
ing that estimators justify their results is a good
way of increasing their accountability. 

I’ve observed that in many software develop-
ment projects, effort estimates have no justifica-
tion other than a reference to one or more soft-
ware developers’ opinions. When the estimation
teams decomposed the project into activities and
did a requirements analysis, they frequently
used a structured and rational process. How-
ever, the step from identifying an activity to pro-
viding the p50 effort estimate of that activity
was frequently based on “magic.” The number
appeared seemingly from nowhere. A lack of jus-
tification means that huge software investments
are based on a few experts’ judgments that are
not reproducible and are impossible to review.
Figure 2 lists examples of acceptable and unac-
ceptable effort estimation justifications.

Select estimation experts with
experience from similar projects

Experience is more narrowly applicable than
most people think,2 and expertise in “knowing
how” differs from expertise in “knowing how
much it will cost” and “knowing the uncer-
tainty of the effort estimates.” In one com-
pany, I found that accurate p50 effort esti-
mates depended mainly on the estimator’s
ability to recall very similar projects. Overall
experience, on the other hand, was a poor in-
dicator of estimation accuracy. In another
company, I found that estimates from experts
with very similar project experience had on
average only 12 percent estimation error. In
the other projects, the estimation error aver-
aged 39 percent.10

Empirical findings therefore suggest a nar-
row interpretation of “expertise” and the im-
portance of identifying real experts. Specifically,

■ Interpret estimation expertise as experi-
ence on very similar projects, not as gen-
eral software development expertise.
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Figure 2. Justifying p50 effort estimates.

Acceptable justifications
■ Reference to actual effort of similar projects
■ Breakdown of the project into activities, with reference to effort

for performing similar activities in other projects and to the pro-
portion of effort spent on unplanned activities in projects with a
similar level of uncertainty

■ Application of validated, organization-specific relationships (for-
mulas) between actual effort—preferably with documentation of
the validation process

Unacceptable justifications
■ “I believe the effort will be 5,250 work hours.”
■ “The client will not accept a higher cost.”
■ “We (the estimation team) agreed that the effort would be around 

project characteristics, such as number of user screens to imple-
ment and the 6,500 work hours, and we have a lot of experience.”

■ Reference to output from a noncalibrated estimation model with
no organization-specific data on its performance—use of a non-
calibrated, black-box, formal model might actually be “gut feel-
ings” in disguise, where the model input is adjusted so the output
fits the “gut feeling”

Figure 1. Combining p50 effort estimates.

Useful combinations of estimation methods
■ Top-down and bottom-up methods
■ Analogy and linear regression methods
■ Expert judgments and formal methods
■ Expert judgments made by software professionals with different

project experiences
■ Expert judgments made by software professionals in different roles

Ineffective combinations of estimation methods
■ Expert judgments from software professionals with similar project

experience—for example, team members with experience from the
same projects

■ Expert judgments from software professionals with the same educa-
tional background and organizational role—that is, estimates based
on the combination of judgments only from people in technical roles

■ Estimation methods based on the same underlying principles, such
as two regression-based estimation models with similar variables



■ Consider expertise in knowing how to
perform development tasks as different
from expertise in knowing how much ef-
fort is required to complete them. In fact,
technically skilled estimators are some-
times more optimistic and consequently
less skilled in effort estimation than non-
technically-skilled personnel.6

■ Select estimators carefully. If no software
professionals inside the development organ-
ization have experience with similar proj-
ects, seek expertise outside the organization.
While it’s impossible to overestimate the
value of relevant estimation experience, it’s
easy to overestimate the relevance of the es-
timation experience available.

Accept and assess the uncertainty
of effort usage

Software projects frequently have cost over-
runs. No doubt, we could often avoid or reduce
this through better estimation processes and
project management. But software organiza-
tions and clients must understand that many
software projects have high inherent uncertainty
and no entirely accurate effort estimate is possi-
ble. In such projects we should, rather, learn to
accept and assess the high uncertainty instead of
denying it or believing we can reduce all of it. Of
course, knowing the effort uncertainty level
helps us prepare proper contingency buffers and
other important means of managing uncer-
tainty. Surprisingly, few guidelines exist for as-
sessing software development effort uncertainty.

A recent evaluation of alternative approaches
for assessing uncertainty had several important
findings.11 First, existing formal models for as-
sessing software development effort uncer-
tainty, such as regression-based models, aren’t
very useful. The formal models, though unbi-
ased, use available information about uncer-
tainty inefficiently. Second, human-judgment-
based uncertainty assessments tend to be
overconfident, typically assessing effort esti-
mates to be more accurate than they actually
are. A recent study found that when a project
leader claims to be 90 percent certain (or “al-
most certain”) that the actual effort will not ex-
ceed a maximum effort, the actual probability
is typically 60 to 70 percent.3

To improve uncertainty assessments, we
need to move away from the traditional ap-
proaches based on the program evaluation and
review technique. PERT approaches first esti-

mate the most likely effort (that is, the p50 ef-
fort), then the minimum and maximum effort
to ensure that, for example, it’s 90 percent cer-
tain the actual effort will fall between the min-
imum and maximum effort. This approach can
lead to overconfidence, with overly narrow
minimum-maximum intervals.

An alternative approach:

1. Estimate the p50 effort estimate (most
likely effort).

2. Mechanically derive minimum and maxi-
mum values—for example, set the maxi-
mum effort to 150 percent and the mini-
mum to 90 percent of the estimated most
likely effort (someone other than the esti-
mator can set minimum and maximum val-
ues based on planning, budgeting, or other
information needs).

3. Estimate the probability that the actual ef-
fort falls within the minimum-maximum
interval.

Two large software companies that applied
this method improved their uncertainty assess-
ments’ realism from, on average, 16 percent
overconfidence to no overconfidence at all.11

Provide learning opportunities
Studies on software cost overruns and how

experience affects software estimations show
little learning from experience alone.2 This
shouldn’t surprise us, given the few learning
opportunities for effort estimation in software
development projects. Typically, a project
team estimates a project’s most likely effort,
then executes the project and measures the ac-
tual effort. The actual effort often exceeds the
estimated most likely effort. What can we
learn from such feedback, other than we have
been overoptimistic, again?

Studies on the learning process show that
learning depends on understanding causes and
effects, professional guidance, and immediate
feedback.12 Performance seems to relate much
more to the amount of training than to length
of experience. The typical estimation and proj-
ect execution situation contains few elements
required for estimation learning. 

Deliberate training (see the sidebar “Deliber-
ate Training for Software Development Estima-
tion”) provides more efficient learning because
it goes beyond on-the-job estimation training.13

Among its advantages:
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■ Estimators can assess their experience’s valid-
ity on different project types, such as much
larger projects than they estimated earlier.

■ Estimators can analyze reasons for forgot-
ten activities or underestimated risks im-
mediately, rather than establishing biases
based on hindsight. 

■ It’s easier to understand the tendency to be
overconfident, given proper coaching and
training projects.

■ Estimators can systematically study the
consequences of changes in the estimation
process, such as the use of a new estima-
tion method, without risk of estimation
failure for ongoing projects.

I know of no scientific evaluations of delib-
erate learning in software estimation contexts.
Nevertheless, convincing findings in other
contexts,13 together with the almost total lack
of estimation learning from on-the-job experi-
ence observed elsewhere,14 lead me to believe
that deliberate training is worth trying.

Consider postponing or 
avoiding effort estimation

No textbooks I know of discuss how effort
estimates might adversely affect project per-
formance. Some empirical studies do suggest
that estimates’ mere existence may lower effi-
ciency and that unrealistic estimates can ad-
versely affect project behavior.14,15 Providing

effort estimates based on limited information
increases the risk that both the estimates and
plans will be overoptimistic.16 I’ve observed
that attempts to adhere to an overoptimistic es-
timate lead to insufficient effort spent on analy-
sis, design, and quality assurance. Unplanned
analysis and design iterations, in turn, cause
project chaos and perhaps large effort overruns
during testing and integration. Also, an overop-
timistic early effort estimate can easily act as an
anchor for subsequent estimates and adversely
affect estimators’ ability to be realistic when
more information becomes available.3

In short, good reasons sometimes exist for
postponing effort estimation for as long as pos-
sible, and even for not estimating at all where the
risks of inaccurate estimating might outweigh
the benefits of having an estimate. Of course,
working without effort estimates doesn’t mean
planning is unimportant. Good definitions of the
project goals, milestones, and deliverables are all
significant success factors for software projects,
regardless of whether effort estimates exist. 

T o download further documentation
of these guidelines and other useful
estimation information, go to the

BEST project home page at www.simula.no.
The project pages include access to an exten-
sive library of software cost estimation re-
search and estimation checklists.
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I envision a three-phrase training process. The first is the
preparation phase, in which the organization collects informa-
tion about a set of completed software projects. A proper set of
information includes

■ the initial software requirement specification;
■ the project experience report describing unexpected events

and perceived reasons for accurate/inaccurate effort esti-
mates; and

■ the actual effort of the project, separated into activities and
following a structure similar to the work breakdown structure
typically applied in the organization’s estimation phase.

Organize the projects into a meaningful learning sequence,
starting with representative but not terribly complex projects,
slowly increasing their complexity.

In the estimation phase, the trainee receives the require-

ments specification and other relevant information typically
available for estimation. The task is to find the project’s p50 ef-
fort estimate and uncertainty distribution by applying proper
estimation processes. The estimator should document every esti-
mation step and assumption, and experienced project leaders
should provide guidance on the first estimation attempts.

In the feedback phase, when the trainee has estimated the
project and documented the steps and assumptions, an experi-
enced project leader should provide (or supervise provision of)
immediate feedback tailored to the trainee’s needs. Feedback
should include, for example, reasons for inaccurate estimates,
such as forgotten activities and incorrect assumptions, and
ways to improve the estimation process. 

After finishing estimation and feedback on one project,
move to the next project in the training sequence. Conduct this
learning loop until the trainee’s estimation skills are perceived
to be sufficient.

Deliberate Training for Software Development Estimation
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