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A consistent tensor/array notation is used in this paper to present electromagnetic

theory in ðN þ 1Þ-space-time; this leads to considerable simplifications for

spacial dimensions greater than 3.

By Adrianus T. de Hoop, Member IEEE

ABSTRACT | In this paper, a modern time-domain introduction

is presented for electromagnetic field theory in ðNþ 1Þ-space-
time. It uses a consistent tensor/array notation that accom-

modates the description of electromagnetic phenomena in

N-dimensional space (plus time), a requirement that turns up in

present-day theoretical cosmology, where a unified theory of

electromagnetic and gravitational phenomena is aimed at. The

standard vectorial approach, adequate for describing electro-

magnetic phenomena in ð3þ 1Þ-space-time, turns out to be not

generalizable to ðNþ 1Þ-space-time for N > 3 and the tensor/

array approach that, in fact, has been introduced in Einstein’s

theory of relativity, proves, together with its accompanying

notation, to furnish the appropriate tools. Furthermore, such

an approach turns out to lead to considerable simplifications,

such as the complete superfluousness of standard vector cal-

culus and the standard condition on the right-handedness of

the reference frames employed. Since the field equations do no

more than interrelate (in a particular manner) changes of the

field quantities in time to their changes in space, only ele-

mentary properties of (spatial and temporal) derivatives are

needed to formulate the theory. The tensor/array notation

furthermore furnishes indications about the structure of the

field equations in any of the space-time discretization proce-

dures for time-domain field computation. After discussing the

field equations, the field/source compatibility relations and the

constitutive relations, the field radiated by sources in an un-

bounded, homogeneous, isotropic, lossless medium is de-

termined. All components of the radiated field are shown to be

expressible as elementary operations acting on the scalar

Green’s function of the scalar wave equation in ðNþ 1Þ-space-
time. Time-convolution and time-correlation reciprocity re-

lations conclude the general theory. Finally, two items on field

computation are touched upon: the space-time-integrated field

equations method of computation and the time-domain

Cartesian coordinate stretching method for constructing per-

fectly matched computational embeddings. The performance

of these items is illustrated in a demonstrator showing the 1-D

pulsed electric-current and magnetic-current sources excited

wave propagation in a layered medium.

KEYWORDS | Electromagnetic theory; field computation;

tensor/array notation

I . INTRODUCTION

All numerical procedures for handling the computation of

electromagnetic fields somehow or other employ the con-

cept of Barray[ for manipulating the data. In analytical

tools for field evaluation, on the contrary, the notations of

3-D vector calculus (boldface symbols for the field and

source quantities, dot product, cross product) standardly

occur. As a consequence, in combining the two, some kind
of conversion has to be carried out. One source of errors in

this conversion is the condition that the reference frame

for denoting the position of an observer in space has to be
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right-handed in its orientation, a condition stemming from
the integral form of the field equations (circulation integ-

rals of electric and magnetic field strengths) one tradi-

tionally starts with. The elimination of this step seems

certainly recommendable.

Quite another demand on electromagnetic field theory

is put by the recent developments in theoretical cosmology

[1]. Here, it is conjectured that a unification of the theory

of the electromagnetic and gravitational fields requires the
description of the electromagnetic field constituent in

ðN þ 1Þ-space-time, with N > 3. Now, such a generaliza-

tion is not feasible via the standard 3-D vector calculus. In

fact, the cosmological aspect (including its relativistic

consequences) inspired the search for the formulation of

electromagnetic field theory as it is presented in the sec-

tions below.

Einstein’s view on the tensorial/array structure of field
quantities and field equations proved to furnish the key to

the requested generalization. Surprisingly, considerable

simplifications and economizations manifested them-

selves. The whole machinery of standard vector calculus

proves to be superfluous, while also the orientation of the

reference frame used to specify the position of an observer

in space turns out to be irrelevant. As is shown in the

sections to follow, a more or less complete account of the
basic notions of the time-domain physics of electromag-

netic wave propagation can be covered in a very limited

number of pages. The implications for the teaching of the

theory are evident. Once one is familiar with the notation

(the standard one in tensor calculus) and the manipulation

of the expressions via the Einstein summation convention,

the rest isVto speak with Albert EinsteinVBdetails.[
The basic material covered is as follows.
• The observer in ðN þ 1Þ-space-time, tensor quan-

tities (arrays), and Einstein subscript notation and

summation convention in N-dimensional Euclide-

an space (Section II).

• The structure of the electromagnetic field equa-

tions, intensive and extensive field quantities,

source quantities, and field/source compatibility

relations (Section III).
• Constitutive relations (Section IV).

• Interface boundary conditions (Section V).

• Radiation from sources in an unbounded, homo-

geneous, isotropic, lossless medium (Section VI).

• Field/source reciprocity of the time-convolution

type (Section VII).

• Field/source reciprocity of the time-correlation

type (Section VIII).
Applications discussed are as follows.

• Green’s tensors and the direct source problem

(Section IX).

• Field representations in a subdomain of RN, equiv-

alent surface sources, Huygens’ principle, and the

Oseen–Ewald extinction theorem (Section X).

• The Calderón identities (Section XI).

Finally, two items on field computation are touched upon.

• The space-time-integrated field equations method

of computation (Section XII).

• The time-domain, causality preserving, Cartesian

coordinate stretching method for constructing per-

fectly matched embeddings (Section XIII).

A (tentative) IEEE Xplore website demonstrator illustrates
an application of Sections XII and XIII in a Matlab driven

example.

• One-dimensional pulsed electric-current and mag-

netic-current sources excited wave propagation in

a layered medium (Section XIV).

At the end, the principal formulas are collected in tabular
form.

II . THE OBSERVER IN
ðN þ 1Þ-SPACE-TIME, TENSOR/ARRAY
QUANTITIES, AND EINSTEIN
SUBSCRIPT NOTATION AND
SUMMATION CONVENTION IN
N-DIMENSIONAL SPACE

The electromagnetic phenomena that we consider mani-

fest themselves in ðN þ 1Þ-space-time. An observer deli-
neates them into a spatial aspect and a separate temporal
aspect. To locate position in space, the observer employs

the ordered sequence of Cartesian coordinates fx1; . . . ;
xNg 2 RN, or x 2 RN for short, with N ¼ 1; 2; 3; . . ., with

respect to a given origin O, while distances are measured

through the Euclidean norm jxj ¼ ðx2
1 þ . . .þ x2

NÞ
1=2 � 0.

The time coordinate used by the observer is t 2 R.

Differentiation with respect to xm is denoted by @m; @t is a
reserved symbol to denote differentiation with respect to t.

In accordance with Einstein’s postulate (in the theory

of relativity), the quantitative representation of any phy-

sical quantity in N-dimensional space consists of Np num-

bers, arranged as p-dimensional arrays of size N (also

denoted as tensors of rank p in N-dimensional space),

where p ¼ 0; 1; 2; . . .. The notation for such a quantity is a

(usually internationally normalized) symbol supplied with
an ordered sequence of p subscripts, each of which runs

through the values f1; . . . ;Ng (subscript notation). An

example of a tensor of rank two is the symmetrical unit

tensor (Kronecker tensor)

�m;n ¼ 1 for m ¼ n; �m;n ¼ 0 for m 6¼ n: (1)

Products of tensors are defined in the same way as pro-

ducts of arrays. Notationally, tensor products are handled

via the Einstein summation convention, i.e., in any term of

an expression, a product of two tensors is evaluated by

summing the contributions that are indicated by common

subscripts (see also Table 1).
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III . THE STRUCTURE OF THE
ELECTROMAGNETIC FIELD EQUATIONS

Any wavefield theory describes the pertaining wave pheno-

mena through the occurrence of two intensive field quan-
tities in conjunction with two extensive field quantities. The

array/tensor product of the two intensive field quantities

yields a tensor of rank one that represents the transfer of
field energy via the wave’s area density of power flow; the
array/tensor product of the two extensive field quantities

yields a tensor of rank one that represents the volume den-
sity of field momentum that exercises the wave’s Maxwell
radiation pressure. In the electromagnetic field, the electric
field and source quantities are tensors of rank one, while

the magnetic field and source quantities are antisymmetric

tensors of rank two. The intensive field quantities are de-

noted as field strengths, the extensive field quantities as flux
densities, and the source quantities as volume source densi-
ties of current. The corresponding symbols are (see also

Table 2) as follows:

The wavefield equations relate the time rate of change of an

extensive field quantity to the spatial rate of change of its

Bdual[ intensive field quantity, thus enabling the existence
of solutions with a wavelike character. The excitation of

such solutions is accommodated in accordance with the

(Einstein) requirement that in a field equation all terms

should be tensors of equal ranks/arrays of equal sizes. For

the electromagnetic field equations, this results in the

(Maxwell) field equations (see also Table 3)

@m½Hm;k�� þ @tDk ¼ �Jk (2)

½@iEj�� þ @t½Bi;j�� ¼ �½Ki;j�� (3)

in which

½@iEj�� ¼ ð@iEj � @jEiÞ=2: (4)

Operating on (2) with @k and noting that @k@m½Hm;k�� ¼ 0,

we obtain the electric field/source compatibility relation

@t@kDk ¼ �@kJk: (5)

Operating on (3) with @k where k 6¼ i 6¼ j, cyclically per-
muting the subscripts and adding the results, we obtain the

magnetic field/source compatibility relation

@t @k½Bi;j��
� �r¼ � @k½Ki;j��

� �r
(6)

where

@k½Bi;j��
� �r¼@k½Bi;j��þ @i½Bj;k��þ @j½Bk;i��ði 6¼ j 6¼ kÞ: (7)

Evidently, the condition i 6¼ j 6¼ k can only be met if

N � 3, which implies that N ¼ 3 is the minimum number of
spatial dimensions for which a field structure of the electro-
magnetic type can exist.

In adherence to the physical concept that the volume

densities of current are associated with the (collective)

motion of charged particles in a flow in which the conser-
vation of particles holds [2, Sec. 19.4], the volume density of
electric charge is introduced as (see also Table 4)

� ¼def �@�1
t @kJk (8)

where @�1
t denotes integration with respect to time from

the instant of onset of the sources onward. Equation (8)

entails the continuity equation of electric charge

@kJk þ @t� ¼ 0: (9)

Similarly, the volume density of magnetic charge is intro-

duced as (see also Table 4)

�i;j;k ¼
def �@�1

t @i½Kj;k��
� �r

(10)

which entails the continuity equation of magnetic charge

@i½Kj;k��
� �rþ@t�i;j;k ¼ 0: (11)

Table 1 Observer in ðNþ 1Þ-Space-Time, Subscript Notation,

and Summation Convention
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From the procedure it follows that the volume density of

electric charge is a scalar quantity (tensor of rank zero),

while the volume density of magnetic charge is a cyclic
symmetrical tensor of rank three. (Since for N ¼ 3 only a

single number is involved, this tensor is commonly mis-

taken to be a scalar.) The tensorial character of the mag-

netic charge has implications for the Dirac theory of the
magnetic Bmonopole[ [3].

Evidently, the number of unknowns in the field equa-

tions is, so far, twice the number of equations. As a con-

sequence, the fundamental physical condition of the

uniqueness of the solution to the initial-value problems is

not yet met. This condition requires that, given the phy-

sical state of a system at some instant t0, its time evolution
into t > t0 should in a unique manner follow from the
pertaining field equations. To meet this condition, the field

equations developed thus far have to be supplemented

with the constitutive relations that characterize the medium

in which the field is present. Standardly, these constitutive

relations express the values of the extensive field quan-

tities in terms of the values of the intensive field quanti-

ties. For the electromagnetic field, the relevant general

necessary and sufficient conditions are, for the most

general case, not known. Only sufficient conditions (for a

large class of media met in practice) are well established.

These are discussed in the next section.

IV. THE ELECTROMAGNETIC
CONSTITUTIVE RELATIONS

In this section, the electromagnetic constitutive relations

for the class of linear, time-invariant, passive, causally, and

locally reacting media are presented (see also Table 5). For
this class of media, the uniqueness of the initial-value

problem can be proved [4], [5].1 Full inhomogeneity, ani-

sotropy, and (Boltzmann) relaxation losses [6] are included.

In general, the medium’s response consists of an instan-

taneous part and a time-delayed part (relaxation). In the

Lorentz theory of electrons [7], the instantaneous part of

the response is associated with vacuum, while the relaxa-

tion is representative for the presence of matter in the

1Freely downloadable from http://ursi-test.intec.ugent.be/files/rsb_
june_2003.pdf

Table 2 EM Field and Source Quantities

Table 3 Maxwell Field Equations, Field/Source Compatibility Relations

Table 4 Volume Densities of Charge, Conservation Laws
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background vacuum. Classic atomic models for the relax-

ation functions, based on the Lorentz theory of electrons,

can be found in [2, Ch. 19]. With �
ðtÞ

denoting time con-
volution, the pertaining relations are (see also Table 5)

Dkðx; tÞ ¼ �k;rðx; tÞ �
ðtÞ

Erðx; tÞ (12)

where

�k;rðx; tÞ ¼ electric permittivity (13)

and

½Bi;j��ðx; tÞ ¼ ��i;j;p;qðx; tÞ �
ðtÞ
½Hp;q��ðx; tÞ (14)

where

��i;j;p;qðx; tÞ ¼ magnetic permeability: (15)

For homogeneous media, we have f�k;r; �
�
i;j;p;qgðx; tÞ ¼ f�k;r;

��i;j;p;qgðtÞ. For instantaneously reacting media, we have f�k;r;
��i;j;p;qgðx; tÞ ¼ f�k;r; �

�
i;j;p;qgðxÞ�ðtÞ. For isotropic media, we

have �k;rðx; tÞ ¼ �ðx; tÞ�k;r and ��i;j;p;qðx; tÞ ¼ ��ðx; tÞ�i;p�j;q,

which entails Dk ¼ � �
ðtÞ

Ek and ½Bi;j�� ¼ �� �
ðtÞ
½Hi;j��, re-

spectively. The vacuum values are ��ðx; tÞ ¼ 2 �0 �ðtÞ,

with �0 ¼ 4�� 10�7 H/m and �ðx; tÞ ¼ �0 �ðtÞ with �0 ¼
ð1=c2

0 �0Þ F/m and c0 ¼ 299 792 458 m/s.

Causality and the Time Laplace Transformation: The pro-

perties associated with the causality of the medium’s

response are most adequately handled via the time Laplace
transformation

�̂k;r; �̂
�
i;j;p;q

n o
ðx; sÞ ¼

Z1

t¼0

expð�stÞ �k;r; �
�
i;j;p;q

n o
ðx; tÞ dt

for s 2 C; ReðsÞ > 0: (16)

The transforms in the left-hand side are analytic in the

right half fs 2 C;ReðsÞ > 0g of the complex s-plane

(Fig. 1).

Their limiting values on the imaginary axis of the s-plane

yield the spectral behavior of the medium’s response. The

diagram, in which 20 log10½jf�̂k;r; �̂
�
i;j;p;qgðx; 2�jfÞj�, where j

is the imaginary unit and f is the frequency, is plotted against
log10ðfÞ, is denoted as the spectral diagram or Bode diagram
[8]. The Debije relaxation function is a standard tool in the

modeling of relaxation in electrical conduction properties;

the Lorentz relaxation function is a standard tool in the

modeling of relaxation in dielectric properties (Fig. 2).

Uniqueness of the Initial-Value Problem: There seems not

to be a time-domain uniqueness proof of the initial-value
(time-evolution) problem for media that show an

arbitrary relaxation behavior. The known proof goes via

the time Laplace transformed field equations and con-

stitutive relations [5] through their properties at the se-

quence of equidistant values of the transform parameter s
(Fig. 1)

L ¼ fs 2 R; s ¼ s0 þ n h; s0 > 0; h > 0; n ¼ 0; 1; 2; . . .g
(Lerch sequence) (17)

Table 5 Electromagnetic Constitutive Relations

Fig. 1. Domain of analyticity and Lerch sequence in the complex

time Laplace transform plane.
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on the positive real s-axis. The corresponding uniqueness

in the time domain then follows from Lerch’s theorem

[9, p. 63].

Sufficient conditions for the uniqueness of the initial-
value (time-evolution) problem are (the proof runs parallel

to the one presented for N ¼ 3 in [5])

Êk�̂k;rÊr > 0; for s 2 L

and

½Ĥi;j���̂�i;j;p;q½Ĥp;q�� > 0; for s 2 L (18)

and any nonzero field values. For radiation problems in

unbounded domains, a restriction occurs in that outside

some sphere of finite radius the medium should be homo-

geneous and isotropic. For media that are, in addition,

instantaneously reacting (lossless) the radiation from
sources is discussed in Section VI.

V. INTERFACE BOUNDARY CONDITIONS

At the passive interface between two media across which

the constitutive parameters jump by finite amounts, also

the field components show jump discontinuities. Certain
components, however, remain continuous. The pertaining

continuity conditions follow from the field equations upon

decomposing the spatial differentiation @m into a compo-

nent normal to the interface ð@mÞ? and a component

parallel to it ð@mÞk. Let �m denote the unit vector along the

normal to the interface, then (Fig. 3)

ð@mÞ? ¼ �mð�n@nÞ and ð@mÞk ¼ @m � ð@mÞ?: (19)

If, now, the operation of differentiation perpendicular to

the interface would act on a field component that jumps

across the interface, this would lead to a Dirac delta distri-

bution operative at the interface and this would violate the

assumed passivity of the interface. Hence, ð@mÞ? can only

act at field components that are continuous across the in-

terface. This consideration leads to the interface boundary

conditions (see also Table 6)

�m½Hm;k��jþ� ¼ 0 (20)

½�iEj��jþ� ¼ 0: (21)

Note that (21) implies �i½�iEj��jþ� ¼ 0 and, hence,

½Ej � ð�iEiÞ�j�jþ� ¼ 0 or ðEjÞkj
þ
� ¼ 0.

VI. RADIATION FROM SOURCES IN
UNBOUNDED, HOMOGENEOUS,
ISOTROPIC, LOSSLESS MEDIA

In this section, the radiation from sources in unbounded
RN, filled with a homogeneous, isotropic, and lossless

medium is discussed. It will be shown that only elementary

mathematical operations such as spatial differentiation,

temporal differentiation, spatial convolution, and temporal

convolutions are needed in this case to arrive at explicit

expressions for the electric and magnetic field compo-

nents. All of these operations are commutable. Another

feature is that the orientation of the spatial reference
frame employed will turn out to be irrelevant. The source

quantities Jk and ½Ki;j�� that excite the field will be assumed

to have the bounded spatial supports DJ � RN and

DK � RN, respectively. The constitutive coefficients of

the medium are � > 0 and �� > 0. The electric field

Fig. 2. Debije and Lorentz relaxation functions.

Fig. 3. Passive interface between two media with different

constitutive parameters.

Table 6 (Passive) Interface Boundary Conditions
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strength Er and the magnetic field strength ½Hp;q�� then
satisfy the Maxwell equations

@m½Hm;k�� þ �@tEk ¼ �Jk (22)

½@iEj�� þ ��@t½Hi;j�� ¼ �½Ki;j�� (23)

with the corresponding source/field compatibility

relations

�@t@kEk ¼�@kJk (24)

��@t @k½Hi;j��
� �r¼� @k½Ki;j��

� �r
; i 6¼ j 6¼k: (25)

Note that (25) implies that N � 3.

Elimination of ½Hi;j�� from (22) and (23) and use of the

compatibility relation (24) lead to the electric-field vector
wave equation

ð@m@mÞEk � c�2@2
t Ek ¼ �Qk (26)

in which

c ¼ 1=ð2���Þ1=2
(27)

and

Qk ¼ �2��@tJk þ ð1=�Þ@�1
t @kð@mJmÞ þ 2@m½Km;k�� (28)

where @�1
t denotes time integration from the instant of

onset of the sources onward. Introducing the vector
potential Ak as the solution of the wave equation

ð@m@mÞAk � c�2@2
t Ak ¼ �Jk (29)

and the antisymmetric tensor potential ½�i;j�� as the solu-

tion of the wave equation

ð@m@mÞ½�i;j�� � c�2@2
t ½�i;j�� ¼ �½Ki;j�� (30)

and using the property that, for constant � and ��, the

wave operator ð@m@mÞ � c�2@2
t and the operations @m and

@t commute, (26)–(30) lead to

Ek ¼ �2��@tAk þ ð1=�Þ@�1
t @k@mAm þ 2@m½�m;k��: (31)

Substituting this result in (23), we arrive at

½Hi;j�� ¼ �2�@t½�i;j�� þ ð1=��Þ@�1
t @m @m½�i;j��

� �r
þ 2½@iAj��: (32)

Finally, upon introducing the Green’s function Gðx; tÞ of the

scalar wave equation as the solution of

ð@m@mÞG� c�2@2
t G ¼ ��ðx; tÞ (33)

where �ðx; tÞ is the ðN þ 1Þ-space-time Dirac distribution
operative at x ¼ 0 and t ¼ 0, and using the property

Jk; ½Ki;j��
� �

ðx; tÞ¼�ðx; tÞ �x�t Jk; ½Ki;j��
� �

ðx; tÞ (34)

where �
ðxÞ

denotes spatial convolution and �
ðtÞ

denotes

temporal convolution, (29) and (30) lead to the

representations

Ak; ½�i;j��
� �

ðx; tÞ¼Gðx; tÞ�x�t Jk; ½Ki;j��
� �

ðx; tÞ (35)

where the convolutions are extended over the spatio–

temporal supports of the pertaining sources. For N > 3,

the Green’s function is of a complicated nature that fun-

damentally differs for even and odd values of N. The

simple case for N ¼ 3 is further discussed below.

Radiation in ð3þ 1Þ-Space-Time: In ð3þ 1Þ-space-time,

Gðx; tÞ is given by

Gðx; tÞ ¼ � t� jxj=cð Þ
4�jxj ; for x 6¼ 0: (36)

For this case, (35) leads to the well-known retarded
potentials

Ak; ½�i;j��
� �

ðx; tÞ

¼
Z
DJ;K

Jk; ½Ki;j��
� �

x0; t� jx � x0=cð Þ
4�jx � x0j dVðx0Þ: (37)

The Far-Field Approximation [ð3þ 1Þ-Space-Time]: The

far-field approximation with respect to the reference center
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O is the leading term in the expansion of the field
expressions as jxj ! 1. With

jx � x0j ¼ jxj � 	mx0m þ O jxj�1
� �

; as jxj ! 1 (38)

where

	m ¼ xm=jxj (39)

is the unit vector in the direction of observation, we obtain

Ak; ½�i;j��
� �

ðx; tÞ ¼
A1k ; �1i;j

h i�n o
X; t� jxj=cð Þ

4�jxj
� 1þ O jxj�1

� �� �
; as jxj ! 1 (40)

with

A1k ; �1i;j

h i�n o
ð	; tÞ

¼
Z
DJK

Jk; ½Ki;j��
� �

x0; tþ 	mx0m=c
� �

dVðx0Þ: (41)

Observing that

@mð�Þ ¼ �ð	m=cÞ@tð�Þ 1þ O jxj�1� �� �
; as jxj ! 1

(42)

the far-field approximations for the field strengths are
obtained as

Er; ½Hp;q��
� �

ðx; tÞ ¼
E1r ; H1p;q

h i�n o
X; t� jxj=cð Þ

4�jxj
� 1þ O jxj�1� �� �

; as jxj ! 1 (43)

in which

E1r ¼ �2��ð�r;k � 	r	kÞ@tA
1
k

� 2ð	m=cÞ@t �1m;r

h i�
(44)

H1i;j

h i�
¼ �2� @t �1i;j

h i�
�	m 	m@t �1i;j

h i�h ir� 	

� 2 ð	i=cÞ@tA
1
j

h i�
: (45)

Note that the far-field spherical wave amplitudes satisfy
the local plane-wave relations

ð�	m=cÞ H1m;k

h i�
þ�E1k ¼ 0 (46)

ð�	i=cÞE1j
h i�

þ�� H1i;j

h i�
¼ 0 (47)

for a wave traveling in the direction of X.

VII. TIME-CONVOLUTION RECIPROCITY

Reciprocity theorems belong to the category of most funda-

mental theorems in wave physics. As has been discussed in

[10] and [11], various particular cases can be considered as
the basis for such computational techniques as the domain

integral equations method, the boundary integral equations

method, and the method of moments, while the concept of

introducing the different point-source solutions (Green’s

functions) leads to such results as Huygens’ principle and the

Oseen–Ewald extinction theorem (related to the null-field

method) and the source-to-receiver data transfer in imaging

and constitutive parameter inversion procedures.
Reciprocity deals with the interaction of two states,

both of which can exist in a certain domain D � RN in

space. The two states are associated with, in general, dif-

ferent excitations and are present in, in general, media

with different constitutive properties, and, hence, exhibit

different field values. The category of configurations for

which reciprocity will be discussed is the same as the one

for which uniqueness of the time evolution can be proved,
i.e., for time-invariant configurations with piecewise conti-

nuous, linear, passive, locally, and causally reacting media

(Section IV). For such configurations, two types of

reciprocity relation can be distinguished [2, Sec. 28.2

and 28.3], viz., the one of the time-convolution type, where

the interaction between the two states involves their time

convolution, and the one of the time-correlation type, where

the interaction between the two states involves their time
correlation. In this respect, it is of importance to observe

that the time-convolution one preserves causality, whereas

the time-correlation one has no such property. This dis-

tinction plays an important role in case the theorems are

applied to unbounded domains. The time-correlation one

leads, for zero correlation time and applied to two identical

states, to the energy theorem.

The two states are indicated by the superscripts A
and B. The field equations applying to state A are

@m HA
m:k

� ��þ @t �
A
k;r �
ðtÞ

EA
r

� 	
¼�JA

k (48)

@iE
A
j

h i�
þ @t �

�;A
i;j;p;q �

ðtÞ
HA

p;q

h i�� 	
¼� KA

i;j

h i�
: (49)
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The field equations applying to state B are

@m HB
m:r

� �� þ @t �
B
r;k �
ðtÞ

EB
k

� 	
¼�JB

r (50)

@pEB
q

h i�
þ @t �

�;B
p;q;i;j �

ðtÞ
HB

i;j

h i�� 	
¼� KB

p;q

h i�
: (51)

Upon carrying out the operation

(48) �
ðtÞ

EB
k� (49) �

ðtÞ
HB

i;j

h i�
�(50) �

ðtÞ
EA

r þ (51) �
ðtÞ

HA
p;q

h i�

we arrive at the local form of the time-convolution reciprocity
relation

@mSAB
m þ @tU

AB ¼ WAB (52)

in which

SAB
m ¼ HA

m;k

h i�
�
ðtÞ

EB
k � HB

m;r

h i�
�
ðtÞ

EA
r (53)

represents the transfer of field interaction

UAB ¼ EB
k �
ðtÞ

�A
k;r � �B

r;k


 �
�
ðtÞ

EA
r

� HB
i;j

h i�
�
ðtÞ

��;A
i;j;p;q � �

�;B
p;q;i;j


 �
�
ðtÞ

HA
p;q

h i�
(54)

yields the contrast-in-media interaction, and

WAB ¼ � EB
k �
ðtÞ

JA
k � EA

r �
ðtÞ

JB
r � HB

i;j

h i�
�
ðtÞ

KA
i;j

h i��

þ HA
p;q

h i�
�
ðtÞ

KB
p;q

h i�	
(55)

represents the field/source interaction.

Upon integrating (52) over a bounded domain D � RN

(Figure 4) and applying Gauss’ theorem, we arrive at the

global time convolution reciprocity relation (for the

domain D) as

Z
@D

�mSAB
m dAþ @t

Z
D

UAB dV ¼
Z
D

WAB dV (56)

in which @D is the boundary of D and �m is the unit vector

along the outward normal to @D.

The further discussion of corollaries of (56) goes along

the same lines as in [2, Sec. 28.2]. In computational elec-

tromagnetics, (56) provides an important check on the
consistency of the pertaining numerical codes.

Field Interaction With a Kirchhoff Circuit: In a Kirchhoff

circuit, the propagation time for the field to traverse the

maximum diameter of the circuit is negligible with respect

to the spatial extent of pertaining pulsed field. Then, on

some closed surface SK surrounding the circuit in such a

way that, upon it, the Kirchhoff circuit description in
terms of the voltages fVkðtÞ; k ¼ 1; . . . ;Kg across and

electric currents fIkðtÞ; k ¼ 1; . . . ;Kg fed into its K acces-

sible ports holds, the (Maxwell) field/(Kirchhoff) circuit

interaction integral over SK is expressed as

Z
@DK

�mSAB
m dA ¼

XK

k¼1

IA
k �
ðtÞ

VB
k � IB

k �
ðtÞ

VA
k

� 	
(57)

where the unit vector �m along the normal points toward
the circuit. This relation is one of the basic ones in the

electromagnetic interference (EMI) analysis of the

Bemitter[/Bsusceptor[ interaction.

VIII . TIME-CORRELATION
RECIPROCITY

The time-correlation reciprocity relation is most easily

arrived at by writing the time correlation of two of the

pertaining quantities as their time convolution, where the

second of the two quantities is replaced by its time-reversed
one. Denoting the operation of time reversal by the

superscript �, we start from the field equations applying to

state A as

@m HA
m:k

� ��þ @t �A
k;r �
ðtÞ

EA
r

� 	
¼ �JA

k (58)

@iE
A
j

h i�
þ @t ��;A

i;j;p;q �
ðtÞ

HA
p;q

h i�� 	
¼ � KA

i;j

h i�
: (59)

Fig. 4. Configuration of application of the global time-convolution

reciprocity relation.
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State B applies to the time-reversed field that satisfies

@m HB�
m:r

� �� � @t �B�
r;k �
ðtÞ

EB�
k

� 	
¼ �JB�

r (60)

@pEB�
q

h i�
� @t ��;B�

p;q;i;j �
ðtÞ

HB�
i;j

h i�� 	
¼ � KB�

p;q

h i�
: (61)

Upon carrying out the operation

(58) �
ðtÞ

EB�
k þ (59) �

ðtÞ
HB�

i;j

h i�
þ(60) �

ðtÞ
EA

r þ (61) �
ðtÞ

HA
p;q

h i�

we arrive at the local form of the time-convolution reciprocity
relation

@mSAB�
m þ @tU

AB� ¼ WAB� (62)

in which

SAB�
m ¼ HA

m;k

h i�
�
ðtÞ

EB�
k þ HB�

m;r

h i�
�
ðtÞ

EA
r (63)

represents the transfer of field interaction

UAB� ¼ EB�
k �
ðtÞ

�A
k;r � �B�

r;k


 �
�
ðtÞ

EA
r

þ HB�
i;j

h i�
�
ðtÞ

��;A
i;j;p;q � ��;B�

p;q;i;j


 �
�
ðtÞ

HA
p;q

h i�
(64)

yields the contrast-in-media interaction, and

WAB� ¼ � EB�
k �
ðtÞ

JA
k þ EA

r �
ðtÞ

JB�
r þ HB�

i;j

h i�
�
ðtÞ

KA
i;j

h i��

þ HA
p;q

h i�
�
ðtÞ

K�p;qB
h i�	

(65)

represents the field/source interaction.

Upon integrating (62) over a bounded domainD � RN

(Fig. 5) and applying Gauss’ theorem, we arrive at the

global time-correlation reciprocity relation (for the

domain D) as

Z
@D

�mSAB�
m dAþ @t

Z
D

UAB� dV ¼
Z
D

WAB� dV (66)

in which @D is the boundary of D and �m is the unit vector

along the outward normal to @D.

The further discussion of corollaries of (66) goes

along the same lines as in [2, Sec. 28.3]. In computa-

tional electromagnetics, (66) provides an important check

on the consistency of the pertaining numerical codes,

as well.

Field Interaction With a Kirchhoff Circuit: Similar to
Section VII, the (Maxwell) field/(Kirchhoff) circuit inter-

action integral over SK is now expressed as

Z
@DK

�mSAB�
m dA ¼

XK

k¼1

IA
k �
ðtÞ

VB�

k þ IB�
k �
ðtÞ

VA
k

� 	
(67)

where the unit vector �m along the normal points
toward the circuit. This relation is one of the basic ones

in EMI analysis in case time-correlation properties are

discussed.

IX. GREEN’S TENSORS AND THE
DIRECT SOURCE PROBLEM

The time-convolution reciprocity relation (56) leads in a

straightforward manner to the introduction of the elec-

tromagnetic field Green’s tensors by applying the rela-

tion to appropriate point-source solutions. In the

majority of configurations considered in computational
electromagnetics, the relevant Green’s tensors apply to

unbounded domains. For this, the standard provisions for

such an application are taken, with the consequence that

the contribution from the surface integral over the sphere

S0 with center at the origin O and radius R0 vanishes in

the limit R0 !1. Furthermore, we take in the entire

configuration

�A
k;r ¼ �B

r;k (68)

��;A
i;j;p;q ¼�

�;B
p;q;i;j (69)

Fig. 5. Configuration of application of the global time-correlation

reciprocity relation.
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i.e., the media properties are each other’s adjoints. Then,
(56) leads to

Z
DJ;B

EA
r �
ðtÞ

JB
r dV �

Z
DK;B

HA
p;q

h i�
�
ðtÞ

KB
p;q

h i�
dV

¼
Z
DJ;A

EB
k �
ðtÞ

JA
k dV �

Z
DK;A

HB
i;j

h i�
�
ðtÞ

KA
i;j

h i�
dV (70)

where DJ;K;A;B denotes the spatial support of the pertaining

source distributions.

From this relation the electric-current source Green’s
tensors for the medium in state B arise by taking

JB
r ¼ aB

r �ðx � xB; tÞ and KB
p;q

h i�
¼ 0 (71)

where �ðx � xB; tÞ is the Dirac distribution operative at

x ¼ xB and t ¼ 0, and writing the corresponding field

quantities as

EB
k ¼GEJ;B

k;r ðx; xB; tÞaB
r (72)

HB
i;j

h i�
¼GHJ;B

i;j;r ðx; xB; tÞaB
r : (73)

Similarly, the magnetic-current source Green’s tensors for

the medium in state B arise by taking

JB
r ¼ 0 and KB

p;q

h i�
¼ bB

p;q�ðx � xB; tÞ (74)

with bB
p;q ¼ �bB

q;p, and writing the corresponding field

quantities as

EB
k ¼GEK;B

k;p;qðx; xB; tÞbB
p;q (75)

HB
i;j

h i�
¼GHK;B

i;j;p;qðx; xB; tÞbB
p;q: (76)

Further, we need the corresponding results for the med-

ium in state A, i.e., taking

JA
k ¼ aA

k�ðx � xA; tÞ and KA
i;j

h i�
¼ 0 (77)

writing the corresponding field quantities as

EA
r ¼GEJ;A

r;k ðx; xA; tÞaA
k (78)

HA
p;q

h i�
¼GHJ;A

p;q;kðx; xA; tÞaB
k (79)

and, finally, taking

JA
k ¼ 0 and KA

i;j

h i�
¼ bA

i;j�ðx � xA; tÞ (80)

with bA
i;j ¼ �bA

j;i, and writing the corresponding field quan-

tities as

EA
r ¼GEK;A

r;i;j ðx; xA; tÞbA
i;j (81)

HA
p;q

h i�
¼GHK;A

p;q;i;jðx; xA; tÞbA
i;j: (82)

Substituting these expressions in (70) and observing that

the result holds for arbitrary values of aB
k , aA

r , bB
i;j, and bA

p;q,

we first arrive at the reciprocity relations for the Green’s
tensors

GEJ;B
k;r ðxA; xB; tÞ ¼GEJ;A

r;k ðxB; xA; tÞ (83)

GHJ;B
i;j;r ðxA; xB; tÞ ¼ �GEK;A

r;i;j ðxB; xA; tÞ (84)

GEK;B
k;p;qðxA; xB; tÞ ¼ �GHJ;A

p;q;kðxB; xA; tÞ (85)

GHK;B
i;j;p;qðxA; xB; tÞ ¼GHK;A

p;q;i;jðxB; xA; tÞ (86)

and, second, using these Green’s tensors reciprocity

relations, at the field representations in the medium of

state A

EA
r ðx; tÞ ¼

Z
DJ;A

GEJ;A
r;k ðx; xA; tÞ �

ðtÞ
JA

k ðxA; tÞ dVðxAÞ

þ
Z
DK;A

GEK;A
r;i;j ðx; xA; tÞ �

ðtÞ
KA

i;j

h i�
ðxA; tÞ dVðxAÞ

for x 2 RN; t 2 R (87)

HA
p;q

h i�
ðx; tÞ ¼

Z
DJ;A

GHJ;A
p;q;kðx; xA; tÞ �

ðtÞ
JA

k ðxA; tÞdVðxAÞ

þ
Z
DK;A

GHK;A
p;q;i;jðx; xA; tÞ �

ðtÞ
KA

i;j

h i�
ðxA; tÞdVðxAÞ

for x 2 RN; t 2 R: (88)
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These relations quantify all sorts of wave propagation from
source to receiver, with the intrachip and interchip digital

wireless signal transfer as a recent subject of investigation.

X. FIELD REPRESENTATIONS IN A
SUBDOMAIN OF RN, EQUIVALENT
SURFACE SOURCES, HUYGENS’
PRINCIPLE, AND THE OSEEN–EWALD
EXTINCTION THEOREM

Proceeding as in Section IX, but applying the time-
convolution reciprocity relation (56) to the bounded do-

mainD � RN with piecewise smooth boundary surface @D
(Fig. 6), we obtain

Z
D

GEJ;A
r;k ðx; xA; tÞ �

ðtÞ
JA

k ðxA; tÞ
�

þ GEK;A
r;i;j ðx; xA; tÞ �

ðtÞ
KA

i;j

h i�
ðxA; tÞ


dVðxAÞ

þ
Z
@D

GEJ;A
r;k ðx; xA; tÞ �

ðtÞ
@JA

k ðxA; tÞ
�

þ GEK;A
r;i;j ðx; xA; tÞ �

ðtÞ
@KA

i;j

h i�
ðxA; tÞ


dAðxAÞ

¼ f1; 1=2; 0gEA
r ðx; tÞ;

for x 2 fD; @D;D0g; t 2 R (89)Z
D

GHJ;A
p;q;kðx; xA; tÞ �

ðtÞ
JA

k ðxA; tÞ
�

þGHK;A
p;q;i;jðx; xA; tÞ �

ðtÞ
KA

i;j

h i�
ðxA; tÞ


dVðxAÞ

þ
Z
@D

GHJ;A
p;q;kðx; xA; tÞ �

ðtÞ
@JA

k ðxA; tÞ
�

þGHK;A
p;q;i;jðx; xA; tÞ �

ðtÞ
@KA

i;j

h i�
ðxA; tÞ


dAðxAÞ

¼ f1; 1=2; 0g HA
p;q

h i�
ðx; tÞ;

for x 2 fD; @D;D0g; t 2 R (90)

in which D0 is the domain exterior to @D

@JA
k ðxA; tÞ ¼ �m½Hm;k�� (91)

is the equivalent surface density of electric current on @D, and

@KA
i;j

h i�
ðxA; tÞ ¼ ½�iEj�� (92)

is the equivalent surface density of magnetic current on @D.

The result for x 2 D is representative for Huygens’
principle [12], [13]. The result for x 2 @D, in which the

integrals have to be interpreted as their Cauchy principal

values, is the basis for the boundary integral-equation
method of computation, while the result for x 2 D0 is

representative for the Oseen–Ewald extinction theorem

[14], [15] and forms the basis for the computational null-
field method [16].

XI. THE CALDERÓN IDENTITIES

Upon applying (89) and (90) to a source-free domain ex-
terior to the bounded closed surface S and taking the fields

to be causally related to the action of sources interior to S,

the relation for x 2 S can, in operator form, be written as

ð1=2Þ @J
@K

� 
¼ �JJ �JK

�KJ �KK

� 
@J
@K

� 
(93)

where the operators contain the (singular and hypersin-

gular) integrals of the relevant Green’s tensors over S. In

the boundary integral-equation computational method,

these relations are sufficient conditions for the surface

expansions of @J and @K to satisfy the condition of being

associated with outwardly radiating fields. However, the
integrations involved are burdened with numerical diffi-

culties. As has been demonstrated in [17]–[19], the nume-

rical difficulties can be reduced by using the Calderón
identities associated with (93)

ð1=4Þ @J
@K

� 
¼ �JJ �JK

�KJ �KK

� 
�JJ �JK

�KJ �KK

� 
@J
@K

� 
(94)

that lead to

�JJ�JJ þ �JK�KJ ¼ I (95)

�JJ�JK þ �JK�KK ¼ 0 (96)

�KJ�JJ þ �KK�KJ ¼ 0 (97)

�KJ�JK þ �KK�KK ¼ I (98)Fig. 6. Field representations in a subdomain of space.
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in which I denotes the ðN þ 1Þ-space-time identity operator.
For the case of ð3þ 1Þ-space-time operators, an extensive

discussion on their application can be found in [17]–[19].

XII. THE SPACE-TIME-INTEGRATED
FIELD EQUATIONS METHOD
OF COMPUTATION

The space-time-integrated field equations method of com-

putation is a local discretization method in which the spa-

tial domain of computation is discretized into a union of

simplices and the time window of observation into a se-

quence of adjacent intervals. Within this space-time dis-
cretization, the field and source quantities are expanded in

linear functions of space and time and the constitutive

parameters are taken to be piecewise constant. In each of

the spatial elements of discretization, the relevant expan-

sion coefficients are taken to be associated with the boun-

dary values of the components of the field quantities that

are continuous upon crossing an interface of jump discon-

tinuities in the constitutive parameters, which expansions
are continued linearly into the interior of the element. In

each of the time intervals, a linear expansion is used. These

expansions are substituted in the space-time-integrated

versions of the field equations upon the application of

simplicial integration rule [the ðN þ 1Þ-space-time gener-

alization of the trapezoidal rule]. The advantage of the

method is that, in view of the definition of the Riemann

integral (as based on the simplicial rule), the method con-
verges for differentiable functions at decreasing mesh sizes

to the pertaining differential equations, while the interface

continuity conditions remain satisfied in machine preci-

sion (i.e., no artificial surface sources turn up). The nume-

rical disadvantage of the method is that it is not explicit

in time.

Let the spatial domain of computation be discretized

into the union of simplices [N�
I�¼1�I� and the time coor-

dinate into the union of adjacent time intervals [NT
IT ¼1T IT .

The space-time-integrated field equations associated with

�I� � T IT are then (cf. Section III)

Z
T IT

dt

Z
@�I�

�m½Hm;k�� dAþ
Z

�I�

�k;r �
ðtÞ

Er dV

2
64

3
75
�����
@T IT

¼ �
Z
T IT

dt

Z
�I�

Jk dV (99)

Z
T IT

dt

Z
@�I�

½�iEj�� dAþ
Z

�I�

��i;j;p;q �
ðtÞ
½Hp;q�� dV

2
64

3
75
�����
@T IT

¼ �
Z
T IT

dt

Z
�I�

½Ki;j�� dV (100)

where @�I� is the boundary of �I� and @T IT is the
boundary of T IT and Gauss’ theorem has been applied. To

accommodate the condition of outgoing radiation, the

method can be coupled to the boundary integral-equation

method (implemented via the Calderón identities) out-

lined in Section XI. This, however, is in essence a mutually

incompatible approach. A compatible approach to handle

the condition of outgoing radiation is to surround the do-

main of interest with a perfectly matched absorbing em-
bedding via the time-domain, causality preserving Cartesian
coordinate stretching method. This method will briefly be

discussed in the next section.

XIII . THE TIME-DOMAIN, CAUSALITY
PRESERVING, CARTESIAN
COORDINATE STRETCHED PERFECTLY
MATCHED EMBEDDING

A substantial number of field computations is requested to

handle the radiation of the field into unbounded free

space. Now, by computational necessity, any domain of

computation must, however, be of bounded support and,

hence, has to be terminated by boundaries upon which

boundary conditions are specified in accordance with the

uniqueness of the pertaining problem. Several types of
Babsorbing boundary conditions[ are in use for this pur-

pose. By far the most superior one is the time-domain,
causality preserving Cartesian coordinate stretching pro-
cedure. Here, a Btarget region[ (in the shape of an

N-rectangle) is selected that contains the sources that

excite the field and in which the field equations are taken

as they are. Next, the target region is surrounded by a

source-free Bperfectly matched embedding[ in which the
field equations are modified in such a manner that their

solution shows an adjustable (user-defined) delay in time

and an adjustable (user-defined) decay in space with

increasing distance from the target region, while leaving

the field values in the target region unaltered [20]. At some

finite Bthickness,[ the embedding is terminated and on the

boundaries of the resulting computational N-rectangle pe-
riodic boundary conditions are prescribed. This process of
termination gives rise to Bspurious reflections[ that mani-

fest themselves in the target region. In view of the pe-

riodicity of the generated solution, the spurious

contributions are generated by the periodically repeated

sources outside the target region and have thus undergone

at least twice the time delay and twice the decay associated

with the field propagation across the embedding’s Blayer.[
Proper adjustment of the delay and decay parameters of
the embedding lead the Btruncation error[ to be within

user-defined bounds. For the case of radiation generated in

a homogenous, isotropic, lossless medium the relevant

procedure can be analyzed analytically [21], as will be

shown below.

The basic step in the time-domain Cartesian coordinate

stretching method is the introduction, along each of the
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axes of the chosen reference frame in RN, of an

appropriate, causality preserving coordinate stretching

function in the time Laplace-transform domain. This re-

placement is taken to be of the type

xm�!x̂m ¼
Zxm

	m¼0


̂½m�ð	m; sÞ d	m; for m ¼ 1; . . . ;N

(101)

in which 
̂mð	m; sÞ is an analytic function of s in the right
half of the complex s-plane and positive for real, positive

values of s and a piecewise continuous function of xm,

while it is subject to the condition that 
̂mð	m; sÞ ¼ 1 for

	m 2 {target region} (Fig. 7). Evidently, in the target re-

gion, we have x̂m ¼ xm. Denoting the derivative with re-

spect to x̂m by @̂m, it follows that, under the replacement,

we have

@m�!@̂m ¼
1


̂½m�ðxm; sÞ
@m; for m ¼ 1; . . . ;N: (102)

Correspondingly, the s-domain field equations applying to

the radiation problem considered in Section VI are
replaced with

@̂m½Ĥm;k�� þ s�Êk ¼ � Ĵk (103)

½@̂ iÊj�� þ s��½Ĥi;j�� ¼ �½K̂i;j��: (104)

Now, in this form, the equations are not directly amenable

to the computational handling by any of the spatial discre-

tization methods applied in the target region. To overcome

this difficulty, we multiply (103), noting that in the sum-
mation the term with m ¼ k is missing, by

�̂
½k�

 ðx1; . . . ; xk�1; xkþ1; . . . ; xN; sÞ ¼ 
̂½1�ðx1; sÞ

� � � 
̂½k�1�ðxk�1; sÞ � 
̂½kþ1�ðxkþ1; sÞ � � � 
̂½N�ðxN; sÞ
(105)

and (104) by 
̂½i�ðxi; sÞ
̂½j�ðxj; sÞ. Furthermore, introducing

the notation

�̂
½k;m�

 ðx1; . . . ; xk�1; xkþ1; . . . ; xm�1; xmþ1; . . . ; xN; sÞ
¼ 
̂½1�ðx1; sÞ � � � 
̂½k�1�ðxk�1; sÞ
̂½kþ1�ðxkþ1; sÞ
� � � 
̂½m�1�ðxm�1; sÞ
̂½mþ1�ðxmþ1; sÞ � � � 
̂½N�ðxN; sÞ

for k 6¼ m (106)

the field equations (103) and (104) can be rewritten as

@m½Ĥm;k�� þ sD̂k ¼ � Ĵk (107)

½@iÊj�� þ s½B̂i;j�� ¼ �½K̂i;j�� (108)

together with the constitutive relations

D̂k ¼ � �̂
½k�

 =


½k�

 �

Êk (109)

½B̂i;j�� ¼�� �̂
½i;j�

 =
½i�
½j�


 �
½Ĥi;j�� (110)

and

Ĵk ¼ �̂
½k�

 Ĵk (111)

½K̂i;j�� ¼ �̂
½i;j�

 ½K̂i;j��: (112)

In the target region, these relations are identical to the

ones for the original field. In the total domain of com-

putation (target region plus embedding), the time-domain
equivalents of (107) and (108) simply are

@m½Hm;k�� þ @tDk ¼ � Jk (113)

½@iEj�� þ @t½Bi;j�� ¼ � ½Ki;j�� (114)

which can be handled by, for example, the space-time-

integrated field equations method discussed in Section XII.

Fig. 7. Cartesian-coordinate stretched, causality preserving,

perfectly matched embedding, terminated with periodic

boundary conditions.
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The time-domain equivalents of (109) and (110) depend on
the choice of the coordinate stretching functions. A con-

venient class of them is the one that introduces an excess

time delay and an excess absorption of the type that has

been considered in [21], i.e.,


̂½m�ðxm; sÞ ¼ 1þ N½m�ðxmÞ
h i

þ s�1�½m�ðxmÞ
for m ¼ 1; . . . ;N (115)

in which N½m�ðxmÞ is the excess time-delay profile, and

�½m�ðxmÞ is the excess absorption profile. Both are taken to be
piecewise continuous functions of xm. Sufficient condi-

tions for 
̂½m�ðxm; sÞ > 0 for s 2 R, ReðsÞ > 0, to hold are

N½m�ðxmÞ � �1 and �½m�ðxmÞ > 0. The time-domain equiv-

alent of (115) is


½m�ðxm; tÞ ¼ 1þ N½m�ðxmÞ
h i

�ðtÞ þ �½m�ðxmÞHðtÞ
for m ¼ 1; . . . ;N (116)

where HðtÞ denotes the Heaviside unit step function. For

this class of stretching functions, (111) and (112) reduce to

repeated time integrations or to ordinary differential equa-
tions in time.

As has been demonstrated in Section VI, the main

wave propagation features are exhibited by the scalar

Green’s function Gðx; x0; tÞ that satisfies the scalar wave

equation (33). In the coordinate-stretched configuration

this function satisfies in the time Laplace-transform

domain

@̂mð@̂mGÞ � ðs2=c�2ÞG ¼ ��ðx̂ � x̂
0Þ: (117)

For the case N ¼ 3, the solution to this equation is

given by

Ĝ ¼
exp �ðs=cÞR̂
h i

4�R̂
; for R̂ 6¼ 0 (118)

in which

R̂ ¼ x̂m � x̂
0
m


 �
x̂m � x̂

0
m


 �h i1=2

(119)

with

x̂m � x̂
0
m ¼

Zxm

x0m


̂½m�ð	m; sÞ d	m: (120)

For the class of stretching functions (115), then [21]

Ĝ ¼ s

c

exp �T ðsþ �Þ2 þ �2
� �1=2

n o

4�T ðsþ �Þ2 þ �2
� �1=2

(121)

in which

T ¼ ðTmTmÞ1=2 (122)

with

Tm ¼
1

c

Zxm

x0m

1þ N½m�ð	mÞ
h i

d	m (123)

� ¼ Tm�m=T2 (124)

with

�m ¼
1

c

Zxm

x0m

�½m�ð	mÞ d	m (125)

and

� ¼ ½�2=T2 � �2�1=2
: (126)

The corresponding time-domain result is [22, eq. 29.3.92]

G ¼ @t
expð��tÞ

4�cT
J0 �ðt2 � T2Þ1=2
h i

Hðt� TÞ
� 

(127)

where J0 is the Bessel function of the first kind and order

zero. From this it is clear that T is the travel time of the

coordinate-stretched wave function from the source point

to the point of observation, � determines the attenuation

that the wave undergoes during its passage, while � is the

angular frequency of oscillation induced by the coordinate
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stretching procedure (� and � both vanish for vanishing
excess absorption).

Some specific stretching profiles have been studied in

[21], which shows their flexibility as to adjusting user-

defined values of the maximum truncation error with pe-

riodic boundary conditions. Note that, contrary to what is

sometimes stipulated in the literature, the stretching

profiles in our analysis need only be piecewise continuous

and may have jump discontinuities of any size.

XIV. ONE-DIMENSIONAL
PULSED ELECTRIC-CURRENT/
MAGNETIC-CURRENT EXCITED WAVE
FIELDS IN A LAYERED MEDIUM:
AN IEEE-WEBSITE DEMONSTRATOR
IN MATLAB

In this section, the different computational features

associated with the space-time field integrations method

discussed in Section XII, the use of the Cartesian coor-
dinate time-domain stretching procedure for constructing

perfectly matched embeddings in accordance with the

excess time delay and absorption profiles studied in

Section XIII, and the termination of such an embedding

with periodic boundary conditions are illustrated for the

1-D pulsed electric-current/magnetic-current excited wave

fields in a layered medium in 3-D space. Each of the layers

can be assigned an electric permittivity �, an electric con-
ductivity �, a magnetic permeability �, and a magnetic loss

coefficient �. Let the wave propagation take place in the

direction of x3 normal to the layering and let the electric

source current have a component along x1 only (linear

polarization) and the magnetic source current only a com-

ponent along the combination x1; x3, then, with

Er ¼ E�r;1 (128)

Hp;q ¼H�p;3�q;1 (129)

Jk ¼ J�k;1 (130)

Ki;j ¼K�i;3�j;1 (131)

the pertaining field equations are

@3H þ ð�þ �@tÞE ¼ �J (132)

@3Eþ ð�þ �@tÞH ¼ �K: (133)

The 1-D Green’s function in the stretched x3-

coordinate is

Ĝ ¼ c

2s
expð�sT3 � �3Þ (134)

with

T3 ¼
1

c

Zx3

x03

1þ N½3�ð	3Þ
h i

d	3 (135)

�3 ¼
1

c

Zx3

x03

�½3�ð	3Þd	3: (136)

The corresponding time-domain result is

G ¼ expð��3ÞHðt� T3Þ: (137)

A Matlab program has been written that handles user-

defined input data as regards the properties of the layered

configuration, the source signatures of the exciting current

distributions, and the type of desired plot output.2

XV. CONCLUSION

A modern time-domain tensor/array approach to electro-

magnetic field theory is shown to lead to considerable

simplifications in the presentation. Through its structure,

the standard vector calculus proves to be a completely

superfluous vehicle and even the right-handedness of the

coordinate systems employed is not a necessity. Only ele-

mentary mathematical operations are needed to formulate

the theory, which enables its generalization to ðN þ 1Þ-
space-time. The structure introduces magnetic currents

and their associated magnetic charges in a manner that

deviates from what is standard, with the particular out-

come that the magnetic charge is not a scalar (as it is

treated in Dirac’s theory), but a cyclically symmetric ten-

sor of rank three. In its turn, this has consequences for

string theory in quantum electrodynamics and theoretical

cosmology. As far as computation is concerned, the basic
steps of the space-time field integration method, combined

with the construction of perfectly matched embeddings

and the application of periodic boundary conditions, are

indicated. The 1-D pulsed wave propagation across a stack

of homogeneous, isotropic layers demonstrates a variety of

features. h
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