
9 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

quality time
E d i t o r s : N a n c y E i c k e l m a n n ■ M o t o r o l a ■ n a n c y . e i c k e l m a n n @ m o t o r o l a . c o m

J a n e H u f f m a n H a y e s ■ U n i v e r s i t y o f K e n t u c k y ■ h a y e s @ c s . u k y . e d u

P
eople with a scientific background
tend to analyze and drive a system on
the basis of observations and measure-
ments. In software, however, only half
of this statement seems true. We’re
usually convinced that we need to

measure the performance of our processes, but
we rarely see the benefits of driving them by
data, despite recommendations of renowned
maturity models.

To use an analogy: When you’re
learning to drive a car, your mind
collects data and builds a sort of
cause-effect model that helps you
anticipate actions and predict re-
sults. In that scenario, learning and
driving are relatively easy because
you experience the result of your
actions immediately. Driving a
software project is more like pilot-
ing a large cargo ship—you need
more time (or distance) to see the

results of your actions, the complexity is
higher, and the sea is more unpredictable. So
learning and driving become more difficult. In
this context, computer models are a must—
they can help you predict outcomes and antic-
ipate with confidence. Thankfully, you can
now use cause-effect modeling to drive soft-
ware quality, moving your organization to-
ward higher maturity levels.

Successful software projects
Despite missing good software quality mod-

els, many software projects successfully deliver
software on time and with acceptable quality.

Although researchers have devoted much atten-
tion to analyzing software projects’ failures, we
also need to understand why some are success-
ful—within budget, of high quality, and on
time—despite numerous challenges. In these
projects, managers are in control. They not only
can detect deviations from target but also initi-
ate effective corrective actions. Successful
process control supposes a good understanding
of the relationships between inputs, process dri-
vers, and output.

We can successfully determine corrective
actions only if we know the process response
to stimulation or change in its inputs and dri-
vers. This knowledge must then exist in pro-
jects that perform as planned. Restricting soft-
ware quality to defects, decisions made in
successful projects must be based on some un-
derstanding of cause-effect relationships that
drive defects at each stage of the process. To
manage software quality by data, we need a
model describing which factors drive defect in-
troduction and removal in the life cycle, and
how they do it.

Once properly built and validated, a defect
model enables successful anticipation. What it
lacks in richness compared to the “mental”
model we use for intuitive decision-making, it
gains in repeatability and objectivity. We can
analyze its predictive performance and compare
it to other models. No model is perfect, but it
should explain with a reasonable level of confi-
dence a process’s outcome given measures of in-
puts and key drivers. This is why it’s important
that the model include all variables influencing
the process response to some degree.

End-to-End
Defect Modeling
Jean-Jacques Gras

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 9 9

QUALITY TIME

Causal models
We find most organizations are pri-

marily interested in measuring the
process response directly linked to
business performance. To build our
models, we need to measure simultane-
ously the variables controlling the
process, the key drivers, the model’s in-
puts, and the defects discovered along
the development process until well af-
ter delivery.

In existing metrics databases, we
don’t usually find data related to all
these factors and can’t simply analyze
data to produce a valid model for each
activity in an organization’s develop-
ment process. Unfortunately, software
development’s specificity and economics
make it impractical to run measurement
campaigns producing the necessary data
in a reasonable amount of time.

What can we do, then, when we don’t
have enough data to characterize our
processes? We can capture the knowledge
we mentioned earlier: that of cause-effect
relationships between inputs, drivers, and
process response—the knowledge that
enables successful projects to deliver soft-
ware according to plan.

Bayesian Network (BN) models have
been proposed to capture this sort of
knowledge because they offer the capa-
bility to describe cause-effect relation-
ships in an easily accessible graph and
to rigorously quantify the relationships
with conditional probabilities.1,2

During the modeling process, we
elicit all the key factors and their cause-
effect relationships, build a graph, and
quantify the relations from expert
opinions or from data (when available
in large enough quantities). In large or-
ganizations, the knowledge we want to
capture is most often distributed among
the people involved in software devel-
opment: engineers, team leaders, pro-
ject managers, testers, and process im-
provement teams.

The graph provides an ideal way to
share captured knowledge among all
people involved in model construction.

Using defect models in
development and test

This modeling approach with BNs is

a promising and practical way (see the
sidebar) of driving software quality
across the software systems’ life cycle.
During project planning, we can load
into the model preliminary informa-
tion about development and test fac-
tors that is available at this early stage.
Thanks to Bayesian statistics, this lim-
ited information is complemented by
“prior” probabilities for the missing
factors derived from past projects and
preset in the models. The resulting de-
fect predictions are precious for refin-
ing the project plans, using what-if sce-
narios to assess the impact of changes
in controllable quality factors. Further
into the development, actual data
about the missing factors can be fed to
the models that can then produce bet-
ter predictions.

An important feature of BN models
is their ability to propagate informa-
tion both ways: causes to effects and
effects to causes (inference). When out-
comes of the first verification and vali-
dation activities become available, we
can force actual numbers of defects
found into corresponding model out-

puts. Back-propagation will then revise
the model’s internal variables (such as
the total number of faults inserted in
each software component’s code),
which are unobservable at this stage.
Consequently, we get more accurate
predictions of latent defects before they
escape to system integration and test.

We can also combine preliminary de-
fect predictions available during compo-
nent development with models describ-
ing component interactions, derived
from system design, to generate system
integration and test plans. We get, at an
early stage, a way to calculate the opti-
mal number of test cases to be written in
each test area for each system feature.
Revised predictions obtained after release
of software components to system test
teams are accurate enough to select the
most efficient test cases and drive testing
toward the weak spots. After each test
stage, we can apply the same updating
concept through back-propagation of ac-
tual defects found. This work leads even-
tually to a thorough ranking of system
features, predicting how likely they are
to fail in customers’ hands. Associated

1 0 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

QUALITY TIME

with failure impact, these predictions are
most useful to support release decisions.

B Ns provide a practical way of tran-
sitioning from a world driven by
intuition toward one driven by

data. We can now build models of de-
fect introduction and removal across

the whole life cycle that work well
enough to drive verification and vali-
dation activities from development to
system testing. Future research could
target the creation of a library of generic,
reusable model components for com-
posing defect models that can fit in
multiple domains and adapt to chang-
ing contexts.

References
1. N. Fenton and M. Neil, “A Critique of Software

Defect Prediction Models,” IEEE Trans. Soft-
ware Eng., vol. 25, no. 5, 1999, pp. 675–689.

2. N.E. Fenton, P. Krause, and M. Neil, “Soft-
ware Measurement: Uncertainty and Causal
Modeling,” IEEE Software, vol. 19, no. 4,
2002, pp. 116–122.

Jean-Jacques Gras is a principal research engineer at
Motorola Labs. Contact him at jjgras@motorola.com.

End-to-End Defect Prediction Models at Work

Prompted by the work of Norman Fenton and Martin Neil,1

our team at Motorola Labs collaborated with several software
organizations in Motorola over the years and found it possible
to reach consensus on key software quality drivers and their
relationships with the defects escaping each development and
test activity. We built Bayesian Network models (BNs) corre-
sponding to the main software development activities in the
telecom domain, from the requirement phase to system test. The
key drivers identified so far relate to people, process, and prod-
uct factors. A BN model doesn’t need to be an exact represen-
tation of the process. Much more simply, the graph describes
only the fundamental relations between key drivers and
process output attributes. Interestingly, and this is probably due
to the fundamental character of the factors and relations, we re-
ceived similar views from various development groups. Factors
and graph structures were so close that it encouraged us to cre-
ate a library of model components by merging models for equiv-
alent activities but from different origins into more generic ones.

Defect models drive verification and
validation

The development of large systems is split into components
assigned to different teams. Each team uses a model to predict
latent defects released to system integration and test (Figure A).
Individual BNs predict the number of defects inserted during
creation activities and removed by each verification and valida-
tion activity. They’re connected to each other through dynamic
links by our tool, the Bayesian Test Assistant, to map the partic-
ular process of a given component project. BTA takes data
collected during development to produce a prediction of the
defects left at each stage of the process.

End-to-end models drive system testing
Latent defects released by each component team to system

integration and test are compounded by system service models
(derived from the system architecture) to generate test plans
long before actual integration starts (Figure B). These plans
suggest how many test cases you should write to catch defects
potentially exposed by each service’s execution. Later, when in-
tegration is done, you can further use BTA to prioritize test
cases for optimal test execution. Eventually, predictions of field
defects’ impact provide good support for release decisions.

Reference
1. N. Fenton and M. Neil, “A Critique of Software Defect Prediction Mod-

els,” IEEE Trans. Software Eng., vol. 25, no. 5, 1999, pp. 675–689.

Design BN Coding BN Code size BN

Requirements
Bayesian

Network model

Feature/subsystem

Unit test BN

Test BN

Fagan
inspection BN CORE BN

Latent defects

Figure A. A component defect model.

Service/feature BN

Component/subsystem
latent defects

Feature field failure BN

Service defects

Defects

Defects

Return rate

One BN
per service

Percent usage profile

System
test BNST/service

Regression
test BNRT/service

Field
test BNFT

Product release

Region/usage

Figure B. An end-to-end model.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003100200046006500620072007500610072007900200032003000300034002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

