
6 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

quality time
E d i t o r s : N a n c y E i c k e l m a n n � M o t o r o l a � n a n c y . e i c k e l m a n n @ m o t o r o l a . c o m

J a n e H u f f m a n H a y e s � U n i v e r s i t y o f K e n t u c k y � h a y e s @ c s . u k y . e d u

S
ix Sigma concepts are increasingly pene-
trating software engineering literature
and practice. But exactly what Six Sig-
ma is and how you apply its concepts
remain unclear. To make sense of the Six
Sigma movement,1 we must look back

to the origins and implications of its dominant
predecessor, Total Quality Management.

Brute-force quality
Historically, quality improve-

ment was a management-dictated
process of applying brute-force ef-
fort to particular quality problems.
For example, management would
set a goal of reducing back orders
in an order-processing environ-
ment by 50 percent—from the 24
percent rate to a target of 12 per-
cent or less. This goal would drive
an all-out effort to attack the prob-
lem by making changes in the

problem area and observing their impact on
the back-order rate. The rate would eventually
drop to the 12 percent target or below, and
management would declare the improvement
process a success on the basis of this result (see
Figure 1). However, the improvement process’s
actual behavior would have varied consider-
ably. At times there would be more back or-
ders and at other times there would be far
fewer. The process would likely remain unpre-
dictable—causing a fluctuating back-order
rate—and yet management would be happy
because the overall rate would stay consider-
ably below 24 percent for some time.

Problems with the brute-force approach are
numerous but center on the fact that such ef-
forts often focus on incorrect or inappropriate
solutions that usually aren’t even sustainable.
You can solve virtually any quality problem in
the short run by altering existing controls, spe-
cial expediting, or off-cycle planning. For ex-
ample, you can reduce back orders by manu-
facturing more of the commonly back-ordered
products, running special reports to expedite
problem orders, or overriding control policies
that might prevent certain product substitu-
tions. The result will be more orders out the
door but potentially at the cost of a subopti-
mized system. These changes could lead to
scheduling problems with other products,
profitability loss because expediting cost is
added to standard cost, and decreased cus-
tomer satisfaction as ill-advised, last-minute
substitutions push orders onto unwary cus-
tomers. As these problems work themselves
out over time through customer complaints
and revised production planning, the original
problem will resurface and management will
find itself right back where it started with high
back-order rates.

Total Quality Management
Recognizing the brute-force approach’s

weaknesses caused a shift toward more sys-
tematic quality improvement approaches.
These approaches consider process improve-
ment key in satisfying the customer’s percep-
tion of quality while using a fact-based ap-
proach to monitoring and decision making.
These approaches became collectively known

Six Sigma for Software
Richard E. Biehl

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 6 9

QUALITY TIME

as Total Quality Management, and
many variations were popular in soft-
ware quality literature from the 1980s
to mid 1990s.2 Quality tools that had
been used for decades in other fields be-
came popular as TQM caught on with
management and penetrated product
and process design in many disciplines.

TQM made a quantitative impact
with Statistical Process Control,3 the cli-
mactic TQM tool that brought analysis
and decision making into quality im-
provement. SPC had two key effects:

� Quality engineers expected processes
to exhibit variation close to an aver-
age value but within certain ex-
pected ranges (control limits).

� What customers wanted from a
process (specification limits) wasn’t
necessarily what they would see the
process do.

When a process is operating outside
of its specification limits, it’s producing
defectives. When a process is operating
outside control limits, it’s out of control.

An out-of-control process signals a
problem with the underlying process
and that you should use TQM methods
and tools to address the problem. So
SPC analysis identifies both the loca-
tion of the problems (producing defec-
tives) and whether or not you can cost-
effectively fix them (out-of-control
process behaviors). Defects from in-
control processes are harder to isolate
and correct and require a different ap-
proach to systematically using the
TQM toolset.

Figure 2a illustrates the back-order
problem using basic SPC thinking.
Management’s 12 percent target be-
comes the upper specification limit
(USL) of the desired new process. The
objective will be to build a process that
results in a back-order rate not exceed-
ing this value, making the design tar-
get’s upper control limit (UCL) also 12
percent. (You can’t calculate actual
control limits until the process is in
place, so control limits are discussed as
design targets.) Presumably, manage-
ment would want to reduce the back-
order rate as much as possible (lower-

the-better), and so the lower specifica-
tion limit and lower control limit are
both 0 percent. By convention in SPC,
the target value for the process re-

design is the midpoint of the two spec-
ification limits, or 6 percent. The new
process should deliver a 6 percent back-
order rate. Fluctuations should be so

High variability
of results

across different
time periods

Back orders
(percentage of orders)

Target 12%

Goal: reduce by 50%

Current 24%

Figure 1. Goal-based metric target with unpredictable process behaviors.

Customer defective
Back-order rate > 12%

Process defect
Back-order rate > 9%
Improvement zone

9% < Back-order rate > 12%

σ = 2%

Design target is
worst case for 3σ

Customer defective
Back-order rate > 12%

Process defect
Back-order rate > 12%

(a)

Lower specification limit/
lower control limit

0%

Target
6%

Upper specification limit/
upper control limit

12% Goal: reduce by 50%

Current 24%

Desired target
level is

lower-the-better

σ = 1%

Design target is
worst case for 6σ

(b)

Lower
specification

limit
0%

Lower
control
limit
3%

Upper
control
limit
9%

Upper
specification

limit
12%

Target
6%

Goal: reduce by 50%

Current 24%

Desired target
level is

lower-the-better

Back orders
(percentage of orders)

Back orders
(percentage of orders)

Figure 2. Back-order rate example: (a) Total Quality Management improvement
metric based on three standard-deviation control limits in Statistical Process
Control. (b) Six Sigma metric with improvement zone between three
standard-deviation control and six standard-deviation specification limits.

7 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

QUALITY TIME

minimal that variations within three
standard deviations (3σ) from the
mean should still be under the 12 per-
cent USL.

So, SPC guides improvement toward
a process that exhibits the natural range
of variation while still producing prod-
ucts or services that meet customers’
expectations for quality. The resulting
process will exhibit a 3σ quality level,
and the SPC data will show quality im-
provement opportunities by monitoring
defectives and process variability.

Six Sigma
Six Sigma differs from TQM in its

emphasis on raising the bar on quality.
The processes designed in TQM initia-
tives became sensitive to 3σ control ex-
ceptions in SPC, with ongoing im-
provement occurring incrementally at
these margins. Six Sigma uses all the
TQM tools and techniques and adds
an emphasis on long-term process vari-
ability and shift.

With TQM, processes that were in
control in the short run would become
out of control in the long run as their
variability increased with human error,
equipment wear, and gradual deterio-
ration of process conditions. Software
variability might result as user skills
didn’t keep up with changing software
features, response times degraded be-
cause of increasing network loads, or
databases became less efficient as the
relative volume of historical versus ac-
tive data changed.

With increased variability, TQM
models failed to deliver adequate qual-
ity, even at short-term 3σ levels. The
short-term expected defect rate of less
than 1 percent for 3σ processes could
rise above 5 percent because of long-
term process shifts. By broadening ex-
pectations to 6σ quality, new processes
could provide acceptable quality levels
while accomodating the effects of long-
term process shift.

Quality engineers still use SPC to
monitor and evaluate process perfor-
mance at 3σ levels. However, the iden-
tified exceptions are now occurring
well within the 6σ specification limits.
In TQM, process defects and customer

defectives were both defined at 3σ,
which necessitated process improve-
ment while dealing with customer defec-
tives outside the process. To let processes
and systems self-correct and adjust to
results in the 3σ-to-6σ range, Six Sigma
separates discussing process defects
(outside 3σ) from recognizing cus-
tomer defectives (outside 6σ). Such
self-correcting processes actively mea-
sure their own performance and have
additional reaction procedures for
when key metrics fall in the defined im-
provement zone. For example, a data
display application might temporarily
reduce the amount of detail it displays
per screen if it notes that data access or
response times are rising above their
control limits.

Figure 2b illustrates this difference
using the back-order rate example. The
specification limits haven’t changed be-
cause they represent the customer’s de-
sires, which don’t depend on how you
measure quality. But the control limits
change. Design target SPC control lim-
its are still 3σ from the target, although
the specification limits are now 12σ
apart in this new Six Sigma view. This
means that the revised UCL is now 9
percent, or the midpoint between the 6
percent target value and 12 percent
USL. An improvement zone now exists
between the UCL and USL. Values
above the control limit are process de-
fects that SPC says can be economically

corrected. If you can correct them be-
fore they exceeed the USL, the cus-
tomer need never see a defective. As I
mentioned earlier, control limits are de-
sign targets and you can’t measure ac-
tual performance until you implement
the design. Cutting a design target con-
trol limit in half isn’t trivial; it entails
shifting the level of customer-perceived
performance from 60 to 70 deviations-
per-thousand to 3 to 4 deviations-per-
million. Roughly half of the acceptable
performance observations under the 3σ
design become process defects under
the 6σ design. Organizations that can
achieve such tight performance in key
design dimensions can yield enormous
benefits.

A s software engineers redesign pro-
cesses in line with Six Sigma, they
can implement controls that take

advantage of the improvement zone be-
tween 3σ and 6σ process performance.
By building critical customer metrics
into software solutions (for example,
response times, cycle times, transaction
rates, access frequencies, and user-
defined thresholds), they can make ap-
plications self-correcting by enabling
specific actions when process defects
surface in the improvement zone.
These actions don’t always need so-
phisticated technical solutions to be
beneficial. Controls can be as simple as
an email notifying support personnel
of defects above the 3σ level or a peri-
odic report-highlighting activity in the
3σ-to-6σ zone. The point isn’t to build
software without defects but to prevent
software from producing defectives in
spite of their defects. That’s the essence
of Six Sigma for software.

References
1. C.B. Tayntor, Six Sigma Software Develop-

ment, Auerbach Publications, 2002.
2. J.M. Juran, A History of Managing for Qual-

ity, ASQC Quality Press, 1995.
3. W.A. Florac and A.D. Carleton, “Using Statis-

tical Process Control to Measure Software
Processes,” Fundamental Concepts for the
Software Quality Engineer, T. Daughtrey, ed.,
ASQC Quality Press, 2003, pp. 133–143.

Richard E. Biehl is a quality advisor at Data-Oriented
Quality Solutions. Contact him at rbiehl@doqs.com.

The point isn’t to build
software without defects
but to prevent software

from producing
defectives in spite of

their defects.

	footer1:

