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A human sensor network incorporated into geophysical models, together with

satellite observations and sensor measurements, is proposed in this paper;

oil spill predictions are used to validate improvements.

By Oleg Aulov and Milton Halem

ABSTRACT | In this paper, we present a novel approach that

views social media (SM) data as a human sensor network. These

data can serve as a low-cost augmentation to an observing

system, which can be incorporated into geophysical models

together with other scientific data such as satellite observa-

tions and sensor measurements. As a use case scenario, we

analyze the Deepwater Horizon oil spill disaster. We gather SM

data that mention sightings of oil from Flickr, geolocate them,

and use them as boundary forcings in the General NOAA Oil

Modeling Environment (GNOME) software for oil spill predic-

tions. We show how SM data can be incorporated into the

GNOME model to obtain improved estimates of the model

parameters such as rates of oil spill, couplings between surface

winds and ocean currents, diffusion coefficient, and other

model parameters.

KEYWORDS | Data mining; human sensor networks; natural

disasters; oil spill trajectory forecast; situational awareness;

social media (SM)

I . INTRODUCTION

People mainly use social media (SM) for social interaction.

As a result of its popularity there is an abundance of SM

data in various forms such as YouTube videos, Flickr

images, tweets and blog posts that are mined for opinions,

sentiment analysis, popularity ratings, and a variety of

other purposes. Methods of extracting scientific data from
SM and using it in physiological models are beginning to

be researched [1], [2]. In this work, we describe an ap-

proach of viewing SM as a human sensor network (HSN),

and information retrieval from SM as sensors in the field

that observe a certain event and produce measurements of

it. As a use case scenario, we look at the Deepwater Hori-

zon oil spill disaster. In the aftermath of the disaster, the

public was very active in discussing its impact and impli-
cations across a range of SM outlets. Many people who

witnessed firsthand the damage caused by the oilVsuch as

birds soaked in oil or tar balls washing up on the shoreV
reported their accounts in different SM outlets. People

posted photos and videos of oiled beaches, tweeted from

their smartphones when they were prohibited from swim-

ming because of oil pollution, and so on. The National

Incident Command under Admiral Thad Allen saw the
potential of these data and utilized SM mining to gauge

and monitor the mood of the public affected by the BP

disaster [3]. Though the primary purpose of such online

activity is social interaction between friends, increasingly

traditional media outlets look to SM to improve their

reporting and get hints about newsworthy events. In this

paper, we describe how SM data can be used as physical

observations to provide boundary forcing corrections to oil
spill model predictions that employ generic parameteriza-

tions such as the coupling between the surface air and

ocean drift velocities. These SM data can help adjust other
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parameters in the oil spill model as well. We examined
various SM outlets and collected the data that were related

to the Gulf oil spill disaster. We converted these data for

scientific use in geophysical models. For many of these

data reports, we can extract observation location and

temporal information. In addition, by comparing multiple

reports from different observers (i.e., sensors) we can

apply quality controls on the usefulness of the SM data. In

Section II, we describe prior work that was done on the
subject. We provide a summary of two prior research

projects that used Twitter dataVone to study earthquakes,

and another to study air quality. We then describe the

General NOAA Oil Modeling Environment (GNOME)

software that is used by the Emergency Response Division

(ERD) of NOAA’s Office of Response and Restoration

(OR&R) to predict the propagation of oil plumes on the

ocean surface. Section III describes the theory behind our
work and the governing equations. Here we explain the

Eulerian–Lagrangian particle model that is used at the core

of oil modeling software. Section IV describes our data

sources and how we harvested the data and assimilated it

into the GNOME model. Section V describes the

implementation approach. We describe how we process

the SM data and present the results of the integration

experiments as a series of GNOME trajectory forecasts
with different parameters that explore the parametric

sensitivities of the model. Section VI discusses the results

of our experiments and explains their significance.

Section VII provides the summary of our work together

with conclusions.

II . PRIOR WORK

In this section, we review prior work that was done both in

the field of SM and in geophysics. In the SM area we

demonstrate Twitter Earthquake Detector, #uksnow snow

map mashup, and AirTwitter air quality alert system. In

the geophysics area, we present general NOAA operational

modeling environment (GNOME) that is used to forecast

the movement of oil plumes on the surface of the ocean.

Since our work is based on GNOME forecasts, we will
discuss it in greater detail.

A. U.S. Geological Survey: Twitter Earthquake
Detector (TED)

Many examples have been noted of individuals

tweeting about experiencing an earthquake, even before

media outlets received official reports of the event. Tweets

about an earthquake experienced appear within minutes
after the event, as opposed to official scientific reports that

can take up to 20 min, depending on the location of the

earthquake. In response to this trend, U.S. Geological

Survey (USGS) started a Twitter Earthquake Detector

(TED) [2]. TED is a system that gathers in real time tweets

related to earthquakes, and processes them to provide

geolocated areas where people felt shaking. It can

potentially improve the earthquake response products as

well as hazard information gathering and delivery and

could therefore improve the effectiveness of emergency

response efforts. Fig. 1 shows a snapshot of TED in action

displaying a map of the San Francisco, CA, area. Different

colors of circles indicate frequency of tweets in that area
that include the word Bearthquake.[

During the Tohōku earthquake and tsunami of 2011

we conducted a preliminary investigation of the timeli-

ness of SM outlets. The earthquake occurred at 14:46 JST

(05:46 UTC) on March 11th, 2011. We discovered that for

this particular event, Twitter was flooded with relevant

tweets immediately, and Flickr had postings within about

40 min. Fig. 2 indicates the timeline of frequency of
tweets with keywords Bearthquake[ and BJapan[ the day

of the earthquake. Note that there were some tweets prior

to the event. Those were referencing relatively minor

earthquakes that happened several days prior to the de-

vastating one.

Fig. 1. USGS Twitter Earthquake Detector (TED) displays the map of the

San Francisco, CA, area during an earthquake event. Red star indicates

the epicenter of the earthquake. Darker map regions indicate more

densely populated areas. Different colors of circles indicate frequency

of geolocated tweets that include the word ‘‘earthquake.’’

Fig. 2. Timeline of tweets that include words ‘‘earthquake’’ and

‘‘Japan.’’
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B. AirTwitter
In the past decade, there has been a trend online to

create mashups. Mashups are web-based applications that
combine together or heavily rely on multiple other web-

based applications to create a new type of application.

AirTwitter is one such mashup application that monitors

SM data, identifies air-quality- and pollution-related

events, and records and monitors this information.

AirTwitter aggregates RSS feeds from different SM sites

such as Twitter, YouTube, Flickr, Delicious, and others. It

processes the data to weed out all the feeds unrelated to air
quality. Then, it establishes a baseline of normal frequency

of air-quality data. As a result, AirTwitter provides an ag-

gregated, preprocessed, single feed of data with the ability

to detect air-quality-related events, such as volcano erup-

tions and forest fires [4].

C. #uksnow Map
This Google Maps/Twitter mashup online application,

called #uksnow Map, tracks in real time snow reports and

displays them on the map. The pound sign in the beginning

of the name is a pun on the twitter hash tag used for this

application. #uksnow Map is based on crowdsourcing. In

this mashup, Twitter users are asked to report about the

snow conditions in their area. Tweets should include the

#uksnow hashtag, location, and snow rating on a scale

from 0 to 10. The location is represented as a postal code, a

town name, or a Twitter geotag (latitude and longitude).

The snow scale is very looseVthe snow is rated as 0 for no
snow at all, 1–2 for a few flakes, 5 for a steady snow, and 10

for a blizzard. Attaching photos and including the depth of

the snow is also encouraged. The application keeps track of

tweets tagged with the #uksnow tag and displays them on a

Google Maps map in real time. Fig. 3 demonstrates a

screenshot of #uksnow Map. On the left portion of the

screen is a Google Maps window zoomed into the United

Kingdom. Superimposed white circles of varying diameter
indicate the intensity of the snow. On the right section of

the screen is a live tweet feed that is used to generate the

map in real time [1].

D. General NOAA Operational Modeling
Environment (GNOME)

GNOME is the NOAA forecast model that imple-

ments an oil spill trajectory prediction. It is used by the

ERD of NOAA’s OR&R during an oil spill and was used

Fig. 3. #uksnow Twitter mashup. Google Map of the United Kingdom on the left with white circles of varying sizes indicating snow conditions.

Tweet feed on the right listing tweets that were used to generate the map on the left. Participants tweet about current weather conditions in

their area rating the snow from 0 to 10, where 0 means no snow, 1–3 means a few snowflakes, 5 means steady snow, and 10 is the worst

blizzard imaginable.
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for issuing daily operational oil spill forecasts during the
Deepwater Horizon disaster. GNOME software uses

surface winds, surface ocean currents, and other pro-

cesses as input to predict the movement and spread of oil

on the ocean surface as well as how the predicted oil

trajectories might reach coastal beaches and islands. The

model is affected by uncertainty in currents and winds

observations and forecasts as well as in the rate of oil

spill and the thickness of oil reaching the surface of the
ocean. GNOME also has the capability of predicting the

weathering behavior of pollutants. The model is initial-

ized by setting up a spill scenario that takes as an input

the shoreline, surface winds, surface ocean currents/

tides, and the observed location of oil plumes on the

surface of the ocean. As an output, GNOME produces an

animation of how the plume moves, mixes, and weathers

over time as well as a batch file with a series of data
points representing time series of predicted locations of

oil particles.

In its core, GNOME software uses basic Lagrangian–

Eulerian particle tracking algorithms. The area of interest

is divided into a grid and a certain arbitrary amount of oil

in each cell is viewed as a single granule [Lagrangian ele-

ment (LE)] that is influenced by the velocities of the univ-

ersal movers such as winds and currents. The output of the

GNOME model represents the LE of the spilled oil trajec-
tory as splots (spill dots). Black splots represent the best

guess trajectory estimate and red splots represent the

minimum regret. Best guess trajectories are calculated

under the assumption that the winds and currents data

accurately represent the actual winds and currents over

the period of the scenario, and that the initial input of

splots representing the observed location of the sheen of

oil from satellite updates are accurate as well. The best
guess forecast trajectory takes into account the turbulence

that is inherent in the surface winds and ocean surface

currents. Red splots, on the other hand, represent the

minimum regret trajectory. Minimum regret trajectory

takes into account the inherent uncertainty of the winds

and ocean currents models and specifies the boundary be-

yond which there is a high probability that the oil will not

propagate (probability in the order of 90%). Minimum
regret trajectories are useful for purposes of indicating

trajectory uncertainties that are less probable than the best

guess trajectory, but that may be potentially more des-

tructive [5]–[7]. Fig. 4 demonstrates the GNOME model

initialized with the coastline of the Gulf of Mexico. Purple

arrows visualize the surface currents. The red and black

areas are splots of minimum regret and best guess

forecasts.

Fig. 4. Screenshot of GNOME software initialized with surface winds, ocean currents, and coastline data for Deepwater Horizon oil spill scenario.

Purple arrows indicate velocity vectors of surface currents. Black dots are LEs that indicate the best guess of the oil location while

red dots are LEs that indicate the minimum regret of the oil location.
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GNOME has a few variables that are adjustable by the
user and are generally set experimentally. Those variables

include number of splots per spill, windage percentage

range for each spill, pollutant release rate, along- and

cross-current uncertainty percentage, wind speed scale,

and total wind angle scale.

III . GOVERNING MODEL EQUATIONS
FOR OIL SPILL TRAJECTORY DYNAMICS

The most common approach in forecasting floating objects

on the water surface, such as oil plumes on the ocean
surface, is using an implementation of basic Eulerian–

Lagrangian equations. We assume that the thickness of the

oil slick on the surface of the ocean is negligible in com-

parison to the thickness of the water [8]–[10]. The govern-

ing equations for the movement of the oil slick in the 3-D

space x, y, z over time t are

@Cs
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þ @

@x
ðuSCsÞ þ

@

@y
ðvSCsÞ

� @

@z
Kx
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@x

� �
þ @

@y
Ky
@Cs
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� �
þ �1vbCv þ Kz

@Cs

@z

� �

� �Cs � Se � Sd þMsðx; yÞ � Dsðx; yÞ: (1)

Cs is the concentration of oil on the surface of water; Cv

is the volume of oil concentration in the suspended layer

per volume of water; u; v;w are components of surface
current velocity; �1 is the coefficient of the probability of

an oil droplet reaching the surface; � is the surface oil

dispersion coefficient; us; vs are the components of the

drift velocity; K is the diffusion coefficient in the respec-

tive direction; vb is the buoyant velocity of the suspended

oil parcels; Se is the rate of evaporation; Sd is the rate of

dissolution; Ms is the effect on the distribution of the

surface oil due to the mechanical spreading; Ds is the effect
on the distribution of surface oil due to the shoreline de-

position. [8] According to Reddy, advection is the main

mechanism that governs the drifting of the suspended oil

and the surface oil slick. The drift velocity us; vs is consid-

ered a weighed combination of the velocity of the surface

currents with the velocity of the surface winds. The

weighting parameters that are generally used to combine

the air surface winds and the ocean currents are [8]

0:03va þ 1:1vc ¼ vs: (2)

IV. DATA SOURCES

In this section, we describe the geophysical data that we

used to initialize the GNOME model as well as the method

of extracting the SM data from Flickr and converting it to
geophysical data.

A. Shoreline Data
In order to make the oil spill movement forecasts, the

GNOME model needs to be properly set up with the

shoreline data that defines the map separating land from

water, as well as the surface winds and ocean currents

forecast data. We generated a custom shoreline map data
file for the purpose of the boundary condition that speci-

fies where the separation of ocean surface and land is, so

that the model knows where the oil plume is floating and

where it makes a landfall. The GNOME model expects a

map file that contains a list of latitude/longitude points

that represent a polygon of land. We extracted the USGS

shoreline data of the Gulf of Mexico area from the Coast-

line Database hosted at NOAA’s National Geophysical
Data Center. [11] We used NOAA/NOS medium resolu-

tion coastline data designed for 1 : 70 000 scales. This

coastline data consist of many lists of latitude/longitude

tuples. Each list contains various numbers of those tuples

and represents a small portion of the shoreline in the

cylindrical–equidistant projection. Then, we linked all

these lists together in the right order to create a single list

that represented the entire shoreline of the Gulf coast.
Since the model expects a polygon representing the land,

and assumes that everything else is water, it was nec-

essary for us to add arbitrary latitude/longitude points in

the area of the state of New Mexico as well as the South

Pacific area of Mexico. As a result, we got a polygon

shape that represented the shape of the land around

the Gulf of Mexico and that can be ingested into the

GNOME model. Although in our model scenario the
Pacific Ocean was abruptly starting after New Mexico, it

did not matter since the forecasts and computations were

strictly limited to a narrow region of the Gulf Coast and the

area around the Macondo well. We also did not take into

account in our model the unlikely possibility of oil being

moved to Europe with the Gulf Stream and therefore we

did not incorporate any shoreline data for European

countries.

B. Ocean Currents and Surface Winds Data
We obtained the wind fields from NCDC that were

generated by the NCEP ETA Regional Forecast model and

the ocean current data from the ROM ocean model. The

surface winds and ocean surface currents data were re-

trieved from the repository of the Department of Oceano-

graphy at Texas A&M University.
The atmospheric surface wind data are produced by

NOAA’s NCEP ETA-12 model and provide 24-h forecasts

with output every 3 h on a regular grid with a grid spacing

of 12 km. The ETA model, developed by Janjić and

Mesinger, derives its name from the name of the model’s

vertical step mountain coordinate. The basis of the

model is to minimize errors due to the gradient force
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computation, advection, and diffusion. The vertical coor-
dinate is defined by

� ¼ ðp� ptÞ
ðps � ptÞ

� �
� prefðZsÞ � ptð Þ

prefð0Þ � ptð Þ

� �
(3)

where pt is the pressure at the top of the domain, ps is the
pressure of the model’s lower boundary, zs is the elevation

of the model’s lower boundary, and pref is the reference

pressure state [12]. For the purpose of our research, we are

only interested in the first layer of the model that

correlates to the winds on the ocean surface.

The ocean surface currents data are produced by the

Regional Oceanographic Modeling System (ROMS) gen-

erated by the Texas General Land Office (TGLO). ROMS
provides a 24-h hourly forecast, four times a day, on a

regular grid. ROMS is a high-resolution, free-surface,

hydrostatic, primitive-equation ocean model that uses

terrain-following coordinates in the vertical curvilinear

coordinates in the horizontal plane [13]. In its core, it is

based on the S-coordinate Rutgers University Ocean

Model (SCRUM) [14]. The primitive horizontal momen-

tum equations of this model are given as

@u

@t
þ vru� fv ¼ � @�

@x
þ @

@z
KM

@u

@z

� �
þ Du þ Fu (4)

and

@v

@t
þ vrv� fv ¼ � @�

@y
þ @

@z
KM

@v

@z

� �
þ Dv þ Fv (5)

where f is the Coriolis parameter, D is the horizontal

viscous and diffusive term, F is the forcing term, KM is the

vertical eddy viscosity, and ’ is the dynamic pressure.

C. Social Media Model Input Data
For the purpose of this study, we collected data from

Flickr. Flickr is a widely used image and video hosting site
as well as a web services framework. It features many

social networking traits such as the ability for users to add

people to a list of their contacts, forming communities,
tagging people on photos and videos, tagging content with

keywords, the ability to comment on photos, etc. As a

result, Flickr is not only a popular SM portal in its own

right, but also widely used by bloggers to host images that

are imbedded in their blogs. Unless explicitly disabled by

the user, photos and videos posted on Flickr include EXIF

metadata such as date and time when the photo was taken,

camera make and model, camera settings, and geolocation.
Although the ratio of geolocated Flickr images is very

small, we expect it to grow rapidly due to high-tech man-

ufacturers objective to embed Global Positioning System

(GPS) devices not only in smartphones, but also in regular

photo cameras [15]. Currently, the vast majority of geolo-

cated photos on Flickr are taken with a GPS-enabled

smartphone such as iPhone, Blackberry, or Android-based

device. If the EXIF metadata is not available, the user has
an option of geotagging the photo by hand by selecting the

location on the map where the photo was taken; if the

timestamp is not available, Flickr will automatically as-

sume that the upload time is the time the photo was taken.

We started our data mining task with a simple search on

the Flickr website for the query BBP oil spill,[ which re-

turned over 20 000 results. Many of those images were

related to protests against BP, political events related to
the disaster, and other related events that were of no

practical use for us, since we were only looking for oil HSN

data in the form of images that evidenced oil slicks on the

water and oil tar balls washing up on the shores. For

developers, Flickr provides an application program inter-

face (API) access to their service that allows other soft-

ware to directly query and interact with Flickr resources.

For our work, Flickr API proved to be much more flexible
and powerful than the services accessible via the website.

Using Flickr API, we were able to request only the images

that were geotagged as well as supply our search query

with a bounding box of lower left corner at 28.07198,

�95.668945 and upper right corner at 31.203405,

�85.825195 to retrieve only the images from the Gulf

coast area. We executed two search queriesVone for

Btar balls[ and the other one for Boil spill[Vduring the
period of April 20, 2010 to October 20, 2010. They

resulted in two disjoint sets of 22 and 168 images,

respectively, for a total of 190 images. Fig. 5 shows an

example of REST API query, and Fig. 6 shows the corre-

sponding response from the Flickr API. Note attributes

Fig. 5. Example of a Flickr API query.
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latitude,[ Blongitude,[ Baccuracy,[ and Bdate taken.[
Accuracy is a value in the range from 1 to 16 that repre-

sents the accuracy of the geolocation with the world level
being 1, country level being about 3, region about 6, city

being 11, and street being 16 (default is 16) [16]. We wrote

a script that parses the XML response received from Flickr

API and that generates a map with desired markers

corresponding to the latitude/longitude tuple of each

image. Using this script, we generated a series of maps of

the Gulf coast of Mexico and incrementally superimposed

Flickr data that we collected in the previous step at the
corresponding latitude/longitude coordinates. As a result

we got a series of maps indicating the sightings of oil or tar

balls along the shoreline of the coast at different times.

Fig. 7 displays the maps that were generated for different

periods. Fig. 7(a) shows the points for the period from

April 21 through April 27. Here we only see points around

the location of the Deepwater Horizon drilling rig.

Fig. 7(b) shows points for the period of April 21 through
May 11, and here we observe additional points for the

sightings of oil washing up in the area of Fort Morgan and

Fort McRee. Fig. 7(c) is for the period from April 21

through May 30, and here we see additional points in the

regions of Black Bay and Ship Island. Fig. 7(d) is for the

period of April 21 through September 9 and we observe

that many more areas in-between start to fill in.

V. APPROACH

In this section, we describe how we process the SM data and

present the results of the integration experiments as series of
the GNOME trajectory forecasts with different parameters

that explore the parametric sensitivities of the model.

A. GNOME Parameter Sensitivity Experiments
Once the GNOME model was initialized for the area of

the Deepwater Horizon oil spill, we introduced the spill

itself at the exact location of the rig and for simplicity

assumed that all the oil was spilling on the surface. In our
first experiment, we altered the rate of spill and the num-

ber of splots used to represent the oil. We ran the scenario

from the moment that the spill started until June 8. Fig. 8

summarizes our results. Fig. 8(a) indicates a spill at a rate

of 7000 barrels a week with seven barrels per splot,

Fig. 8(b) indicates a spill at a rate of 35 000 barrels a week

with 35 barrels per splot, Fig. 8(c) indicates a spill at a rate

of 35 000 barrels a week with seven barrels per splot, and

Fig. 8(d) indicates a spill at a rate of 350 000 barrels a

week with seven barrels per splot. Fig. 8(a) and (b) allows
us to analyze the influence of the spill rate on the oil

propagation given a constant number of splots used in the

model. The rate changes from 7000 barrels a week to

35 000 barrels a week, but the number of splots is kept at

1000 per week. Fig. 8(b) and (c) allows us to analyze the

influence of the number of splots on the oil propagation

given a constant spill rate used in the model. The rate of

spill is kept at 35 000 per week and the number of splots
changes from 1000 per week to 5000 per week. Fig. 8(d)

increases both the rate of spill and the number of splots in

order to have a bigger picture of the influence of those two

variables on the GNOME model. As a result of this expe-

riment, we observed from Fig. 8(a) and (b) that the

amount of oil released does not alter the direction of the oil

flow or the ultimate location where the model predicts it

will make landfall. Likewise, the number of splots does not
alter the direction of the oil flow or the ultimate location

where the model predicts it will make landfall, as can be

seen in Fig. 8(b) and (c). Fig. 8(d) indicates the worst case

scenario (highest rate of spill) with a substantially higher

number of splots. The resulting output had exactly the

same pattern of oil; however, it had a much better resolu-

tion (less grainy). It is important to mention that the

model run that generated Fig. 8(d) also took a substantially
longer time to run.

B. Assimilation of Social Media Data With
GNOME Model

Now that we developed and presented a method to

aggregate SM data, converted it into a format of latitude,

longitude, timestamp triplets, and plotted it on the map,

we were able to combine the HSN SM data with different

forecasts of the GNOME model that correlate with differ-

ent variable parameters of the model. We picked June 8 as

our comparison date and ran the GNOME model from the

day the spill started until June 8. For the first experiment,
our spill was set up at a rate of 350 000 barrels per week

with a representation of 1000 LEs per week. Then, we

compared the results of different runs with the HSN data

and summarized it in Figs. 9 and 10. Green stars indicate

the SM data from Flickr, while red dots indicate the

GNOME forecast of the oil spill. Fig. 9(a) shows the cor-

relation of the default setting of the GNOME model with

Fig. 6. Example of a Flickr API response.
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Fig. 8. The results of different model runs show that the amount of

oil released and the number of splots used do not alter the direction of

the oil flow and the ultimate location where the model predicts it

will make a landfall: (a) and (b) show that increase in the amount of

oil does not alter the trajectory; (b) and (c) show that increase in the

number of splots (LEs) does not alter the trajectory; (d) has increase

in both the amount of the pollutant and the number of splots.

The resulting figure clearly has a higher resolution of the predicted

location of the pollutant, however the trajectory stays exactly the

same. (a) 7000 barrels and 1000 LEs per week, seven barrels per

splot; (b) 35 000 barrels and 1000 LEs per week, 35 barrels

per splot; (c) 35 000 barrels and 5000 LEs per week, seven barrels

per splot.

Fig. 7. Accumulative Flicker data superimposed on a regional map.

We can observe how as time goes by more and more areas get

covered with oil: (a) April 21, 2010–April 27, 2010; (b) April 21,

2010–May 11, 2010; (c) April 21, 2010–May 30, 2010; and

(d) April 21, 2010–September 9, 2010.
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wind factor of 1%–4%. Fig. 9(b) shows the correlation of

HSN with the GNOME forecast set to wind factor of

5%–8%, and Fig. 9(c) is for wind factor of 9%–12%. For the

second experiment, we kept the same date of June 8 with

350 000 barrels spilling per week with the representation

of 1000 LEs per week and windage of 1%–4%. This time we

introduced diffusion into the model and altered the

Fig. 9. Comparison of the results of different GNOME model trajectory

forecasts and their correlation to SM data. Red dots indicate the

LEs from GNOME model while green stars represent SM data.

We can see that depending on the settings of the model parameters

some forecasts correlate better with SM data than others:

(a) April 20–June 8, 2010 trajectory forecast �350 000 barrels per

week, 1000 LEs per week with 1%–4% windage and no diffusion;

(b) April 20–June 8, 2010 trajectory forecastV350 000 barrels per

week, 1000 LEs per week with 5%–8% windage and no diffusion; and

(c) April 20–June 8, 2010 trajectory forecastV350 000 barrels per

week, 1000 LEs per week with 9%–12% windage and no diffusion.

Fig. 10. Comparison of the results of different GNOME model

trajectory forecasts and their correlation to SM data. Red dots indicate

the LEs from GNOME model while green stars represent SM data.

We can see that depending on the settings of the model parameters

some forecasts correlate better with SM data then others:

(a) April 20–June 8, 2010 trajectory forecastV350 000 barrels per

week, 1000 LEs per week with 1%–4% windage; (b) April 20–June 8,

2010 trajectory forecastV350 000 barrels per week, 1000 LEs per

week with 1%–4% windage, and diffusion coefficient of 100 000 cm2/s

with uncertainty factor of 2; and (c) April 20–June 8, 2010 trajectory

forecastV350 000 barrels per week, 1000 LEs per week with 1%–4%

winds and diffusion coefficient of 200 000 cm2/s with uncertainty

factor of 2.
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diffusion variables. Fig. 10 displays the results of this expe-
riment on a map. Fig. 10(a) shows no diffusion. Fig. 10(b)

shows the forecast with the diffusion coefficient of

100 000 cm2/s and an uncertainty factor of 2. Fig. 10(c)

shows the forecast with a diffusion coefficient of 200 000

cm2/s and an uncertainty factor of 2. Now that we have

run multiple experiments and have gotten both SM data

and GNOME forecast data in the same format, we can

analyze the results of our experiments.

VI. RESULTS

We assumed that the SM data were the ground truth and

we compared GNOME model forecasts to that ground
truth by calculating the root mean square (RMS) error.

The RMS calculation was performed as follows: for each

point of SM data, we found the closest LE point from the

forecast and we calculated the geometric distance in kilo-

meters. We squared each such distance, summed all the

distances together, and extracted the square root of that

sum. Our calculations are summarized in Table 1. The first

three entries are for experiments with different winds and
currents combinations and no diffusion. The last two

entries assume the windage of 1%–4% and introduce the

comparison of two different diffusion coefficients.

It is important to point out that a change of windage of

a few percentage points (from 1%–4% to 5%–8%) resulted

in the RMS change of an order of magnitude (from 20.4 to

1.3). Similar outcome is observed when diffusion is in-

troduced. We have also conducted additional studiesVnot
presented in this paperVon the size of the initial oil

plume, in particular, a simulated hand-drawn map of the

Table 1 RMS Error Results

Fig. 11. Screenshot of the Environmental Response Management Application (ERMA) Gulf Response mapping site displaying MODIS image of

sun-glint reflecting from the oil plume of the Deepwater Horizon disaster on May 24, 2010 as well as NESDIS anomaly analysis composite product

derived from COSMO SKYMED-2, MODIS TERRA, and RADARSAT-2 for the same date (green superimposed polygon) [17].
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oil spill similar to that of the sun glint reflection
observed by the moderate-resolution imaging spectro-

radiometer (MODIS) instrument on the Terra satellite

taken on May 24, 2010, shown in Fig. 11. This study

showed increased beached oil trajectories, indicating the

need for realistic quantitative mapping of the thickness

of inferred oil spill images [18]. Currently, the National

Environmental Satellite Data and Information Service

(NESDIS) provides a composite product that is created
by hand by their trained technicians. Some research has

been conducted on automating such processes using

machine-learning techniques, such as the work of Corucci

on oil spill classification of multispectral satellite images

using neurofuzzy technique [19] and the work of Lary on

dust source classification from satellite imagery using

self-organizing maps[20]. We are actively collaborating

with both authors in order to bring those approaches to
maturity.

VII. SUMMARY

We processed the SM data and converted it to physical

observations that list latitude, longitude, and timestamp

when the oil landfall was observed. The latitude and longi-

tude can be obtained in different ways depending on the
source of the post. In the case of a tweet that was posted

from a smartphone, this information is available in the

metadata of the tweet itself since Twitter geolocates tweets

that are posted from smartphones. In the case of Flickr

images, some cameras, especially those built into smart-
phones, often automatically geotag the photos, and this

information is often preserved in the metadata of the

image. In the cases where the tweet was sent from a com-

puter, we can still get a more coarse location from the

geolocation of the IP address of the Twitter user. Twitter

provides such a coarse location as well. In the case where

the photograph or the video was not geotagged, as well as in

the case of most blog posts, we will have to extract such
information from the textual content such as image de-

scriptions or reader comments. Such extraction can be

automated using text analysis tools and named entity re-

cognizers. In our case, we used only the data that were

already geotagged. We processed SM data from Flickr to be

in the format of the observational geophysical data, and used

it as a boundary condition to assess the sensitivity and

agreement of time-dependent parameters in the GNOME
model with SM data. We quantified the differences between

the forecast and the SM observations by calculating the RMS

error. We observed that minor changes in initial conditions

of the forecast model can lead to an order of magnitude

increase in consistency with specified Flickr data. h
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