
66 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE NOVEMBER/DECEMBER 2004

text comparison based on dynamic programming

I
nspired by BLAST and related
sequence comparison algorithms, we
have developed a method for the
direct comparison of query text

against database text as an improvement
upon traditional keyword-based search-
es. The primary application of our
implementation, eTBLAST, is to better
select those database entries (abstracts,
in the case of MEDLINE) of most rele-
vance to a given query. eTBLAST takes
as input natural text instead of key-
words, allows refinement of retrieved
hits through iteration, can be applied to
any text (demonstrated here on biomed-
ical databases), and allows inspection of
the local space around a query through
simple visualization methods.
eTBLAST is available at http://inven-
tion.swmed.edu/etblast.

Introduction
A recent enumeration of molecular
biology databases listed 548 different
databases, including sequence reposito-
ries, databases of comparative
genomics, gene expression, gene iden-
tification and structure, genetic and
physical maps, intermolecular interac-
tions, metabolic pathways and cellular
regulation, mutations, protein sequence
and structure, protein motifs, and RNA
sequences [1]. Most of these databases
are growing at an exponential rate. In
most cases, this growth represents the
generation of information, but not auto-
matically the generation of knowledge.
Much as knowing how to spell a word
is not equivalent to understanding its
meaning, and knowing all the words in
a language does not mean we under-
stand its grammar, knowing the
sequence of an individual gene is not
equivalent to understanding its func-
tion, and knowing all of the genes and
their protein products for a given
organism does not mean we know how
they interact to create life.

A recent article coauthored by Harold
Varmus, former director of the National
Institutes of Health, called for a data-
base similar to Genbank, but containing
articles instead of sequences [2]. The
problem of information retrieval from
literature databases is therefore becom-
ing more and more important. Searches
of text databases are typically done by
Boolean methods, in which the user
inputs a series of single words connect-
ed by Boolean operators, such as AND,
OR, and NOT. While this approach is
useful for the experienced or sophisti-
cated searcher who has a clear under-
standing of the query and of the
limitations of the database against
which he is searching, poorly construct-
ed queries result in either too many hits,
with a low signal-to-noise ratio, or an
overly restricted result with few hits, if
any. Relevant hits may be missed
entirely because of query constraints,
such as the failure to include relevant
synonyms.

More advanced approaches, which
are available in fields other than bio-
medical research (typically ones for
which language use is more structured
and less ambiguous, like law for which
Lexis/Nexis and WestLaw are the stan-
dard information retrieval tools) go
beyond Boolean operators and include
search modifiers and proximity as part
of the query construction. Search modi-
fiers include stemming, in which a word
is replaced by its base form (e.g.,
walked → walk), case folding, which is
simply the conversion of characters in
order to make the search case insensi-
tive (e.g., Queen → queen), application
of a stoplist, which involves the
removal of words felt to be insignificant
for the comparison (e.g., the queen →
queen), synonym expansion or replace-
ment, in which a word is expanded to a
list of synonyms (e.g., monarch →
king, queen), and semantic network

expansion or replacement, in which a
word is expanded to include conceptu-
ally related terms (e.g., queen →
woman). Including proximity in query
construction allows the user to specify a
distance relationship between words in
the query which must be satisfied by
documents in the target. For example,
AT/1, NEAR/4 and FAR/10 represent
constraints on two words satisfied only
if they are exactly one word apart, at
most four words apart and at least ten
words apart, respectively.

This may sound like biology is get-
ting the short end of the stick, but this is
not really the case. Biologists deal with
many types of (biological) objects, from
organelles to organisms, from nucle-
otides to networks. The purpose is
sometimes reductionist and sometimes
integrationist, but in either case, the
ultimate goal is the determination of
structure and function and how they are
related. Bioinformaticists deal with only
three types of objects: sequences, both
nucleotide and amino acid, structures,
from small molecules to protein com-
plexes, and text, whether it is annotation
for a sequence or a structure or an arti-
cle or abstract. The purpose is the corre-
lation of information and the use of that
information to assign function to new
sequence and to predict structures and
construct models. The principal tools
are based on similarity search, like
BLAST, FASTA, and SSEARCH [3]
for nucleotide and amino acid sequence
comparison, and VAST [4], [5] and
DALI [6] for structure comparison.
Unfortunately, there are currently no
tools available for text comparison that
allow a user to specify the query.

Comparison Methods, Similarity
and Homology
Fortunately, the concept of similarity
search extends far beyond comparison
of nucleotide sequences and amino acid

Alexander Pertsemlidis
and Harold R. Garner

Engineering in Genomics

0739-5175/04/$20.00©2004IEEE



67IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE NOVEMBER/DECEMBER 2004

sequences, to protein and other molecu-
lar structures, and even to text, parallel
to the relationship between sequence,
structure, and function. While similarity
between documents is trivially mea-
sured by enumerating the words they
have in common with an adjustment for
different document lengths, in which
the lowest frequency words are discard-
ed insignificant [7], it is possible to bor-
row from the work done on sequence
comparison and improve the assess-
ment of similarity significantly. 

Before the similarity of two texts can
be computed, however, their proper
alignment must be determined, an inher-
ently circular problem, since evaluating
an alignment requires calculating simi-
larities. The question “How similar are
two texts?” is not as simple as it seems.
It is, in fact, several questions: “Is there
a perfect match between the two texts?,”
“If there is no perfect match, what is the
best alignment between the two texts?,”
“How should alignments be scored?,”
and “If gaps are allowed, how should
they be scored?” [8]

Substitution Matrices and 
Gap Penalties
When evaluating an alignment of any
kind, one would like to know how
meaningful it is. For sequences, this
requires a scoring matrix, or a table of
values that describe the probability of a
biologically meaningful amino acid or
nucleotide residue pair occurring in an
alignment. Typically, when two
nucleotide sequences are being com-
pared, all that is being scored is whether
or not two bases at a given position are
the same. All matches are given the
same score (typically +1 or +5), as are
all mismatches (typically −1 or −4).
But with proteins, the situation is differ-
ent. Substitution matrices for amino
acids are more complicated and implic-
itly take into account everything that
may affect the frequency with which
any amino acid is substituted for anoth-
er, such as the chemical nature and fre-
quency of occurrence of the amino
acids. The objective is to provide a rela-
tively heavy penalty for aligning two
residues together if they have a low

probability of being homologous, or cor-
rectly aligned by evolutionary descent.
There are two major forces that drive
the amino acid substitution rates away
from uniformity: not all substitutions
occur with the same frequency, and
some substitutions are less functionally
tolerated than others and are therefore
selected against. Commonly used substi-
tution matrices include the blocks sub-
stitution (BLOSUM) [9] and point
accepted mutation (PAM) [10], [11]
matrices. Both are based on taking sets
of high-confidence alignments of many
homologous proteins and assessing the
frequencies of all substitutions, but they
are computed using different methods. 

In the case of text, the scoring matrix
is a table of values that describe the
probability of a semantically or syntac-
tically meaningful alignment. In princi-
ple, it is possible to generate high-
confidence alignments based on tech-
niques like grammar induction [12] and
to assess the frequencies of substitu-
tions in those alignments. 

For text, as with sequences, we must
consider not only substitutions but inser-
tions and deletions as well. The conse-
quence with respect to sequence
alignment and comparison is the need
for the introduction of gaps into one or
both sequences or texts to produce a
proper alignment. The penalty for the
creation of a gap should be large enough
that they are introduced only where
needed, and the penalty for extending a
gap should take into account the likeli-
hood that insertions and deletions can
occur several units at a time. 

Dynamic Programming
Dynamic programming methods were
first described in the 1950s, outside the
context of bioinformatics, and first
applied in that context by Needleman
and Wunsch in 1970 [13]. These meth-
ods find an optimal solution to a given
problem by breaking the original prob-
lem into smaller and smaller subprob-
lems, until the subproblems have a
trivial solution, and then using those
solutions to construct solutions for larg-
er and larger portions of the original
problem. A generalization of the

Table 1. Examples of Boolean operators, search modifiers,
and proximity operators.

Boolean operators

Operator Example Result

AND Alice AND Wonderland both terms
OR Alice OR Wonderland either term or both
NOT Alice NOT Wonderland first term but not second

Search modifiers

Modifier Example Result

stemming walked walk
case folding Queen queen
stoplist The queen queen
synonyms monarch queen
semantic network queen woman

Proximity operators

Operator Example Result

AT/1 Cheshire AT/1 Cat Cheshire Cat
NEAR/4 head NEAR/4 off “Off with her head.”
FAR/10 Queen FAR/10 Hatter . . . the Queen put on her 

spectacles, and began 
staring at the Hatter, who 
turned pale and fidgeted.



68 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE NOVEMBER/DECEMBER 2004

Engineering in Genomics (continued)

recursive dynamic programming
approach, the Smith-Waterman algo-
rithm [14], is a mathematically optimal
method, which handles sequence com-
parisons in a single computation and is
guaranteed to find the highest scoring
alignment. The algorithm incorporates
the concepts of mismatches and gaps
and identifies optimal local alignments.
Local alignments, where parts of one
sequence are aligned to parts of another,
are more biologically relevant than
global alignments, where entire
sequences are aligned to each other
because perfect matches of significant
length are extremely rare in most bio-
logical applications. Interestingly, local
alignments are also more relevant for
text comparison, where perfect matches
of significant length are also rare
(except in cases of plagiarism).

As fast as computers are, and as effi-
cient as the dynamic programming
algorithms are, they are still far too
slow to enable exhaustive searches of
huge nucleotide sequence repositories
such as GenBank [15] or amino acid
sequence databases like SWISS-PROT
[16], or even literature databases like
MEDLINE. This means that one cannot
search the database exhaustively for the
optimal local alignment. A heuristic is
therefore required to shorten the time
required by approximating the best
local alignment.

Text comparison algorithms can take
advantage of the same heuristics
employed by sequence comparison
algorithms. The sequence comparison
algorithms BLAST and FASTA both
operate on the assumption that true
matches are likely to have at least some
short stretches of high-scoring similari-
ty, but where FASTA looks for exactly
matching words, BLAST uses a scoring
matrix (BLOSUM62 for amino acid
sequences, by default) to find high-
scoring words. These high-scoring hits
are used as seeds for the slower dynam-
ic programming algorithm. Ana-
logously, text comparison can begin
with differentiating keywords, which
are useful in similarity judgments, from
“stop words,” which are not. The docu-
ments in the target database that contain

enough of the keywords present in the
query can then be subjected to the slow-
er dynamic programming algorithm.

BLAST for Electronic Text (eTBLAST)
If we define a segment as a contiguous
subsequence of text, and a segment pair
as a pair of segments of the same length,
one from each of the two texts being
compared, then the task that eTBLAST
performs is the identification of all pairs
of similar segments whose score exceeds
a given threshold. These pairs of similar
segments are called “high scoring seg-
ment pairs” (HSPs). The segment pair
with the highest score is called the maxi-
mal scoring segment pair (MSP); its
alignment cannot be improved by
extending it or shortening it.

eTBLAST is similar to the method
used for document neighbor computa-
tion by the National Center for
Biotechnology Information (NCBI) (see
the Appendix), but can be applied not
only to text abstracts contained in MED-
LINE but to arbitrary text provided by
the user. The keywords in the query and
in the target database are identified by
negation; they are the remainder after
removal of terms that are contained in a
given stop list. For the query, lexical
variants and synonyms are generated.
The resulting keyword list is compared
to the extracted keywords from the tar-
get database, and the score of a single
pairwise comparison is calculated either
using the vector cosine method, or with-
out normalization.

There are three major steps in the
eTBLAST algorithm (Figure 1), which
compares the BLAST and eTBLAST
algorithms. Detail for each of the steps
is as follows:
1a) Where BLAST filters low complex-

ity regions (CA repeats, for exam-
ple) and removes them from the
query and generates a list of all of
short sequences, or words, that
make up the query, eTBLAST
removes stop words (such as “a”
and “the”) from the query and gen-
erates a list of all keywords and
their frequencies of occurrence
within the query. We recognize that
a single set of stop words cannot

cover all possible applications or
circumstances and have therefore
generated several sets. One such set
was generated by parsing MED-
LINE abstracts and tabulating the
top 5,000 most abundant words.
Processing all abstracts in MED-
LINE through April 2001, we
extracted ∼4,493,000 unique
words. Titles and abstracts were
read in for each record and pre-
processed to eliminate delimiting
punctuation (colons, commas, semi-
colons, and periods that were fol-
lowed by spaces—to ensure the
punctuation was not part of the
word). Brackets, parentheses, line-
feed characters, and quotes (single
and double) were eliminated entire-
ly, along with words containing no
letters (i.e., purely numeric (e.g., 4,
2.5) or symbolic (e.g. ,− >, 4/5)
references). Words were read into
an array, sorted, merged, and
summed. Both absolute word fre-
quency and word frequency by
abstract are calculated. The list was
truncated at approximately 2,000
words, since inspection of the list
indicated that words appearing less
frequently were more likely to be
useful keywords. A few of the
words occurring frequently enough
to be in the top 2,000 were removed
from the stop list, as they were bio-
medically relevant keywords, like
“cancer,” “drug,” and “patient.”
Other keyword lists were generated
from less biologically centered
sources, such as the Merriam
Webster dictionary.

1b) BLAST uses a scoring matrix
(BLOSUM62, by default, for
amino acids) to determine all
high-scoring matching words for
each word in the query sequence.
No gaps are allowed. The list of
matches is reduced by taking only
those that will score above a given
threshold, called the neighborhood
word score threshold. eTBLAST
takes the list of keywords from the
query and makes some adjust-
ments in order to handle the situa-
tion in which keywords in the



IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE NOVEMBER/DECEMBER 2004 69

Engineering in Genomics (continued)

query and the target are similar in
meaning but do not match exactly,
and the related situation in which
keywords have the same meaning
but differ in their grammatical
usage. To accomplish this, we
employed lexical variant (LVG)
and synonym generation. One
implementation of LVG is a suite
of tools that can “generate, mutate
and filter” lexical variants, which
is part of the SPECIALIST set of
lexical tools available from the
Unified Medical Language System
(UMLS) Knowledge Sources at the
National Library of Medicine. (See
http://umlsks.nlm.nih.gov.)

Since the amount of computation
required to compare a single query
abstract to the MEDLINE abstract
database is already significant, and
the addition of lexical variant gen-
eration makes it larger, we decided
to minimize its impact by applying
LVG to the query only. We expand
each keyword in the query into its
set of lexical variants, and at the
same time, add keywords that are
synonymous with those in the origi-
nal list. The resulting (larger) list of
keywords is then used in the com-
parison against the target database. 

2) BLAST searches through the target
sequence database for exact matches

to the word list generated. Because
BLAST has already preprocessed
and indexed the databases for the
occurrence of all words in each
sequence in the database, this search
is extremely fast. If a match is
found, it is used to seed a possible
alignment between the query and
the databases sequences. eTBLAST
searches through the target text data-
base for exact matches to the key-
word list generated. Because
eTBLAST has already pre-
processed and indexed the databases
for the occurrence of all words in
each text in the database, this search
is extremely fast. If a match is

Fig. 1. (a) The BLAST algorithm. (1) Given a query sequence of length L, BLAST derives a list of words of length w, where w = 3 for
amino acid sequences and 11 for nucleotide sequences. There are at most L − w + 1 such words. The word list is reduced by
removing those that score less than a threshold T when scored using a scoring matrix such as PAM250 [10] or BLOSUM62 [9]. For
typical parameter values, this results in about 50 words per residue of the query sequence. (2) The high scoring word list is com-
pared to the sequence database and exact matches are identified. (3) For each word match, the alignment is extended in
both directions to generate alignments that score higher than the score threshold S. (b) The eTBLAST algorithm. (1) Given a
query sequence of length L words, eTBLAST generates a list of keywords, removing those that appear in a given stop list. (2) The
keyword list is compared to each abstract in the database and exact matches are identified. The initial score is calculated
based on the frequency of co-occurrence of the keywords in the query and the target. (3) For each keyword in the high scor-
ing abstracts, the local neighborhood of keywords is computed via a distance matrix, and the abstracts are rescored based on
the distributions of keywords in the query and the target.

ABC

BCD

CDE

DEF

ABC

ABD

DEF

DFP

ABC

ABC

LMN

OPR

DEK DEK

ABC LMN

LMN

A quick brown fox jumped over the lazy dog.

A

fox

the

dog

fox

dog

quick

lazy

Ingratitude, thou marble-hearted fiend.

fiend

A blessed friend brought breath and ease again.

A cursed fiend wrought death disease and pain.

fiend death disease pain

Cigarette smoking does not cause lung cancer.

lung cancer

fiend

disease

death

pain

(a) (b)

(1)

(2)

(3)

(1)

(2)

(3)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

DSKOWJJDKSLMNKDKJDFKKJDFF

MSLZMSOWURNFKSADEFAQMAZMSH

ABCDWFHHFJSLMNKDKJDEHKKJFF



70 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE NOVEMBER/DECEMBER 2004

Engineering in Genomics (continued)

found, it is used to seed a possible
alignment between the query and
the database sequences.

3a) BLAST tries to extend the alignment
from the matching words in both
directions as long as the score contin-
ued to increase. The resulting align-
ment was called an HSP. eTBLAST
simply looks for the highest value in
the dynamic programming matrix
and determines the optimal local
alignment from that point.

3b) BLAST determines if each score
found is greater than a given cutoff
score, S, determined empirically by
examining the range of scores given
by comparing random sequences
and then choosing a value that is
significantly greater. The MSPs
from the entire database are identi-
fied and listed. BLAST determines
the statistical significance of each
score by calculating the probability
that two random sequences, one the
length of the query sequence and the
other the length of the database (the
sum of the lengths of all of the data-
base sequences) with the same com-
position (nucleotide or amino acid)
could produce the calculated score.
eTBLAST is not as ambitious at this
level and only uses the scores from
the dynamic programming step to
rerank the hits returned from the
keyword-based comparison.

We have also implemented an iterative
process in which the user can select
from the initial set of returned abstracts
to create a more accurate profile for a
subsequent search against the target
database. As in PSI-BLAST, a profile
generated from significant hits found in
round i is used for round i + 1. 

Clustering and Visualization
One of the frustrations many users have
with search engines is that the results are
typically returned in a ranked list form
whether or not that is the most appropri-
ate format for the data and independent
of the underlying structure and relation-
ships. For example, a Web search on the
word “breast” will return hits to pages on
cancer, Britney Spears, swimming, and
chicken, combined in a single list, with

no indication of how entries in that list
are related to each other. One simple,
and perhaps simplistic, approach to mak-
ing the set of returned results more use-
ful is to provide an indication of how
individual results are related to each
other. In the case of biomedical
abstracts, this can be done by calculating
a social network [17] for the set of
abstracts, in which similarity scores are
calculated for every pair of abstracts.
The resulting distance matrix represents
a set of constraints that are only guaran-
teed to be fulfilled in a space of dimen-
sionality corresponding to the number of
abstracts. There are several good meth-
ods (principal component analysis, cor-
respondence analysis, or more recently,
local linear embedding [18], [19]) that
reduce the dimensionality of the space to
something easier to visualize (like three
dimensions) while maximally satisfying
the constraints imposed by the distance
matrix. Once the individual results are
assigned points in three-dimension
space, the results can be displayed using
a standard viewer for biological struc-
tures, like MAGE [20], [21]. Please see
http://chaos.swmed.edu/frisc/mage for
an example of our application of this
viewer to text similarity data.

Discussion
The real value of our implementation of
text comparison based on dynamic pro-
gramming and grammar induction will
not come from its utility as a new docu-
ment clustering (search) tool, but from
its ability to identify hidden connections
within the literature as a whole. This is
especially true for connections dis-
cussed by different authors using differ-
ent writing styles and word choice, and
for connections hidden because they are
linked only through other databases
(acronyms, gene sequence similarity, or
protein structure/function similarity). 

At the moment, we only have tools for
the comparison of sequences and struc-
tures, and some simple tools for the com-
parison of biological abstracts. We have
no tools for the comparison of organelles,
or cells, or organisms, although as the
bioinformatics toolkit grows, we will
begin to take steps in those directions.

We will accomplish this by being able to
look not only at sequence similarity,
structural similarity, or textual similarity
individually, but at the relative arrange-
ment of similar sequences, structures, and
sentences, and not only at sequence,
structure, or textual similarity alone, but
at all of them together.

All of this is part of a paradigm shift
away from hypothesis driven research,
in which we ask a single question and
receive a single answer, to data driven
research, in which we are given many
answers at once and seek to find the
hypothesis that best explains them and
tells us something interesting at the
same time. Instead of generating more
and more complex queries to extract
knowledge from these data sets, we use
data mining to uncover patterns.

This gets us back to the principal com-
putational tool of biologists, the similari-
ty search. There are two central ideas to
the idea of elucidating the local space
around a given query, neighboring
(which is the central idea behind BLAST
[22] and related algorithms), and itera-
tion (which is the central idea behind
PSI-BLAST [23] and related algo-
rithms). These are usually applied entire-
ly within a single database. Data mining
leads us immediately to the possibility of
adding the idea of crossing database
boundaries for a given search, which is
promising for two reasons: what is adja-
cent/neighboring in one database may
not be in another, and what is sparsely
populated in one database may be dense-
ly populated in another. There is already
some evidence that even a limited
application of this idea improves the
accuracy of the similarity search [24].
The only problem is that, while
sequence databases are well populated,
structure and function (literature) data-
bases are much less so. This means that
there may not yet be sufficient informa-
tion to provide large gains in accuracy.
At the same time, the philosophy that
biology can now afford to adopt is a
Bayesian one, that includes all available
information, of whatever nature,
because even an incremental increase in
our ability to assess similarity will bring
understanding that much sooner.



Acknowledgments
This work was supported by the P.O’B.
Montgomery Distinguished Chair in
Developmental Biology and the
Hudson Foundation. We wish to thank
Pieter Adriaans, for helpful discussions,
and Natalie Prikhodko and Shuping Ai,
for programming assistance.

Address for Correspondence: Harold
R. Garner, Eugene McDermott Center
for Human Growth and Development,
University of Texas Southwestern
Medical Center, 5323 Harry Hines
Boulevard, Dallas, Texas 75390, USA.

References
[1] M. Galperin, “The molecular biology database
collection: 2004 Update,” Nucleic Acids Res., vol.
32, pp. 3–22, 2004.
[2] R.J. Roberts, et al., “Information access. Building
a “GenBank” of the published literature,” Science, 
vol. 291, pp. 2318–2319, 2001.
[3] W.E. Pearson and D.J. Lipman, “Improved tools
for biological sequence comparison,” Proc. Nat.
Acad. Sci. USA, vol. 85, pp. 2444–2448, 1988.
[4] T. Madej, J.F. Gibrat, and S.H. Bryant,
“Threading a database of protein cores,” Proteins,
vol. 23, pp. 356–369, 1995.
[5] J.F. Gibrat, T. Madej, and S.H. Bryant,
“Surprising similarities in structure comparison,”
Curr. Opin. Struct. Biol., vol. 6, pp. 377–385, 1996.
[6] L. Holm and C. Sander, “Dali: A network tool for
protein structure comparison,” Trends Biochem. Sci.,
vol. 20, pp. 478–480, 1995.
[7] C.J. van Rijsbergen, Information Retrieval.
Butterworths, London, 1990.
[8] A. Pertsemlidis, and J.W. Fondon, III “Having a
BLAST with bioinformatics (and avoiding
BLASTphemy)” Genome Biol., vol. 2, 2001,
REVIEWS- 2002.
[9] S. Henikoff and J.G. Henikoff, “Amino acid sub-
stitution matrices from protein blocks” Proc. Nat.
Acad. Sci. USA, vol. 89, pp. 10,915–10,919, 1992.
[10] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt,
in Atlas of Protein Sequence and Structure. M.O.
Dayhoff, Ed. Washington, DC: National Biomedical
Research Foundation, 1978, pp. 345–352.
[11] D.J. States, W. Gish, and S.F. Altschul,
“Improved sensitivity of nucleic acid database
searches using application-specific scoring
matrices,” in METHODS: A Companion to Methods
in Enzymology, vol. 3, 1991, pp. 66–70.
[12] P. Adriaans and E. Haas, in Proc. 1st Workshop
Learning Language Logic, J. Cussens Ed., Bled,
Slovenia, 1999, pp. 117–127.
[13] S.B. Needleman and C.D. Wunsch, “A general
method applicable to the search for similarities in the
amino acid sequence of two proteins,” J. Mol. Biol.,
vol. 48, pp. 443–453, 1970.
[14] T.F. Smith and M.S. Waterman, “Identification
of common molecular subsequences,” J. Mol. Biol.,
vol. 147, pp. 195–197, 1981.
[15] D.A. Benson, et al. “GenBank,” Nucleic Acids
Res., vol. 28, pp. 15–18, 2000.
[16] A. Bairoch and R. Apweiler, “The SWISS-
PROT protein sequence database and its supplement
TrEMBL in 2000,” Nucleic Acids Res., vol. 28, 
pp. 45–48, 2000.

[17] L. Freeman, “Visualizing social networks,” J.
Social Structure, vol. 1, pp. 1–15, 2000.
[18] S.T. Roweis and L.K. Saul, “Nonlinear dimen-
sionality reduction by locally linear embedding,”
Science, vol. 290, pp. 2323–2336, 2001.
[19] J.B. Tenenbaum, V. de Silva, and J.C.
Langford, “A global geometric framework for non-
linear dimensionality reduction,” Science, vol. 290,
pp. 2319–2322, 2001.
[20] D.C. Richardson and J.S. Richardson, “The
kinemage: A tool for scientific communication,”
Protein Sci., vol. 1, pp. 3–9, 1992.
[21] D.C. Richardson and J.S. Richardson,
“Kinemages—simple macromolecular graphics for
interactive teaching and publication,” Trends
Biochem Sci., vol. 19, pp. 135–138, 1994.
[22] S.F. Altschul, W. Gish, W. Miller, E.W. Myers,
and D.J. Lipman, “Basic local alignment search
tool,” J. Mol. Biol., vol. 215, pp. 403–410, 1990.
[23] S.F. Altschul, et al. “Gapped BLAST and PSI-
BLAST: A new generation of protein database
search programs,” Nucleic Acids Res., vol. 25, 
pp. 3389–3402, 1997.
[24] J.T. Chang, S. Raychaudhuri, and R.B. Altman,
“Including biological literature improves homology
search,” in Pac. Symp. Biocomput, 2001, pp. 374–383.
[25] W.J. Wilbur and Y. Yang, “An analysis of sta-
tistical term strength and its use in the indexing and
retrieval of molecular biology texts,” Comput. Biol.
Med., vol. 26, pp. 209–222, 1996.
[26] G. Salton, Automatic Text Processing. Reading,
MA: Addison-Wesley, 1989.

Appendix

Computation of Related 
Articles (NCBI)
NCBI eliminates 310 common words
from consideration, does some stem-

ming, and categorizes each word as
text words, title words, or MeSH
terms. Of course, as NCBI recog-
nizes, “not all words are of equal
value.” Each word is assigned a glob-
al weight based on the number of
documents in the database that con-
tain the word, and an estimate of the
importance of the word in producing
relationships in the database [25]. For
a given pairwise comparison of two
documents,  each word is also
assigned a local weight, based on the
number of times the term appears in a
given document. The overall weight
of a word, for the purpose of compar-
ing two documents, is the product of
the global weight and the local
weight in each of the documents. The
overall similarity of two documents
is calculated by adding up all of the
weights of the words that the two
documents have in common, and nor-
malizing by the product of the
lengths of the two documents, pro-
ducing what is called a vector cosine
score [26].  For more detail ,  see
“Computation of related articles” at
http://www.ncbi.nlm.nih.gov/entrez/
query/static/overview.html.


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


