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The authors describe a Bayesian estimation approach that achieves simultaneous

localization and mapping for pedestrians using odometry obtained with

foot-mounted inertial sensors.
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ABSTRACT | In this paper, we describe FootSLAM, a Bayesian

estimation approach that achieves simultaneous localization

and mapping for pedestrians. FootSLAM uses odometry ob-

tained with foot-mounted inertial sensors. Whereas existing

approaches to infrastructure-less pedestrian position deter-

mination are either subject to unbounded growth of position-

ing error, or require either a priori map information, or

exteroceptive sensors, such as cameras or light detection and

ranging (LIDARs), FootSLAM achieves long-term error stability

solely based on inertial sensor measurements. An analysis of

the problem based on a dynamic Bayesian network (DBN)

model reveals that this surprising result becomes possible by

effectively hitchhiking on human perception and cognition.

Two extensions to FootSLAM, namely, PlaceSLAM, for incorpo-

rating additional measurements or user provided hints, and

FeetSLAM, for automated collaborative mapping, are dis-

cussed. Experimental data that validate FootSLAM and its ex-

tensions are presented. It is foreseeable that the sensors and

processing power of future devices such as smartphones are

likely to suffice to position the bearer with the same accuracy

that FootSLAM achieves with foot-mounted sensors already

today.

KEYWORDS | FeetSLAM; FootSLAM; odometry; pedestrian

navigation; simultaneous localization and mapping (SLAM)

I . INTRODUCTION

FootSLAM is an algorithm that apparently challenges a

well-established conjecture in navigation: BNavigation
based on inertial sensors as sole means is subject to un-

bounded growth of position error over time.[ This un-

bounded growth of position error has very practical

implications, especially in mass market pedestrian naviga-
tion, where straightforward dead reckoning with low-cost

inertial sensors results in hundreds of meters of error after

a few minutes. If the navigation makes explicit use of the
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human legged locomotion by detecting steps, inertial sen-
sors can be recalibrated during the rest phases of the foot,

which results in significant reduction of the error growth

to say a few meters after minutes. Since the error is still a

random walk, even if this technique is applied, it typically

results in hundreds of meters of error after few hours. In

contrast, we have shown in experiments that FootSLAM is

able to maintain an error in the range of one meter in

typical indoor environments over extended periods of
time without noticeable growth of error. As we will

explain in the course of this paper, FootSLAM actually

does not violate the conjecture stated above. While the

inertial sensors are the Bsole (technical) means,[
FootSLAM effectively augments the inertial sensors with

other sensors, namely the human’s perception. In dead

reckoning, a current position estimate is computed from

the previous estimate and the estimated relative move-
ment (odometry). Given an ideal inertial sensor, with

which the relative movement can be measured without

error, the position can be determined for all times with

the accuracy of the initial position. For nonideal sensors

the errors are cumulative and the growth in uncertainty is

unbounded over time. FootSLAM builds on prior work on

pedestrian positioning using foot-mounted inertial mea-

surement units (IMUs) and the simultaneous localization
and mapping (SLAM) approach pioneered in robotics [1],

[2]. The novelty is that FootSLAM uses no visual or other

exteroceptive sensors of any kind (the only sensors are the

accelerometers and gyroscopes of a foot-mounted IMU)

and still is able to prevent unbounded error growth. While

this is still an unproven conjecture from a theoretical

standpoint, we were able to show in our experiments that a

pedestrian’s location and the building layout can be jointly
estimated by using the pedestrian’s IMU-based odometry

alone.

A. Motivation
Moving as a pedestrian constitutes the most ubiquitous

element of transportation in human society. The efficient

routing of pedestrians in public transportation hubs is a

prerequisite for tightly coupled and efficient intermodal
transportation. Personal navigation aids require location

and map accuracy in the order of the physical extension of

relevant structures (e.g., doors, stairs, aisles) in the envi-

ronment which is typically around one meter for indoor

environments. Hence, the motivation for our work is to

enable location determination and mapping for pedestrians

in these environments where other means of location

determination, such as satellite navigation or other radio-
based localization techniques or mapping information are

often not available or too inaccurate. While this has been

achieved for robotic platforms in the past, it has been an

unsolved problem for pedestrians primarily for one reason:

exteroceptive sensors, such as cameras or light detection

and ranging (LIDARs) are standard for robots, but

problematic for pedestrian applications due to their

mounting requirements, cost, and privacy concerns. Sim-
ultaneous localization and mapping for pedestrians, based

solely on IMU data, would remove significant hurdles for

mass market and professional applications, by eliminating

the need for exteroceptive sensors and reducing privacy

issues.

Projecting the improvements in microelectromechani-

cal system (MEMS)-based inertial sensors to the next ten

or even 20 years, it is foreseeable that FootSLAM will no
longer require the inertial sensors to be mounted on the

foot. Instead, the sensors and processing power in a

pocket-carried smartphone are likely to suffice to position

the bearer with the same accuracy that FootSLAM achieves

with foot-mounted sensors already today. In essence, users

of ordinary smartphones would always know their position

and simultaneously create a map of their environment,

merely by walking around in it.

B. Related Work
Automated dead reckoning has a long tradition in

naval, aviation, and automotive position determination. Its

application to automated determination of a pedestrian’s

position has been facilitated only recently by the advent of

highly integrated MEMS-based IMUs. Specifically, its ap-

plication in mass market applications has become commer-
cially prospective by the development of low-cost silicon

turn rate sensors [3]. In order to cope with these sensors’

errors in terms of time-varying biases and scale factors,

Dissanayake et al. employed movement constraints based

on a vehicle model within a Bayesian filter [4]. While their

application domain was land vehicles, they effectively laid

the foundation for online estimation of IMU sensor errors

by using movement constraints which would later become
the central pillar of inertial pedestrian position determi-

nation. Early work on dead reckoning for pedestrians re-

lied on simple step detection and assumed either a fixed

step length or a correlation of step frequency and step

length. While these methods do not employ a strapdown

algorithm to solve for a full 3-D displacement vector of

the foot, they are fairly robust and, typically in conjunc-

tion with an electronic compass, work also for sensors
mounted on the hip or upper torso. Randell et al. im-

proved the estimation of the step length by measuring the

peak acceleration of the foot in each step and using it as

additional input [5]. The shortcoming of these methods is

their inability to correctly determine nontrivial steps,

such as sidestepping. Foxlin recognized the possibility to

detect and use the duration of the foot’s rest phase for

injecting zero-velocity updates (ZUPTs) as pseudomea-
surements into a filter that models the IMU’s errors [6]

(Fig. 1). Closely related to utilizing a platform’s dynamic

constraints, which may arise from its inertia or limited

power and are typically constant over time and location, is

the idea to exploit constraints of movement imposed by

the environment. Such constraints may be caused by walls

or other obstacles and are typically a function of the
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location. By using known building layouts, several groups

achieved long-term stability in position determination of

a pedestrian in 2-D [7], [8] and 2.5-dimensional [9]

environments. Common to their approaches is the use of

nonparametric sequential Monte Carlo filters (Bparticle
filters[). Given the prerequisite of a sufficiently constrain-

ing environment and an accurate map, these methods

achieve long-term error stability. A huge body of work

exists in the robotics literature on the use of a wide range of

sensors, such as sonar, laser ranging, and cameras to

perform positioning of robots. The simultaneous localiza-

tion and mapping (SLAM) problem was formulated to

allow robots to navigate in a priori unknown environments
[1]: a moving robot explores its environment and uses its

sensor information to build a Bmap[ of landmarks. Our

work is closely related to the Rao-Blackwellized particle

filtering approach employed in the FastSLAM algorithm

[10]. Furthermore, we employ a probabilistic map that

represents human motion in a 2-D hexagonal grid that is

similar to an occupancy grid [11] but with a different

purpose.

C. Problem Statement
Existing approaches to infrastructure-less pedestrian

position determination are either subject to unbounded

growth of positioning error, or require one of the following

two: 1) a priori map information, or 2) exteroceptive sen-

sors, such as cameras or LIDARs with which traditional

SLAM is being performed. In contrast, we wish to achieve
long-term stability of pedestrian positioning, i.e., bounding

the positioning error based solely on nonperfect odometry

that exhibits both angular and distance errors.

D. Structure of the Paper
After briefly discussing the motivation, related work,

and our problem statement, we first present the Bayesian

formulation of FootSLAM in Section II. The original

FootSLAM algorithm and its extensions PlaceSLAM and

FeetSLAM are outlined in Section III. Section IV describes

experiments performed to validate the approach, and

presents and discusses results from these experiments.
The paper closes with conclusions and an outlook in

Section V.

II . BAYESIAN DERIVATION

A. Dynamic Bayesian Network Representation
We will formulate the problem as a dynamic Bayesian

network (DBN). The key is to suitably represent the actor,

i.e., the pedestrian in the system. When a pedestrian walks

in a constrained environment, he relies mainly on visual

cues in order to avoid walls and other obstacles. The ped-

estrian might be walking toward a particular destination

such as an office, or might just be walking randomly in the

accessible space in an office during a conversation. In

robotic SLAM, the robot’s movement is controlled by a
series of inputs uðtÞ. These inputs are then used in the

SLAM estimation as inputs to a probabilistic motion

model. For FootSLAM, we assume that the human visual

and cognitive systems interpret the environment and use

it to guide motion: observed physical constraints such as

walls influence intentions which result in a person

deciding which steps to take. Fig. 2(b) shows a DBN

that models relevant aspects of the system. All random
variables are denoted in bold face. The step transition

vector Uk has a special property: given the old and new

poses Pk�1 and Pk, the step transition Uk is determined

entirely, since knowledge of any two of the state variables

Pk�1, Pk, and Uk determines the third. Inspecting the

DBN, we can now ask which random variables might be

measurable or indirectly observable. It has been shown

Fig. 1. Track of IMU-based odometry (blue) after applying ZUPT pseudomeasurements compared to ground truth (red) and temporal

evolution of the cumulative angular error of the odometry. At t � 870 s the angular error starts to grow with approximately

constant rate until t � 1000 s. Data from data set 16 of [12], with AM1T3ND ZUPT. (a) Track. (b) Cumulative angular error.
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that observing human visual sensory input is possible, as

reported in [13] and more recently for dynamic visual
input in [14].1 However, we assume to have no means of

directly observing the human visual system Vis, nor can
we directly measure where the person might actually want

to go next ðIntÞ, even though step estimation by

measuring electrical activity produced in skeletal muscles

by electromyography (EMG) has been reported in [15].

In FootSLAM, we make no assumptions as to how

steps are measured, as long as the error processes can be
modeled sufficiently. So far we have used inertial sensors,

in particular, a foot-mounted IMU, that (differentially)

measure the steps a person takes. For this case, step

measurements ZU
k are obtained in a manner as described

in [8] and we assume that a suitable strapdown inertial

navigation algorithm with a Kalman filter or similar

algorithm is used. From the viewpoint of our DBN this

estimate is a noisy measurement of the true step vector
Uk. The only other influence on the measurement ZU

k is a

state variable Ek that encodes the correlated errors of the

step estimator.

B. Sketch of Derivation
Our goal is to estimate the states and state histories of

the DBN given the series of all observations ZU
1:k from the

foot-mounted IMU. More formally, we wish to compute

the joint posterior pðP0:kU0:kE0:k;MjZU
1:kÞ, which is

factorizable

p P0:kU0:kE0:k;MjZU
1:k

� �
¼ pðMjP0:kÞ � p fP U Eg0:kjZU

1:k

� �
: (1)

The expression for the map probability in (1) simplifies

because the assumed knowledge of P0:k makes the mapM
conditionally independent of U0:k, E0:k, and the measure-

ments ZU
1:k; as follows from the DBN in Fig. 2(b) and the

deterministic relationship linking Pk�1, Pk, and Uk. We

will express the second factor in (1) recursively in the

sense of a Bayesian filter. It can be easily shown that the

recursive formulation is pðfP U Eg0:kjZU
1:kÞ

/ p ZU
k jUkEk

� �
� p fPUgkjfP Ug0:k�1
� �

� pðEkjEk�1Þ � p fP U Eg0:k�1jZU
1:k�1

� �
: (2)

The recursion is usually begun with the pose P0 set to an

arbitrary position and heading, since performing SLAM

without any absolute heading or location information is
invariant over rotation and translation. We assume

pertinent postprocessing to resolve rotation, translation

(and scale) transformations.

It is clear from the DBN that the map must play a role

in determining the second factor of (2), the pose and step

transition probability. Marginalizing overM, we write this

factor as

I ¼^
Z

M

p fPUgkjPk�1;M
� �

� pðMjP0:k�1Þ dM: (3)

If we are able to compute pðMjP0:k�1Þ and the influence
of a map on the transition from Pk�1 to Pk, we can per-

form sequential Bayesian estimation of the map and pose.

III . ORIGINAL ALGORITHM
AND EXTENSIONS

A. FootSLAM
In order to obtain an online particle filter, we sample

from a proposal density, such as the one described in [16],

and correct the weights using importance sampling.

Following [17] and [18], it can be shown that the weight

of the ith particle wi
k / wi

k�1 � Ii to a very good approxi-

mation. We therefore apply a Rao-Blackwellized particle

filter [10] based on (1): each particle i represents

ffPUEgik; pðMjP0:k
iÞg.

1A tempting hypothetical experiment would be to record blood
oxygen level-dependent (BOLD) signals of the occipitotemporal visual
cortex, and then to investigate if Bayesian estimation of the location of the
person or the map of the environment is possible. To validate this in
absence of portable functional magnetic resonance imaging (fMRI) one
could draw on video playback to a subject in a stationary fMRI device.

Fig. 2. DBNs for classic (robotic) SLAM and FootSLAM showing

three time slices, with random variablesM (‘‘map’’),

Z (‘‘measurement’’), P (‘‘pose’’), and U (‘‘odometry’’). The FootSLAM

map implicitly encodes the environmental features that influence

the pedestrian’s visual impression ðVisÞ and intention ðIntÞ. E models

the correlated errors of the step estimator. (a) Classic SLAM.

(b) FootSLAM.
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1) Probabilistic Transition Map: We now introduce a
probabilistic map, based on the probability of the pedes-

trian crossing transitions in a regular 2-D grid of adjacent

hexagons of radius r. We choose hexagons because they are

the polygons with the greatest number of edges that can be

arranged to cover a 2-D area completely without overlap.

Furthermore, six angular transitions appear an appropriate

number of choices for which human motion would be

reasonably independent between angles.
We restrict this space to the region visited by any par-

ticle and define Hh as one of NH hexagons, where h
uniquely references a hexagon’s position. We define the

map M to be the set comprising all Mh, where Mh is a

vector of length 6 with each component denoting the

transition probability

M
eðUkÞ
hðPk�1Þ ¼

^
PðPk 2 HjjPk�1 2 HhÞ; where j 6¼ h (4)

for leaving the hth hexagon over the edge e via Uk to an

adjacent hexagon Hj. We assume that the map factors into
local, conditionally independent components, and step Uk

is only dependent on Pk�1 and the local map MhðPk�1Þ.
Writing ~h for outgoing hexagon hðPk�1Þ, and ~e for eðUkÞ,
we compute the integral I by integrating over M~e

~h
for the

respective edge.

2) Learning the Transition Map: Learning is straightfor-

wardly based on Bayesian learning of probabilities of dis-
crete random variables. Each time a particle makes a

transition Pi
k�1 ! Pi

k across edge ~e we count this tran-

sition in its local map of hexagon H~h. When computing the

counts, we assume that observing a certain transition from

an outgoing hexagon to an incoming one allows us to

increment the counts for both the outgoing as well as the

incoming one. This improves convergence and is the same

as assuming that a person is likely to walk in either of the
two directions. In order to incorporate prior information,

we assume that pðM~e
~h
jPi

0:kÞ follows a beta distribution and

integrating Ii yields

Ii /
N~e
~h
þ �~e

~h

N~h þ �~h

(5)

where N~e
~h
is the number of times the ith particle crossed the

transition, N~h is the sum of the counts over all edges of the
hexagon in this particle’s map counters, and �~e

~h
and

�~h ¼
P5

e¼0 �
e
~h
are the prior counts. So far an increment of

the time index k is associated with a step that leads from one

hexagon to an adjacent one. In reality, a step might keep the

hypothesized pose in the hexagon or it might lead it over

several hexagons. To address this we simply perform aweight

update only when hypothesized pose has stepped out of the

last hexagon and apply multiple products of (5) for all edges
crossed. Similarly, we update the counts of all edges crossed.

Algorithm 1: FootSLAM

1: for i ¼ 1! Np do

2: Pi
0  ðx; y; h ¼ 0Þ, where x, y, h denote the pose

location and heading in 2-D

3: Ei
0  draw from initial distr. of odometry error states

4: end for

5: for all time steps do

6: k kþ 1

7: for i ¼ 1! Np do

8: draw the ith particle from the proposal density

pðEkjEi
k�1Þ � pðUkjZU

k ;E
i
kÞ from left to right.

9: Pi
k  Pi

k�1 þUi
k

10: wi
k  wi

k�1 � Iik
11: where Iik /

Q
8 edgesðN~e

~h

i þ �~e
~h
=Ni

~h
þ �~hÞ

12: for all edges crossed do

13: for both hexagons joined by the edge ~e i do
14: N~e

~h

i  N~e
~h

i þ 1 w.r.t. the outgoing hexagon ~h
i

15: end for

16: end for

17: end for

18: normalize so that
PNp

i¼1 w
i ¼ 1

19: if resampling is required then

20: perform resampling

21: end if

22: end for

B. PlaceSLAM
A straightforward extension of FootSLAM is the detec-

tion of physical proximity to reliably detectable Bplaces[
[19]. This detection hints may either stem from an assist-

ing user or additional sensors, such as a radio-frequency

identification (RFID)-tag reader or a camera that recog-

nizes salient visual features. It is important to recognize

that PlaceSLAM does not require continuous measure-
ments, but can make use of sporadically incoming place

detection incidents. A user may choose suitable places and

hint their proximity when passing them. In subsequent

walks, the person may signal when revisiting these places.

Cues can be prominent items such as fire extinguishers or

anything that would allow reliable and repeatable recog-

nition of location.

Depending on the distinguishability of the hints or
features, different variants of PlaceSLAM exist. In a trivial

case, the true locations of the places are known to the

system. In less trivial cases, the locations of placemarks are

not known and the association Bquality[ of place iden-

tifiers may range from perfect a priori association to no

a priori association at all. Fig. 3 shows a stylized trajectory

of a pedestrian. Circles represent places. Letters and colors
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are identifiers. On the right side of the figure we see three

possible placestamp sequences as input to the estimator:

one for which the placestamps carry the unique letters,

i.e., perfect association; one with partial association

(colors); and finally, one in which only the fact that some

place is seen is reported, i.e., unknown association. Note
that we do not require uniqueness of the identifier. One can

imagine a situation where a pedestrian signals every time

he walks through any door. The requirement in this case is

that such places are sufficiently separated in space. This is

the most challenging and general case for PlaceSLAM.

For each time step, the standard FootSLAM proposal

step and weight update is performed for each particle. If no

placestamp has been reported, we continue with the nor-
mal FootSLAM algorithm. If a placestamp was reported,

we distinguish two cases. 1) If the particle position is

separated wider than a predefined threshold distance dmin

from all previously logged places in the particle’s own

place map, we assign a new unique identifier to this place.

2) Otherwise, we select the identifier of the place in the

particle’s place map closest to the particle’s current posi-

tion. In both cases, we then weight the particle with the
product of the FootSLAM weight and the PlaceSLAM

weight. In both cases, we subsequently update the location

of the place according to its previous location distribution

and to the location of the particle [19].

C. FeetSLAM
If multiple data sets, possibly from multiple pedes-

trians, are combined, both coverage and accuracy can be

increased. FeetSLAM, an extension to FootSLAM, com-

bines multiple odometry data sets in an iterative process
[20]. The result of each iteration enters the next iteration

through (5) in the form of prior information. This ap-

proach is similar and in fact inspired by the iterative

BTurbo[ decoding principle applied in communication

systems [21], which in turn is an instance of loopy belief

propagation [22], [23]. Since the iterative process allows to

combine the resulting data sets from walks of many dif-

ferent pedestrians with tractable complexity, FeetSLAM
enables the computation of community-generated maps. In

principle, these community-generated maps could form a

map database with global coverage.

IV. EXPERIMENTAL VALIDATION

In order to investigate the conjecture that FootSLAM is

able to bound the growth of positioning error, we carried

out initial experiments in an office building environment.

A pedestrian was instrumented with a foot-mounted IMU

and performed three walks, each of roughly 10-min dura-
tion, within this environment. We recorded ground truth

for two positions at opposite corners of the main corridor

by timestamping the event everytime the pedestrian

passed these positions. All data sets were recorded and

processed offline. A similar data set with additional place-

marks has been recorded in the same environment. A de-

tailed analysis of the results can be found in [19].

FeetSLAM has been tried in larger and more complex
environments. Fig. 4 shows a map of an environment that

included straight and curved corridors, nonrectangular

crossings, and several loops [20].

Fig. 4. Inertial measurements of several partially overlapping walks

are automatically combined by FeetSLAM, a collaborative form of

FootSLAM, to estimate the map shown above. (a) MIT’s Stata Center,

a large academic building with many nonrectangular structures.

(b) Maximum a posteriori (MAP) FeetSLAM map (cyan) resulting from

several walks on one floor of Stata Center.

Fig. 3. Stylized trajectory of a pedestrian. Reporting of placestamps

may be incomplete (e.g., ‘‘E’’ is missing after leg 9).
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A. Discussion of Results

1) Performance: A learned map (manually translated,

rotated, and scaled) for hexagon radius r ¼ 0.5 m is shown

in Fig. 5. In the visited areas, this map reflects the real path

and is accurate to about 1–3 m, with better accuracy in the

corridors that were frequented more often. The walk in-

tentionally remained out of Bloop closure[ in the corridor

for some time. The particles start to converge once the user
backtracks or revisits a region for about 10 m. A sufficient

number of hexagons have to be revisited once or twice for a

usable map to emerge. This governs the required duration

of a walk and fits with what a person typically covers in an

office day. Accuracy in any case is related to the physical

structure dimension, such as corridors and doors, which is

about 1–2 m. The error evolution for FootSLAM is shown

in Fig. 6. Our coordinate system origin was both the start-
ing point and one of the reference points and we manually

corrected for rotation ambiguity. With a sufficient number

of particles we achieve an accuracy of approximately 2 m at

the two reference points. Without FootSLAM, we see un-

bounded error growth after some timeVour system

coasted without too much error for about 300 s. Durations

from 30 to 300 s are typical and suggest that without maps

the particle filter can bridge areas like large halls where
there are no features for FootSLAM to map. We expect

FootSLAM to require a certain minimum average restrict-

edness of motion. Nevertheless, it can coast over some

open areas given enough particles. To achieve accurate

mapping, a relatively large number of particles (> 10 000)

is necessary. Our current implementation runs roughly in

real time for about 30 000 particles on a standard personal

computer (PC). In our proposal function, we drewEi
k from

two independent random walk processes to model heading
bias and heading rate bias error states [16]. The additive

error in 2-D space between ZU
k rotated according to Ek,

and Uk, was white and Gaussian. In addition to SLAM-

inherent rotation and translation invariance, FootSLAM is

subject to a map scaling error. In FootSLAM, this error is

due to biases in the IMU sensors, occasional erroneous

ZUPTs, and subsampling/clipping of the IMU signals that

affect the step length estimation, and also a result of
particles exploring hypotheses of different lengths. In our

quantitative evaluation and videos [24], we have not used
an individual length correction factor. This was only done

using a constant factor of 1.15, which we have established

quite reliably for that sensor setup. For the illustrations in

the known floor plans, we adjusted the scaling so that the

resulting map fits the known floor plan. This additional

scaling adjustment was less than 10%. Scaling can be au-
tomated when tracks are anchored to outdoors Global

Positioning System (GPS) measurements or other absolute

positioning systems.

2) Privacy Implications: Given the current performance

of FootSLAM and projecting the improvements in MEMS-

based inertial sensors to the next ten, or even 20 years, a

range of significant privacy implications for practically
everybody arises, the solution of which is beyond the scope

of this paper. We mention them for completeness and

believe that they may require some form of regulation or

even legislature in the coming years. Whoever has access

to the stream of IMU data can determine the pedestrian’s

current position and the historic trajectory, as well as the

layout of the environment. Since FootSLAM can position

the user without any external signal or interaction with
infrastructure, all sensing, computation, and user interac-

tion can be carried out on the personal device, theoret-

ically with full control over all data by the user. For this

Fig. 6. Relative position accuracy evaluation for FootSLAMVeach

curve is a single run on one data set.

Fig. 5. A map resulting from FootSLAM based on IMU data alone.

Shown is an overlap of the posterior (i.e., weighed average) map in

shades of gray and themaximuma posteriori (MAP)map (i.e., themap

of the ‘‘best’’ particle) in black. Ovals highlight errors with arrows

indicating roughly the error vector. The reference building layout is

plotted for comparison.
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reason, we suggest that data from inertial sensors should
be subject to the same access constraints as other location

sensors such as GPS.

Perhaps the most unclear privacy or security threat

that is caused by the existence of FootSLAM is virtually

impossible to prevent or even detect. Covert mapping of

environments such as private, industrial, or governmental

premises is hard to counter or detect, since FootSLAMs

rids the need for any technical exteroceptive sensor that
could be found in a nondestructive inspection. On the

other hand, FootSLAM mayVin terms of privacyVbe the

acceptable compromise for indoor navigation on such

premises, since the IMU data are most likely to be

considered less sensitive than the images taken by a

pedestrian-worn camera in visual SLAM approaches for

pedestrian navigation.

V. CONCLUSION AND OUTLOOK

As of today, FootSLAM is capable of achieving stable

position determination and accurate map generation solely

based on an IMU in environments without any a priori
knowledge. Extensions such as PlaceSLAM and FeetSLAM

have been introduced and have been shown to work in a

wide range of realistic experiments.
We foresee several interesting avenues for further re-

search that will extend this work. So far we have concen-

trated on feasibility without optimizing for computational

complexity. We see the main potential of FootSLAM in its

collaborative form (FeetSLAM). In order to operate

FeetSLAM in an economically viable way on a global

scale, and in a 3-D environment, reducing required mem-

ory and computational effort is desirable. This holds both
for a centralized approach in which most of the compu-

tation is performed on large-scale server farms as well as in

a decentralized approach in which data and computation

are shared among mobile devices. Any improvement in the
underlying odometry not only improves the accuracy but

also reduces computational effort in FootSLAM. Since

significant improvements with respect to the accuracy of

MEMS-based inertial sensors are to be expected in the

next ten years, the future of inertial-based pedestrian

navigation holds promise. In the not too distant future, it

should be possible to reduce the dependency on BnaBve[
ZUPTs, which require a foot-mounted IMU. This will
allow for less restrictive mounting on the hip or upper

body. Ideally, the user will be freed from any constraints

on where to put the device, and future algorithms will be

able to robustly estimate the sensor’s trajectory, indepen-

dently of whether it is attached to the belt or just loosely

put into a pocket as part of an arbitrary mobile device.

Should cold-atom interferometry [25], which has already

been applied in proof of concepts for inertial sensors with
up to six axes [26], one day lead to practical devices,

localization will require very little additional information

for estimating and correcting the remaining errors. A

FootSLAM-like approach would likely suffice to provide

this additional information and do so with very little

computational effort. Apart from these technical issues,

interesting questions arise concerning ownership of data:

if Alice walks through Carol’s home or company, is she
entitled to use FootSLAM to generate a map, use it herself,

share it with Bob, or even publish it? h
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