
Conversations in BME
invasive or noninvasive: understanding
brain–machine interface technology

W
ith this issue of
the magazine,

we are adding a
new feature, ‘‘Con-

versations in BME,’’ in which
distinguished academics and
researchers discuss a biomedi-
cal issue in depth, highlighting
pros and cons of different
approaches. Our goal for this
feature is to promote discussion
as a way to facilitate scientific
growth in our community and,
in particular, among students.

It is a pleasure to introduce
the guests for this issue: Prof.
Jos�e del R. Mill�an, Swiss Federal Insti-
tute of Technology, Lausanne, and Prof.
Jose M. Carmena, University of Califor-
nia, Berkeley, who discuss how noninva-
sive and invasive cortical signals can be
used to control robotic systems in a suc-
cessful way and examine the potentials
and limits of noninvasive and invasive
cortical neural prostheses. Representing
excellence in their respective fields,
Dr. Mill�an and Dr. Carmena here share
thoughtful ideas for the future of brain–
machine interface technology.

—Silvestro Micera

The Promise of
Brain–Machine Interface
Mill�an: The idea of controlling devices
or interacting with our environment not
by manual control but by mere thinking,
i.e., by human brain activity, has fasci-
nated researchers for the past 40 years.
However, only recently have experi-
ments shown the possibility of doing so
[1]–[4]. This is a rapidly emerging field
of multidisciplinary research called
brain–machine interface (BMI) that has
seen impressive achievements during
the last years. A BMI monitors the user’s
brain activity, extracts specific features
from the brain signals that reflect the

intent of the subject, and translates these
features into actions (such as moving a
wheelchair or selecting a letter from a
virtual keyboard), without using the
activity of any muscle or peripheral
nerve. The central tenet of a BMI is the
capability to distinguish different pat-
terns of brain activity, each being associ-
ated to a particular intention or mental
task. Hence, adaptation is a key compo-
nent of a BMI because users must learn
to modulate their brainwaves voluntary,
through appropriate feedback, so as to
generate distinct brain patterns. In some
cases, user training is complemented and
accelerated with machine learning tech-
niques to discover the individual brain
patterns characterizing the mental tasks
executed by the subject [5], [6].

What kind of brain signals can directly
control devices? Electrical activity is the
natural candidate because of its excellent
time resolution—we can detect changes in
brain activity at the millisecond range. We
can record the electrical brain activity
invasively or noninvasively. The former
technique employs microelectrode arrays
implanted in the brain that record the
activity of single neurons [11], [12], [16],
[17], [22]. The overall concerted activity
of neuronal populations can also be
recorded invasively with electrodes placed
on the surface of the brain, the so-called

electrocorticography (ECoG),
which measures local field
potentials [14]. Noninvasive
BMIs, commonly referred as
brain–computer interfaces
(BCIs), mainly use electroen-
cephalographic (EEG) activity
recorded from electrodes placed
on the scalp to measure the
synchronous activity of thou-
sands of cortical neurons [13],
[18], [24]–[26], [30], [32]–[41].

Carmena: Since its origins,
the primary goal of transforming
thought into action and sensa-
tion into perception has been to

improve the quality of life for the physi-
cally impaired. As a result, multiple groups
around the globe have successfully dem-
onstrated rodents, nonhuman primates,
and humans controlling prosthetic devices
in real-time through a diverse set of neural
signals collected from the brain [7]–[22].

In addition to the paramount applica-
tion as therapeutic technology, brain–
machine interface (BMI) systems hold
enormous potential as a tool for studying
fundamental questions about how the
brain learns and adapts to new environ-
ments, which in turn will contribute to
improve design of the future BMI sys-
tems. In the BMI paradigm (Figure 1),
the experimenter has full control of the
motor transformation linking the spatio-
temporal patterns of neural activity to
the behavior or the sensory transforma-
tion linking a behavioral or external
event to neural activity. For example,
sensorimotor maps can be arbitrarily
changed by the experimenter, allowing
the neural adaptations to environmental
changes to be studied in a controlled
manner [19], [22], [23].

BMI systems can be divided with
respect to the type of physiological sig-
nals recorded. At the microscopic level,
the two types of signals available are:
the single unit (spiking) activity (SUA)
and the local (or intracortical) fieldDigital Object Identifier 10.1109/MEMB.2009.935475

Jos�e del R. Mill�an Jose M. Carmena

16 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE JANUARY/FEBRUARY 2010



potential (LFP). At the mesoscopic
level, cortical field potentials can be sub-
dural or epidural via electrocorticogra-
phy (ECoG) and can also be recorded
from the scalp via electroencephalogra-
phy (EEG). Although there are other key
attributes for classification of BMI sys-
tems, such as the decoding technique,
control scheme, and prosthetic device to
be controlled, the most typical classifica-
tion of BMI systems refers to the level of
invasiveness of the recording technique.

Mill�an: Considering
a Noninvasive Approach
Noninvasive EEG is a convenient, safe,
and inexpensive recording method that
is ideal to bring BMI technology to a
large population. Indeed, the promise of
BMI is to augment human capabilities
by providing a new interaction link with
the outside world and is particularly rele-
vant as an aid for paralyzed humans,
although it also opens up new possibil-
ities for able-bodied people, for instance,
in gaming and space applications. This
promise is supported by the fact that
researchers working with EEG signals
have made it possible that human sub-
jects mentally control a variety of devi-
ces: keyboards for writing messages
[32], [34], [35] [37], brain games [34],
[38], robots [18], hand orthoses [36] and
wheelchairs [30]. Figures 2 and 3 show
two of our noninvasive BMIs at use. The
first one allows a person to control either
software processes running in a
computer or external devices such as a
mobile robot. The second BMI demon-
strated the feasibility of noninvasive
BMI for space applications during a par-
abolic flight [24].

Yet, why have EEG-based BMIs not
seen a widespread clinical application so
far? Remember that the main source of
the EEG is the synchronous activity of
thousands of cortical neurons. Thus, EEG
signals suffer from a reduced spatial reso-
lution, and since they are recorded on the
scalp, they are susceptible to artifacts
generated by muscle contractions and
ocular movements, as well as outside
sources. Consequently, current EEG-
based BMIs are limited by a low informa-
tion transfer rate and are considered too

slow for controlling complex devices.
However, as mentioned previously, re-
searchers have recently shown that online
analysis of EEG signals, if used in combi-
nation with machine learning techniques
and smart interaction designs, is sufficient
for humans to do so. Furthermore, thanks
to the principle of mutual learning, where
the user and the BMI are coupled together
and adapt to each other, humans learn to
operate the brain-actuated device very
rapidly, in a few hours normally split
between a few days [5], [6].

Rapid user training is often associated
with unstable control signals, but this is
actually not the case. Many groups have
reported that users keep a stable level of
performance over months and even
years. Moreover, these groups have
largely demonstrated that subjects are
able to operate different brain-actuated
devices by triggering the same EEG pat-
terns they have learned to modulate;
they need to know only the association

Fig. 2. Noninvasive BMI based on the analysis of EEG signals, i.e., the brain electrical
activity recorded from electrodes placed on the scalp (colored spots in the red cap
worn by the person). The user is mentally driving a mobile robot between rooms in a
house-like environment, making it turn or move forward. Alternatively, he can control
some software processes running in the computer by triggering the same EEG pat-
terns as for the interaction with the robot.

Fig. 1. Schematic description of a corti-
cally controlled computer cursor per-
forming a center-out task. Color map in
the background depicts a stable corti-
cal map for prosthetic function [16].
(Illustration copyright John Blanchard.)
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between EEG patterns and the mental
commands. And last, but not least, some
subjects have demonstrated that they
can deliver appropriate mental com-
mands only when they wish to do so and
while performing other tasks such as
speaking. This is possible because of the
use of machine learning techniques at
two levels. First, to discover discrimi-
nant EEG patterns that users rapidly
learn to modulate at will. Second, to
make an intelligent analysis of the
continuous EEG signals to deliver a
mental command only when the BMI
has accumulated enough evidence for it,
thus effectively supporting idle (or non-
intentional control) states where sub-
jects do not want to operate the device.

Another characteristic of EEG is that,
although it is possible to achieve accurate
two-dimensional movement control of
cursors and wheelchairs, it naturally
reflects more abstract information such
as intended targets, intended actions, and
preferences. This makes it an ideal con-
trol signal whenever we follow shared
control principles to design smart inter-
action devices, where the user conveys

high-level commands that the devices
interpret and execute in the most appro-
priate way to achieve the goal because of
their knowledge about the task and the
current situation. This is particularly
effective for the control of robots and
neuroprostheses [18], [24].

Still another advantage of EEG is
that it allows researchers to monitor the
ongoing activity all across the brain.
This, in principle, should facilitate the
design of BMIs that combine different
brain processes, each engaging differ-
ent cortical areas or requiring an orch-
estrated activity of a complex network
of cortical areas. In addition, and per-
haps more importantly, the EEG not
only conveys information about the
subject’s intent (the mental commands)
but also about cognitive states that are
crucial for a purposeful interaction. All
this is done in parallel. An example of
such a cognitive state is the user’s
awareness to errors made by the BMI.
The associated brain correlate of this
cognitive state is called an error-related
potential (ErrP). Recently, we have dem-
onstrated its online use embedded in a

BMI, which yields enormous increases
in performance [25], [26]. The principle
is to stop the execution of the wrong
BMI response if an ErrP is detected a
few milliseconds afterward. In general,
detection of some cognitive states such
as errors can directly trigger automatic
responses of the intelligent brain-con-
trolled device, whereas other kinds of
states can customize the interaction
according to, for instance, the user’s
mental workload [39] or alertness [40].

Carmena: Considering
an Invasive Approach
On the invasive side, two main recording
technologies dominate the BMI spec-
trum: ECoG and cortically implanted
microelectrode arrays that record from
ensembles of SUA. The nature of the sig-
nals recorded via ECoG is similar to
EEG, since they measure electrical poten-
tials, resulting from the spatial average of
a large area of the brain, and hence use a
large group of neurons. However, the fact
that the recording electrodes that are
placed under the dura leads to higher
spatial resolution than do EEG (i.e.,
tenths of millimeters versus centimeters),
broader bandwidth (i.e., 0–500 Hz versus
0–50 Hz), higher characteristic amplitude
(i.e., 50–100 �V versus 10–20 �V), and
far less vulnerability to artifacts, such as
EMG or ambient noise. The main draw-
back with respect to EEG is the invasive-
ness of the procedure, as it requires
opening the skull and, in the case of sub-
dural implants, also opening the dura
mater [27].

Microelectrode arrays are the most
invasive of the techniques used in BMI
systems. To date, this is the only record-
ing technique that allows decoding the
intended movements of the subject’s
limb with high accuracy. This technique
allows recording SUA from large popu-
lations of neurons from multiple areas of
the brain simultaneously. Arrays are
chronically implanted in cortical areas of
the brain. Typical areas include the
primary motor cortex (M1), the dorsal
premotor cortex (PMd), and the posterior
parietal cortex (PPC). Of great concern
with this technique is the long-term
stability of the recordings. The brain

Fig. 3. Validation of a non-invasive brain–machine interface for space applica-
tions during a parabolic flight (note a person floating in the top left corner). The
subject needs to operate the BMI in different gravity conditions, including micro-
gravity. This study was run in collaboration with the European Space Agency’s
Advanced Concept Team.
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tends to protect itself by creating a layer
of scar tissue around the electrodes, lead-
ing to a slow decrease of the signal-to-
noise ratio (SNR). Moreover, micromo-
tion of the electrodes within the brain can
lead to changes in the observed wave-
forms and to a below-threshold SNR.
Nevertheless, chronic SUA recording
techniques have improved in recent
years, with studies reporting up to several
years of continuous recordings with last-
ing cell yield, isolation quality, and
stability through time [22], [28].

BMIs based on cortical field poten-
tials (such as EEG and ECoG) typically
use nonbiomimetic decoders (i.e., not
generated from arm movement data)
and rely on operant learning through
visual feedback to master control of the
prosthetic device. Similarly, recent
results with invasive BMIs recording
from SUA suggest that biomimetic
decoding may not be necessary if con-
stant conditions in the ensemble and
decoder structure are maintained [20],
[22]. While some EEG studies have
demonstrated comparable functionality
to SUA studies with respect to the kind
of task achieved (e.g., target hitting)
[13], typical drawbacks are the lengthy
training required, and that only a frac-
tion of the subjects are typically capable
of performing the task. In other words,
achieving prosthetic control remains
more natural with SUA. This, of course,
comes at the high price of the invasive
technique, which, today, still makes it
inaccessible for most patients.

Progress in invasive BMI systems is
expected to greatly accelerate over the
next years, as more research groups across
multiple disciplines join this exciting
quest. In the short-/mid-term, BMIs will
improve the quality of life for millions of
people by restoring communication and
sensorimotor function in patients suffering
from spinal-cord injuries and other neuro-
logical disorders. Moreover, the impact of
this technology in the clinical realm may
drive the field to the next level: augmenta-
tion of sensory, motor, and cognitive capa-
bilities in healthy subjects. Yet, for this to
happen, major breakthroughs will be
needed to improve the implantable tech-
nology currently available.

Efforts are being pursued along these
lines at various institutions around the
globe (see [29] for an example). A key
stepping stone is the development of
fully integrated, ultra low-power, wire-
less neural interface systems that will
perform real-time processing of a large
number of channels and different types
of physiological signals at the micro-
scopic (SUA and LFP) and mesoscopic
levels (ECoG). However, perhaps the
biggest milestone for the invasive BMI
approach to become the standard in the
clinical realm is at the biophysical inter-
face. The fields of materials science and
bioengineering are positioned to be the
game changers. Progress in these fields
could relax some of the constraints and
risks associated with invasive BMI
technology, such as infection and tissue
damage, and bring it to the level of the
pacemaker, the cochlear implant, or the
more recent deep-brain stimulator, mak-
ing the invasiveness worth the risk for
the final user.

The Future of BMI
Mill�an: Is EEG the ultimate signal for
BMI? Despite all its current advantages
and expected future progress, the answer
is still open. I think that if we were con-
strained to use only one brain signal
modality for a given human patient, the
choice would be dictated by the degree of
paralysis and control the patient has over
the different signals. However, the most
efficient solution in the future will be a
combination of all modalities—from mul-
tiunit recordings for accurate continuous
control to EEG for discrete goal-oriented
tasks—to achieve the final goal of provid-
ing natural real-time control of complex
prosthetic devices that replace the missing
limbs. Nevertheless, we need to first
design robust and principled BMI systems
based on each single modality before
addressing the fusion of all of them.

Carmena: Taking the wine glass
problem as the standard (i.e., using a
BMI to reach for and grasp a glass of
wine in 3-D space), the main problem
for BMIs today is how to scale up in task
complexity. In other words, how do we
move from the proof-of-concept level,
‘‘Can such a system ever be built?’’ to

the real world application, ‘‘How do we
build it?’’ Scalability holds the key for
determining which technique proves to
be the most ideal for interfacing with
the brain.

BMIs are evolving toward a shared-
control regime in which the system will
combine decoded information from
neural signals with knowledge about the
prosthetic device and the environment,
distributed across sensor networks, to
improve control of the prosthetic device
and to reduce the cognitive load.

A potential future limitation of non-
invasive BMIs will be the delivery of
feedback from the prosthetic device,
i.e., bidirectional data flow (brain–
machine–brain). In fact, one of the hot-
test areas in today’s invasive BMI
research aims at incorporating sensory
feedback from the prosthesis via intra-
cortical microstimulation (ICMS) to
allow a patient to feel the prosthetic
device as an extension of his/her own
body. The expectation is that successful
encoding of tactile and proprioceptive
feedback from the prosthetic device
will lead to realistic sensations and
thereby increase performance accuracy.

Perhaps a debate about which ap-
proach (invasive versus noninvasive) is
best does not make much sense today.
In fact, the BMI field benefits from the
availability of both approaches. With
today’s techniques, it would be fair to
say that the choice of invasive or nonin-
vasive approach will be determined by
the physical condition (e.g., degree of
paralysis) of the patient. However, this
scenario may change as the constraints
of invasive techniques relax.

Ultimately, dramatic improvements
on several parallel fronts will be needed
to achieve the milestones required to
bring BMI technology to the clinical
realm and to explore and build real-
world future applications with this
technology. Thus, we ought to continue
with the invasive BMI approach and
investigate it further before we can even
begin arguing which approach is the
best compromise. We cannot afford to
cease invasive work until we test its lim-
its and exploit its potential. Moreover,
since each approach informs the subject
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in different ways, a combination of
several techniques may be necessary to
build high-end BMI systems (i.e., those
that will make it through the scalability
problem). In the long term, the ultimate
BMI system may very well become a
hybrid of microscopic and mesoscopic
neural signals, exploiting both SUA and
ECoG and, thus, being able to benefit
from local, high-resolution signals (e.g.,
for generating motor commands) and
more global information (e.g., cognitive
states, such as arousal, level of attention,
and error-related potentials). Thus, the
right question may not be which
technique is better but which type of
neural signal (or combination of) will be
used by the ultimate BMI?

Final Thoughts
Mill�an: Dr. Carmena has made a very
compelling case for invasive BMIs that I
can easily subscribe to, but not fully! We
share many of the views concerning the
current state of the art and future of BMI.
To start with, I agree that we need to con-
tinue research on both invasive and non-
invasive BMIs to explore their respective
limits and advance our knowledge. A
second point of confluence is in the major
role that shared control will play to bring
BMIs to practical use. We are also in
accord that a mid- to long-term milestone
for BMI technology is the development
of better technology to measure brain sig-
nals in a safe, robust, and accurate way,
which applies to invasive and noninva-
sive BMIs. Because the achievements of
noninvasive BMIs are attracting a grow-
ing interest from funding agencies and
industry, significantly more efforts will
be devoted to develop new generations of
electrodes. It is likely that a large number
of such electrodes, in combination with
embedded signal processing algorithms,
will overcome many of the limitations of
today’s EEG, which has not changed much
for the last 50 years!

Two additional points of agreement
are the fundamental role of sensory feed-
back from the neuroprosthesis to the sub-
ject and that the ultimate BMI will likely
exploit different kinds of neural signals,
microscopic and mesoscopic. However,
in this article, here I diverge from Dr.

Carmena’s views. Concerning the first
issue, he assumes that the only way to
deliver rich tactile and proprioceptive
feedback is via intracortical microstimu-
lation. However, this is not really the
case. There exists a large body of re-
search on neuroplasticity that shows
how people can acquire new sensory
brain maps through peripheral stimula-
tion (for a popular review, see [41]). The
challenge is to design appropriate trans-
ducers that convey the state of the neuro-
prosthesis through the body surface, or
peripheral nerves, and to couple them
with the BMI to allow people to develop
brain maps for such an external device.

Regarding the combination of micro-
scopic and mesoscopic neural signals,
Dr. Carmena states that the best option
is to exploit single unit activity (SUA)
and ECoG, both invasive signals, and
discards EEG. It can be argued that if
one could implant electrodes every-
where in the brain safely and robustly,
then there would be no need for nonin-
vasive BMI. However, I doubt this will
be the case, even in the long term. Most
probably, brain implants will be limited
to a few per patient and not for every
subject. There are, of course, ethical and
medical reasons to limit the use of inva-
sive BMI. However, the fact that up-to-
date, noninvasive BMIs have achieved
similar levels of performance as inva-
sive BMIs for tasks once considered
inapplicable is compelling. Indeed, the
only BMIs actually used by disabled
people in their daily life are noninva-
sive. A prominent example is Bir-
baumer and colleagues’ work [32] with
paralyzed patients. I contend that the
next generation of noninvasive BMI
will also be capable of decoding the
intended movement of the subject’s
prosthetic limb to reach and grab a glass.
This will be possible because such a
future noninvasive BMI will combine
several neural correlates associated to
movement control—identification of
intended targets with a relatively good
resolution, recognition of when subjects
decide to start/end an action, and even
generations of acceptable trajectories—
with advanced shared control architec-
tures. Stay tuned!

Carmena: Dr. Mill�an brings very
important points regarding the wide-
spread utility of EEG-based BMI systems.
I fully agree that noninvasive BMIs will
always have their niche due to the accessi-
bility of the technique. In cases in which
invasiveness is not an option, EEG-based
BMIs will be the only technology avail-
able. Moreover, other realms such as the
video-game industry have already started
incorporating noninvasive BMI headsets
with their products at an affordable price.
For basic neuroscience research, however,
the utility and potential of the invasive
approach is better positioned than nonin-
vasive because all relevant signals—SUA,
LFP, and ECoG—are accessible with the
same technique.

For future high-end prosthetics that
will require sensory feedback to feel the
prosthetic device, EEG-based BMIs are
more limited. Both invasive and nonin-
vasive approaches currently rely on
visual feedback to close the loop. How-
ever, noninvasive BMIs lack the poten-
tial that invasive techniques possess,
such as using ICMS to evoke natural
perception in the subject by stimulation
of sensory neurons. The noninvasive
BMIs will need to be complemented by
other options such as sensory encoding
through vibrotactile displays on other
parts of the body (e.g., the neck).

Dr. Mill�an points to limited spatial
resolution, muscle-related artifacts, and
low information transfer rate as the
main reasons why EEG-based BMIs
have not seen a widespread clinical
application, and that decoding techni-
ques that involve mutual learning (or
coadaptation) between the user and the
BMI are helping with these problems.
While I fully agree with Dr. Mill�an’s
point, in my opinion, this also brings up
a different issue, which is that the
potential for EEG-based BMIs to make
quantum leap improvements is saturat-
ing, whereas invasive BMIs, in princi-
ple, have a larger unexplored territory
and much room for improvement. This
is reflected in the number of studies
conducted with both approaches. In the
case of EEG-based BMIs, both the easy
accessibility to neural signals and the
fact that they have been used for a
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longer period of time have resulted in
the number of studies conducted around
the world being significantly larger than
for invasive BMIs. To a certain extent,
we know what sort of signals can be
decoded from the scalp and the level of
volitional modulation that the subject
can achieve through EEG. This is
clearly not the case in SUA-based BMIs
in which the invasiveness of the
technique has constrained the number
of studies demonstrating online cortical
control of prosthetic devices to just over
a dozen. Thus, an exponential increase
in the number of these studies could
result in dramatic progress and change
the current application space in which
EEG is dominant.

Finally, Dr. Mill�an agrees that a com-
bination of both mesoscopic and micro-
scopic signals will probably be the ideal
scenario. The subtle difference in the
argument is that, in my opinion, should
SUA prove to be a fundamental part of a
high-end BMI system, there will be no
reason for recording the EEG instead of
the ECoG. A hybrid BMI combining
SUA and ECoG signals, as well as ICMS
for prosthetic sensory feedback, may
very well be the consummate approach
that the field is missing.
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