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Guest Editorial
Electromagnetic Crystal Structures,
Design, Synthesis, and Applications

A NEW paradigm has emerged in which the band structure
concepts of solid-state physics are applied to electromag-

netics. This has led to a profusion of scientific creativity as
new forms of electromagnetic crystal structures are invented
for radio and microwaves as well as for optical wavelengths.
These new structures are inspired by the three-dimensional
(3-D) geometry of both natural crystals and those artificial
crystals that can arise only in the human imagination.

These artificial electromagnetic crystals (also known as
photonic crystals) are impacting the diverse domains of elec-
tromagnetics, extending from radio waves to optical wave-
lengths. They are bringing scientists together under a common
umbrella in the fields of classical electromagnetics, solid-
state band theory, semiconductor device physics, quantum
optics, nanostructures, and materials science. The number
of papers in this field have been growing at roughly 70%
per year since the early 1990’s, and there are currently
hundreds of papers per year being published on photonic
crystals.

There have already been a number of books [1], special
journal issues [2], [3], and conference proceedings [4], [5] on
this topic, originating from the very first one [2], organized
by Bowden, Dowling, and Everitt, in Park City, UT, January
1992, extending to the “Workshop on Electromagnetic Crystal
Structures,” Laguna Beach, CA, 4–6 January 1999, the source
of most of the papers in this issue. This series will now
likely extend through the next international conference called,
“Photonic and Electromagnetic Crystal Structures” to be held
in Sendai, Japan, 8–10 March 2000.

Owing to the large number of papers that were submit-
ted on the occasion of the January 1999 “Workshop on
Electromagnetic Crystal Structures,” the articles had to be
divided among two journals, producing a pair of special issues.
The papers that relate to radio and microwaves are in the
companion November 1999 issue of the IEEE TRANSACTIONS

ON MICROWAVE THEORY AND TECHNIQUES, while the optically
related papers are in this November 1999 issue of the JOURNAL

OF LIGHTWAVE TECHNOLOGY.
Photonic bandgaps (PBG’s) originated from a pair of papers

that were published almost simultaneously in 1987. One by
Yablonovitch [6] introduced the forbidden gap for controlling
spontaneous and stimulated emission of light. The second by
John [7] introduced gaps to induce Anderson localization of
light waves. In exploring analogies with low-energy electron
diffraction (LEED), Ohtaka [8] in 1979 actually first used the
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phrase “photon band structure,” but he narrowly missed the
problematic concept of a photonic bandgap. Indeed, there was
no assurance in 1987 that any photonic bandgap could ever be
produced experimentally with available refractive indexes. The
search for a 3-D photonic bandgap entailed numerous blind
alleys and false starts, culminating in 1990 with the remarkable
discovery [9] that diamond crystal geometry was favored by
nature. This led to the first experimental demonstration [10]
of a 3-D photonic bandgap.

Today, many more types of electromagnetic crystal struc-
tures and designs are being investigated in various dimen-
sions and made of various materials, including metals. Even
acoustic band structure is under study. Self-assembly and
microfabrication have emerged as the main routes toward 3-
D optical structures. In addition to the 3-D photonic crystals,
an important role will be played by 2-D, thin-film, photonic
crystals. These are a good compromise between the total
electromagnetic confinement of a 3-D structure versus the ease
of fabrication of a 2-D patterned thin film. They appear to
be capable of -factor up to 10 000 in spite of being open
structures, more than enough for lasing. In a milestone for the
field, Painteret al. [11] report here lasing in a nanocavity,
the smallest laser ever made. Thus, 2-D thin-film photonic
crystals may form the underlying basis for a future technology
of photonic integrated circuits.

While these dielectric structures have been very novel
and exciting, a new element of richness has been introduced
into electromagnetic/photonic crystal design recently with
the incorporation of metallic components within the unit
cells, i.e., metallo-dielectric photonic crystals. The physics
of metallo-dielectric electromagnetic crystals is still being
worked out, but it is clear that they follow their own
set of rules, very different from the existing rules for
dielectric structures. Thus, metallo-dielectric photonic crystals,
both at radio frequencies, and optical frequencies, behave
quite distinctly from the dielectric crystal structures that
were previously explored. At the same time, they present
entirely new, and very significant, technological and scientific
opportunities.

At radio and microwave frequencies, the constraint linking
spatial period and electromagnetic frequency has been undone.
By capacitive loading between the metallic elements, the elec-
tromagnetic “valence band” frequency can be pushed down,
thereby, electromagnetic crystal structures become valuable
at radio frequencies. They become smaller and much more
lightweight. Attention should be directed toward the paper by
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Sievenpiperet al. [12] in which a metal surface is converted
to an insulator having a forbidden bandgap. It is expected
that those types of high-impedance ground planes will be
quite useful for antennas and for other applications in radio
electromagnetics.

In the radio domain, PBG structures should not be confused
with effective media, or frequency selective surfaces. The key
point is that the electromagnetic wave vector component along
the direction of periodicity is comparable to the reciprocal
periodicity. In that case, the behavior of the wave-vector
dispersion near a Brillouin Zone boundary becomes important.
Band structure becomes imperative, and an effective dielec-
tric constant or surface impedance provides an incomplete
description.

At optical frequencies, the metallo-dielectric structures be-
come strongly influenced by plasmon resonance, arising from
electron inertia in the metallic constituent. Plasma wave po-
laritons (plasmons) can have frequencies in the optical regime
combined with wavelengths much shorter than the correspond-
ing vacuum electromagnetic wavelength. The resulting very
large wave-vectors correspond to those of X rays! This permits
the design of very tiny electromagnetic cavities, much smaller
than anything currently being considered. The concentration
of zero-point electromagnetic energy in such tiny plasmon
cavities can produce a giant Purcell effect, enhanced by many
orders of magnitude, leading to spontaneous emission that
is much stronger than even stimulated emission. There is a
link between the Purcell effect for spontaneous emission, and
the surface-enhanced Raman effect for spontaneous Raman
scattering, which is likewise enhanced by many orders of
magnitude. There are but a few papers on this topic in this
special JOURNAL OF LIGHTWAVE TECHNOLOGY issue, but the
plasmon band structure field is in its infancy, and we can
expect to learn much more in the future.

The full, practical impact of PBG structures is yet to be
seen, but we may observe the first commercial and military
applications in the realm of handheld wireless communications
and global positioning system (GPS) antennas using the high-
impedance ground plane structures. The optical applications
are more long range, but we can expect an impact on white
pigments that are ubiquitous in our surroundings, on optical
signal processing, and on light-emitting diodes (LED’s), for
both commercial and military use.

Given the evident and tangible progress in the field, it
is clear that it will soon outgrow special topics issues. The
spirit of comradeship and adventure among the researchers
will remain as we continue to explore the realm of photonic
crystal structures. We do not know what extra surprises nature
will have in store for us.
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