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ABSTRACT | As the proliferation of technology dramatically

infiltrates all aspects of modern life, in many ways the world is

becoming so dynamic and complex that technological capabil-

ities are overwhelming human capabilities to optimally interact

with and leverage those technologies. Fortunately, these tech-

nological advancements have also driven an explosion of

neuroscience research over the past several decades, present-

ing engineers with a remarkable opportunity to design and

develop flexible and adaptive brain-based neurotechnologies

that integrate with and capitalize on human capabilities and

limitations to improve human–system interactions. Major

forerunners of this conception are brain–computer interfaces

(BCIs), which to this point have been largely focused on im-

proving the quality of life for particular clinical populations and

include, for example, applications for advanced communica-

tions with paralyzed or Blocked in[ patients as well as the direct

control of prostheses and wheelchairs. Near-term applications

are envisioned that are primarily task oriented and are tar-

geted to avoid the most difficult obstacles to development. In

the farther term, a holistic approach to BCIs will enable a broad

range of task-oriented and opportunistic applications by lever-

aging pervasive technologies and advanced analytical ap-

proaches to sense and merge critical brain, behavioral, task,

and environmental information. Communications and other

applications that are envisioned to be broadly impacted by BCIs

are highlighted; however, these represent just a small sample

of the potential of these technologies.
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I . INTRODUCTION

Envision technologies that increase training or rehabilita-
tion effectiveness by integrating real-time brain activity

assessment into individualized, adaptive training, and

rehabilitation regimens; technologies that help you focus

or even overcome a bad day by adjusting your environment

to help you achieve desired brain states; technologies that

help your doctor identify brain-based diseases or disorders

before they interfere with life by assessing neural activity

before behavioral symptoms appear; or even technologies
that help you communicate better by assessing the neural

activity of your audience and providing suggestions for

increased clarity and interest. These are examples of po-

tential brain–computer interface (BCI) technologies, a

class of neurotechnologies originally developed for med-

ical assistive applications. While there are a number of

potential definitions for this term, in this paper, we will

expand the term BCI to include all technologies that use
online brain–signal processing to influence human inter-

actions with computers, their environment, and even other

humans. This field has recently seen an explosion of
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research enabled by recent advances in wearable, mobile
biosensors and data acquisition; neuroscience; computa-

tional and analytical approaches; and computing for

mobile brain imaging, all of which are enabling potential

BCI applications that expand well beyond those initially

developed for clinical populations. Further, these technol-

ogies, when combined with advancements in other fields

such as pervasive computing, will push applications be-

yond human–computer interfaces and into the very nature
of how people interact with computers and their envi-

ronment. Over the next decades, brain-based technologies

will allow computers, for the first time, to leverage sophis-

ticated analyses of the emotional and cognitive states and

processes of the people using them, revolutionizing the

basic interactions people have, not only with the systems

they use, but also with each other.

II . BACKGROUND

Computers touch almost every aspect of our lives, per-

forming critical functions in diverse areas including educa-

tion and training, home and entertainment, medicine, and

work. The importance of computers in our lives makes

human–computer interaction one of the most critical fac-

tors in systems design. One fundamental issue in human–
computer interaction is that limitations exist on the

communication between the human and the computer.

That is, human–system interaction is still fundamentally

bounded by the inherent capabilities of humans to absorb,

analyze, store, and interpret information to create behav-

ior; and by limitations in the ability of computers to predict

human intentions, action, and communications. Over the

past decades, tremendous advancements have pushed the
bounds on these limitations, including the development of

novel devices for improving information flow into the

computer via multimodal devices [1], [2], collaborative

performance among groups of people [3], eye trackers [4],

speech and language [5], touch screens, gesture, and mo-

tion capture [6], [7], and facial expression recognition [8];

and for allowing the computer to provide more useful,

relevant, or realistic information back to the user through
improved visual displays and graphics, tactile and haptic

feedback [9], [10], 3-D audio [11], and virtual reality (VR)

environments [12]. In addition, improved algorithmic

approaches for predicting human behavior and intention,

such as collaborative filtering [13], physiological comput-

ing [14], affective computing [15], user modeling [16],

[17], and player modeling [18], open up the possibility of

adapting devices to users and their needs. These steps have
increased the quantity, quality, and interpretation of infor-

mation transferred between the human and the system;

however, as computational capabilities and complexity

increase, the limited bandwidth between the human and

the machine will become increasingly constraining. The

tremendous growth of research in the field of neuroscience

over the past several decades offers an approach to address

these limitations. This basic research offers many potential
insights into the brain state and mental processes of the

human; insights that could potentially expand the current

fundamental bounds on human–computer communica-

tions and open the door to completely novel approaches to

both human–computer and human–human interactions

[19], [20].

Major forerunners of these future brain-based tech-

nologies are early BCIs, which were intended to provide a
direct communication pathway between the human brain

and an external device. First developed in the 1970s [21],

but largely unexplored until the past decades, early BCIs

predominately focused on improving the quality of life of

particular clinical populations. Exemplars of these early

BCIs include devices for enabling advanced communica-

tions with paralyzed or Blocked in[ patients and the direct

control of prostheses and wheelchairs.

A. Early Approaches to BCI
Two methodological constraints defined the nature and

the scope of early BCI applications. The first constraint

was to require users to focus on a particular task. For

example, a typical application for spelling and writing had

users focus on a single letter while watching streams of

letters presented by the computer. These letters induce
event-related potentials (ERPs) such as P300s, which can

be detected from the electroencephalographic (EEG) sig-

nals and indicate which letter the user was focusing upon

[22], [23]. An alternative method to spelling and writing

applications leveraged motor imagery (e.g., users imagin-

ing a part of the body moving), which induces changes in

EEG spectral power (often in the mu rhythm band) that

are utilized to select a letter from a series of options. In
such a system, an array of letters is presented to the user

and the computer uses EEG signals arising from the brain’s

perceptual-motor system to rotate an arrow through the

letter options based on which body part the user was

imagining moving [24]. Despite the differences in these

approaches, what they and other existing BCI approaches

have in common is that they are inseparable from the task

being performed (e.g., [25]–[29]).
The second constraint on these early applications was

to target clinical populations whose inherent ability to

transfer information was extremely limited, such as pa-

ralyzed or Blocked in[ patients. This approach proved very

beneficial for enabling the direct control of items like a

computer’s cursor or the communication devices discussed

above for these populations; however, the performance of

these applications is dramatically outperformed by healthy
populations using typical alternatives (i.e., a mouse for

cursor control, speech for communications). In part, the

reason for this is that early applications attempted to uti-

lize the higher cortical function as a moment-to-moment

control signal, thereby circumventing the highly evolved

and efficient system between the brain and muscles that

healthy humans normally rely upon to perform motor
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movements [30]. Currently, researchers are realizing the
benefit of developing applications that use neural signals in

ways that are more consistent with the natural neural

processing for clinical populations [25], [31]–[33]. As re-

searchers continue to extend BCI technologies to healthy

populations, many current applications are still just exten-

sions of the original clinical applications; however, several

promising new types of applications are being developed,

including attempts to integrate emotion into video games,
toys, advertising, and music [34]–[36], as well as attempts

to merge human pattern recognition with computer pro-

cessing power for joint human–computer object detection

[37]–[39].

B. Recent Advancements in Neurotechnologies
Over the past five years, the bridging of technological

gaps in brain imaging and sensing have led to the develop-

ment of the new augmented BCI (ABCI) concepts, which

Liao et al. [40] define as BCIs that can be used by

individuals in everyday life. As a result, ABCIs must func-
tion while people move and interact with their environ-

ment; allow nonintrusive and rapid-setup EEG solutions

that require minimal training; and provide stability, ro-

bustness, comfort, and longevity for accurate long-term

data collection. Technological improvements have also led

to advanced algorithmic approaches to analyzing and in-

terpreting brain data gathered under noisy, real-world

environments (see [41]), enabling an explosion of BCI
research [42] and technology development even to the

point of the commercialization of the first neurally based

toys, such as the Star Wars Force Trainer by Uncle Milton

or the Mindflex by Mattel (see Fig. 1). Over the next

decades, neurotechnologies will increase or create a new

sensing capabilities and the ability for sensors to be

seamlessly integrated into user clothing and environmen-

tal devices (see [40]), and analytic and interpretation
algorithms will be able to reliably extract user perfor-

mance, self-assessment, brain states, and intent on a

moment-to-moment basis (see [41]), which will be enabled

by the ever growing computational infrastructure. These

projected developments will move brain-based neuro-

technologies from toys and prototype interfaces for

specialized populations to a core technology that has the

potential to revolutionize human–system interactions
across all aspects of everyday life.

III . THE PROMISE OF INCORPORATING
THE BRAIN

The foundation of the technological promise of BCI con-

cepts lays in the notion that brain activity can provide

unique insights into people and their behavior, and that

these insights can be used to develop systems that can

change how humans interact with the world. For example:

• As the nervous system underlies human behavior,
the central element of the nervous system, the

brain, holds vastly more information than can be

deciphered through behavior alone. The wealth of

additional information gained through leveraging

the neural signatures provides the potential to

develop fundamentally different human–computer

interaction capabilities than are seen with current

technologies.
• The processes of the human brain are highly varia-

ble, both across people and within an individual

across time, and this variability underlies the va-

riability observed in human behavior. As such,

understanding and leveraging this neural variability

may be useful for tailoring adaptive technologies to

the individual user and their current mental state.

Fig. 1. Brain–computer interfaces for gaming. On the left a gamer uses a BCI to toggle zooming in a first-person shooter game;

on the right, one of the coauthors tests out his ability to use a BCI to adjust the speed of the system’s fans to control the height of

a ball floating on air above a platform.

Lance et al. : Brain–Computer Interface Technologies in the Coming Decades

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1587



• The human brain is highly adaptable in specific
ways, which enables a wide variety of human

capabilities such as learning, adjusting to new tasks

and environments, and even overcoming many

types of trauma. Understanding how the human

brain adapts and tracking neural adaptation online

may be useful for leveraging this inherent human

capability to develop novel approaches to training,

education, and rehabilitation.
Such insights into brain processing could be merged

with expected advancements in computing and artificial

intelligence to move beyond the mere transmission of in-

formation between the man and the machine, and toward

mutually derived analysis, interpretation, and prediction of

situations. That is, the combined human–computer system

may be able to sense and integrate information about the

operators’ and the computers’ past and present capabili-
ties, states, goals, and actions, in addition to the global task

and environmental constraints. Having this information

could lead to deeper insights into human brain function

and behavior, enabling predictions about performance

outcomes, and ultimately leading to revolutionary changes

in the fundamental ways humans and computers interact.

Further, as the human nervous system processes and stores

information in ways that are very different from the
current computer systems with which they interact, from a

systems perspective these insights into brain function may

even impact conceptions as to when and where in the

overall system design human–computer interaction should

occur. However, the realization of this potential will rely

on the ability to reliably extract accurate, high-resolution

indices of neural processing. Here, we briefly overview a

small sampling of brain processes that the cognitive neuro-
science literature has identified that may have major

implications for potential BCIs. Note that while future

advances toward persistent, invasive sensing technologies

will surely be made (see [40]) and significant potential

exists in leveraging these technologies (for example,

cognitive neural prostheses such as [43]), the brain signals

and related potential BCI applications discussed here may

be realizable using noninvasive methods. In the near term,
we consider these noninvasive methods to be the most

practical and user-acceptable approaches to enhance

human–system interactions through BCIs.

Perhaps the most highly investigated brain functions

are those associated with the processing of sensory stimuli.

In the visual domain alone, brain imaging methodologies

have revealed a wealth of information that can be derived

from neural processes associated with stimulus presenta-
tion. For example, neuroimaging techniques can show that

the brain is processing visual information [44], when that

processing is taking place [45], and can also give insights

into the nature of the processing: where in the visual field

a particular stimulus is located [46], [47], when it was

perceived [48], the frequency with which the stimuli are

flashing [49], whether the stimulus was stationary or

moving [50], whether an image (or mental imagery of that
image) was a face (fusiform face area; [51]) or a place

(parahippocampal place area; [52]–[54]), whether images

are familiar or novel [55], and can even provide a partial

decoding of a specific image [56] or video [57]. Similar

modality-specific functions have been revealed for other

sensory modalities.

Similarly, brain imaging reveals information across a

range of motor control and higher cognitive functions that
could be leveraged to support brain-based applications,

such as measuring when an individual is encoding or re-

calling information from memory [58]–[60] or identifying

when motor planning [61], movement initiation [62], and

motor imagery [63] occur. Differences between expert and

novice motor skill performers [64] can also be identified

from brain data. Higher level cognitive capabilities include

the detection of deception [65] and the withholding of
guilty knowledge [66]; consumer preference and decision

making styles [67]–[69]; and executive functions such as

conflict monitoring, error detection, and the level of

conscious effort during tasks [70]–[72]. In addition to

cognitive functions, the human brain has transient states

that modulate or interact with other processes and that

would allow systems to adapt to the human user’s changing

brain state. For example, neural measures predicting per-
formance lapses have been uncovered based on measures

linked to fatigue [73]–[75], emotion [76], [77], arousal

[78], stress [79], engagement [80], and cognitive load [81].

Neuroimaging has extensive roots in medicine and

neural indices have also been associated with various as-

pects of a wide range of brain injuries, disorders, and

diseases. We envision that this research could support

technologies that span the spectrum of medicine includ-
ing: preventative or secondary preventative applications;

novel diagnosis tools; treatment, restorative, or rehabili-

tative tools and devices; and even applications for improv-

ing quality of life and coping with ailments. Just a small

sampling of the disorders and diseases for which neural

indices have been associated include: epilepsy [82], [83],

attention-deficit disorder [84], autism [85], mild and sev-

ere traumatic brain injury [86]–[88], post-traumatic stress
disorder [89], [90], insomnia [91], chronic pain [92],

Alzheimers [93], and addiction [94].

The information contained within the brain processes

outlined above represents just a small window into the

explosion of neuroscience research that has occurred over

the past several decades. Currently, the abundance of

developing computing systems and neurotechnologies pre-

sent a remarkable opportunity to synthesize and leverage
this growing knowledge base for improving human–system

design. However, the development of these applications

will depend on numerous factors spanning from the relia-

bility of the neural signal sensor to the commercialization

of the final product. For example, most recent neurosci-

ence research yields correlation-based findings derived

from groups of individuals and/or across numerous
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individual trials. While this research base illustrates the
wide scope of information that can be extracted from brain

signals, the use of the established techniques for extracting

such information will generally be unsuccessful in the

broad range of BCI applications foreseen here. However,

current efforts focused on developing algorithms for real-

time information extraction on individual operators (see

[41]) and the continued development of initial BCI appli-

cations that relax the accuracy requirement of brain-
derived information (e.g., lowering required accuracy rates

to 80%) and/or relaxing the time constraints on the

information (e.g., allowing information to be extracted

from 5–10 min of brain signal) will help to enable the use

of this broad base of neuroscience measures in BCI design.

In addition, most recent neuroscience-based understand-

ings have been derived using highly controlled experi-

mental scenarios that capture neither the scope nor the
complexity of tasks performed in the real world. Given the

complexity and marked moment-to-moment variability of

brain dynamics and the brain’s central role in producing

real-world behavior, the realization of the full potential of

BCIs within the coming decades will be nontrivial. How-

ever, current efforts to extend neuroscience research to

naturalistic tasks and real-world environments, the de-

velopment of enhanced and alternative techniques for
analyzing and interpreting neural signals in complex envi-

ronments, and the extremely broad scientific base already

established all provide the promise that the field of BCIs

will continue to rapidly advance for the near future.

IV. THE FUTURE OF BCI TECHNOLOGIES

While there is incredible potential for the development of
future BCI applications waiting to be unlocked in the

hundreds of indices of neural behavior that have been

identified by the neuroscience research community, current

and near-term BCIs will likely remain Btask oriented[ (i.e.,

where the application is directly oriented toward the task the

user is trying to accomplish) and include: 1) BCIs that are the

primary interface for the task the user is explicitly per-

forming, such as using brain signals to control the movement
of a prosthetic; and 2) BCIs that directly support the task the

user is performing but are not the primary interface, such as a

system that monitors the user’s brain signals in order to

predict performance while driving and to mitigate periods of

predicted poor performance. Developers have and will likely

continue to find success with task-oriented BCIs, where the

application itself is controlling the conditions under which the

user performs, as opposed to attempting to find brain indices
that generalize across any task that a user may be performing.

This is because task-oriented BCIs will have access to more

context for what the user is actually doing, and thus greater

capability for interpreting the incoming neural signals.

Future task-oriented BCIs, based on advances in sensor

technologies, analysis algorithms, artificial intelligence,

multiaspect sensing of the brain, behavior, and environ-

ment through pervasive technologies, and computing algo-
rithms, will be capable of collecting and analyzing brain

data for extended time periods and are expected to become

prevalent in many aspects of daily life. If and when brain-

sensing technologies are worn during portions of people’s

daily lives, the possibility of using the BCI infrastructure

for Bopportunistic[ applications arises. That is, once users

are regularly wearing brain sensors for specific purposes,

opportunistic BCIs, which are BCI technologies that pro-
vide the user with a benefit, but do not directly support the

task the user is performing, can be employed without

additional overhead. Example opportunistic BCIs could be

pervasive computing applications [95], [96] that adjust the

user’s local environment (such as the color of lighting,

music, or perhaps even odor, or suggestions for dietary,

exercise, entertainment, or treatment options) to alter or

enhance the user’s mood or mental state, or medical ap-
plications that periodically screen the user for indicators of

neural diseases and pursue a variety of mitigations. Such

mitigations may include: generating tasks for further ana-

lysis and screening (moving the BCI into the task-oriented

domain), suggesting the user see a doctor for diagnosis, or

suggesting preventative measures. However, due to the

lack of constraints under which such applications have to

function, opportunistic BCI development will likely ad-
vance through large-scale collection and analysis of data

over extended periods of time, as well as the development

of techniques for extensive individual customization to the

user. While these issues will limit near-term development,

over the longer time frame, opportunistic BCIs may have

lifesaving ramifications in addition to the many other

potential benefits to medical, education, work, and social

applications.
In the next few sections, we intertwine a discussion of

several potential near- and far-term BCI applications with

the factors that will have to be addressed for these tech-

nologies to achieve widespread utilization in society.

Importantly, the types of applications discussed below are

not independent; for example, the advancement of com-

munications applications will likely be intertwined with

and improve direct and indirect-control applications.

A. Direct Control
Some of the earliest concepts for brain–computer

interface applications focused on conscious direct control,

i.e., using brain signals to directly manipulate the state of

an object. Examples come from clinical applications (such

as wheelchairs, prosthetic devices, communication appli-

cations) and from the first brain-control games (see Fig. 1).
In the near future, consumer demand is likely to continue

to push BCIs, particularly in entertainment and quality-of-

life applications, to pursue direct control. From a clinical

standpoint, there are populations of patients who would

greatly benefit from the ability to consciously control their

own movements (e.g., wheelchairs, limbs) and devices in

the world around them (lights, radios, televisions, espresso
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machines, computers, phones). From an entertainment
standpoint, humans seem to have a fascination with the

ability to control objects by directly using their mind,

demonstrated by the point that these concepts, such as

telekinesis, are embedded in our popular culture. In part,

this fascination seems to stem from the concept that direct

access to the brain will present us with vastly improved

capabilities for interacting with the physical world. If such

applications can be developed, they will have tremendous
impacts on quality of life and work. However, numerous

interrelated factors will impact the success of direct-

control applications, including:

• What can the brain really do? While the human

brain is capable of phenomenally complex motor

tasks, and can even physically adapt over time to

support specific motor control tasks (e.g., the

greatly elaborated motor cortex of highly experi-
enced musicians [97]), it is also clear that our

brains have limitations. Take the fictional example

of a BCI that allows a person to control four

mechanical arms in addition to their human limbs.

Obtaining the benefits of these additional appen-

dages will likely require multitasking, which is

known to be difficult and tedious for humans [98];

and multilimb coordination, which is also limited
in humans without extensive practice [99]. As

mentioned in Section II, the brain’s cortex appears

to provide only a portion of the direct-control

function, processing higher level goals and allow-

ing lower level brainstem and spinal mechanisms

to execute the fine control of the limbs. These

examples point out that merely linking technology

into the cortex (which many early BCIs have at-
tempted) will not automatically enable limitless

capabilities. Rather, technologies will likely ad-

vance through approaches that specifically coordi-

nate with and augment the capabilities and

limitations of brain function.

• What are we extracting from the brain? After deter-

mining appropriate neural signals, those signals

must be detected and provided to the BCI. Neural
signals are recorded using technologies that range

from huge, expensive scanners that require the

participant to lay motionless on their back, to re-

latively inexpensive, small form factor technolo-

gies that can be incorporated into a baseball hat

[100]. None of these technologies can fully image

what the brain is doing and most do not function in

everyday environments. Further, analysis tech-
niques are currently capable of obtaining relevant

information from only a small portion of the neural

signal, often requiring considerable computational

processing to do so. Together, even the most ad-

vanced imaging and analysis techniques are pro-

viding only very specific and limited glimpses into

the entirety of brain function. Further, the brain is

nonstationary, adaptive (e.g., as the user ages,
learns, and uses an application), and dynamic (e.g.,

changing along with the physiological fluctuations

experienced during the day). Successful BCI devel-

opment will rely on an understanding of the nature

of the Bglimpses[ afforded by the particular imag-

ing technologies and analysis techniques available

in the coming decades and how those Bglimpses[
change to reflect natural brain adaptations.

• Can we expect a more effective alternative? Finally,

in the development of any application it is impor-

tant to understand alternative technologies. In the

case of direct control, the primary alternative for

healthy humans is using their highly evolved motor

control system (i.e., using their own hands to ope-

rate devices). To date, the technologies for directly

controlling devices using brain signals provide
relatively low bandwidth and low signal-to-noise

ratios. As a result, it is a nontrivial problem to

enhance control for healthy individuals through

the incorporation of brain signals into direct-

control BCIs. For this to occur, the ability to

analyze neural signals to add information above

and beyond that more easily obtained through

other channels (e.g., manual input) will need to be
achieved.

Given these factors, the question remains as to what

can be expected in the near term. We expect further

developments of the types of direct-control applications

that are currently being pursued worldwide. In medical

domains, we expect to see further progress on using brain

signals as higher level Bgoals[ or Bintentions[ to control

prosthetic devices and wheelchairs [25], while alternative
technologies or alternative behavioral or physiological sig-

nals (e.g., leveraging pectoral muscle or peripheral neural

activity recorded via electromyography (EMG) to control

prosthetic limbs for an amputee) will be used for the spe-

cifics of the control tasks [30]. The growth of applications

in the entertainment industry is expected to be broader,

with applications that allow for the fantasy of direct brain

control, while accounting for the lack of effectiveness in
the device (e.g., a virtual game could potentially limit

ineffective or undesired movements generated by a BCI

through limiting potential outcomes and modifying the

laws of physics). As autonomous navigation and robotic

coordination capabilities advance in the far term, BCIs

may allow for the control of single or even multiple coor-

dinated robotic devices. However, direct-control BCI will

always be in competition with alternative human–
computer interface technologies.

B. Indirect Control
One of the fundamental concepts that will directly

influence future BCIs is the use of brain indices that pro-

vide information that is not as readily or robustly available

through other channels. One potential source for this

Lance et al. : Brain–Computer Interface Technologies in the Coming Decades

1590 Proceedings of the IEEE | Vol. 100, May 13th, 2012



information are the brain processes that are associated with
the human perception of Berrors[; these could be specific

brain-produced error signals such as the error-related

negativity [101], or may be combinations of signals asso-

ciated with errors, such as frustration/anger, attention/

engagement, or comprehension. We foresee this informa-

tion potentially augmenting control systems without the

user having to engage directly in the control task to make

corrections. For example, imagine a user observing a ro-
botic arm reaching for a door handle. A human can

perceive early in the process whether the robot’s hand

position is appropriate for manipulating the specific door/

handle combination [102], while the algorithms that con-

trol the robotic arm could then select from multiple alter-

native handle manipulations, selecting a new manipulation

style based on the error signals received from the human

user. This example indirect-control application accesses
the neural correlates associated with the user’s perceived

Berror[ to influence the robotic controller’s choice of

manipulation strategy, but does not engage the operator

directly in the control task. Generally, the success of this

type of application will largely depend on the robustness,

specificity, and timeliness of detecting signals that indicate

user intent or approaching errors, and if a BCI can be

developed to the point where the neurally based human–
system control strategy performs more effectively than

alternatives in terms of overall performance and load on

both the system and the user.

C. Communications
The communications domain offers potentially the

largest potential area of impact for BCIs. Early communi-

cation BCIs were designed to enable a clinical population
with little to no communications capability to generate text

(Section II). In many ways these applications are similar to

the early direct-control applications for clinical popula-

tions. They serve a very specific purpose and will continue

to have a great benefit to the specific clinical populations

they were developed for. However, they likely will not

extend effectively to healthy populations in their current

form. Newer technologies, from naturalistic user interfaces
to collaborative filtering approaches, are making revolu-

tionary advances beyond merely enabling speech genera-

tion and moving toward the basis of communication: the

ability to pass meaning between two or more parties. We

envision future BCIs as part of a holistic system that

leverages communications-specific technologies, as well as

other technologies, such as pervasive sensing and comput-

ing. Specifically, BCIs could potentially support a holistic
approach to communication applications through three

concepts: 1) increasing the bandwidth between the human

and the computer and the effectiveness of that bandwidth;

2) enhancing or predicting the comprehension of informa-

tion in context; and 3) supporting the formation of ideas.

1) As human–computer interfaces expand beyond

mouse and keyboard and into naturalistic user in-

terfaces, the bandwidth between the human and
the computer will increase. One of the break-

throughs of natural user interface concepts is the

idea that in face-to-face human communication,

much more information is transmitted than just

the words being spoken. Other information, such

as body language, facial expressions, and prosody,

all add to the meaning of what is being communi-

cated. Signals characterizing these aspects of
human communication could be combined with

neural signals providing additional insight into the

neural state of the operator and thus additional

contextual information to human–computer com-

munication. As an example, neural signals have

been used in the advertising domain for gauging

and understanding the responses of consumers to

different products [103]. BCIs using the real-time
detection of emotions, frustration, or surprise

[104] could enable training or educational appli-

cations to adapt in ways that could enhance the

learning rates of the students [105]. Further, ad-

vanced BCIs that combine multiple sensor systems

such as eye and head tracking with brain imaging

can be envisioned that can estimate not only

which display the user is looking at [106], but
also other factors that will influence the capabili-

ties of the user such as user attention location and

level [107], fatigue level [73], and arousal levels

[108]. Such technologies could combine these

estimates to generate probabilistic predictions as

to the users processing of available information,

which could then be used to alter the information

displays to enhance the effectiveness of the com-
munications bandwidth.

2) Taking these envisioned concepts a step forward,

BCIs may predict aspects of the user’s compre-

hension of the information. For example, there

are neural signatures (e.g., N400, [109]) that in-

dicate whether a word in a sentence is perceived

by the user as semantically correct. Imagine a de-

vice that can track the incidences of semantic
misunderstanding in a conversation, be it peer to

peer, student to teacher, or even human to com-

puter. With this type of information, systems are

foreseen that can provide general indicators of

comprehension or communication efficiency be-

tween parties. Further, systems could cue users to

repeat or rephrase conversations, or even suggest

alternatives to wording that was ambiguous, mis-
leading, or incorrect. For example, social BCIs

that combine such comprehension analysis sys-

tems with emotional cues from an audience could

aid in the crafting of public speeches, advertise-

ments, and entertainment.

3) Technologies are also developing that could ena-

ble computers to analyze and predict what users
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are attempting to communicate. These range from
computer search engine technologies that use col-

laborative filtering to suggest search terms [13], to

computer vision algorithms that use graph theory

to find objects that are similar to a predefined set

[110]. Prototype BCIs are currently being used to

augment the computer vision algorithms to help

operators find objects within an environment [37].

Extensions of BCIs that leverage the types of sig-
nals described throughout this section are envi-

sioned that would aid in the formation of joint

human–computer semantic lexicons (including

words, images, sounds, etc.) that would be tailor-

able to individual users and that could form the

basis of systems that give users the perception of

talking to computers or other entities such as

semiautonomous robots. As is already being seen
in some search engine technologies, such

lexicons would provide capabilities that go well

beyond just interfacing with the computer, but

would enable computers to make connections

between a user’s concepts, and potentially pro-

vide novel ideas back to the user based on the

their inputs. A step further, imagine an overseer

computer that analyzed the ideas or concepts
multiple people were communicating and sug-

gested communications that would facilitate con-

versation for the entire group. Such systems could

become a fundamental component of human–

system communication and human–human

comprehension.

D. Brain-Process Modification
BCI technologies can also provide the potential for

users to actively modify their own brain processes or

states. Methods such as neurofeedback can already allow

for individuals to adjust their own brain function in an

attempt to attain a more desirable state [111]. As sensor

technologies and analytical approaches improve, so do the

potential benefits of neurofeedback. There are multiple

potential applications of these methods, although the most
promising would be for training and rehabilitation. Exist-

ing research shows that it is possible to discriminate be-

tween the brain processes of novices and those of experts

at various tasks that are either physically demanding or

that require considerable concentration [112], [113]. Such

information could be used to gauge an individual’s learning

status, but could also be used to train novices how to have

brain processing similar to that of an expert performer. A
similar concept for applying brain-process modification is

the rehabilitation of neural ailments or damage, such as

that caused by a stroke. Some mental ailments, particularly

affective disorders such as depression [114], may be treat-

able through an individual modulating their mental

states with help of an advanced neurofeedback-based BCI

[115]–[117]. Finally, it may be possible to delay age- or

ailment-related neural degradation through entering speci-
fic brain states [118].

In addition to neurofeedback-based approaches, future

brain-process modification BCI technologies could be de-

veloped that are based on neural stimulation. While much

of the current neural stimulation research is based on

invasive probes [119], there are potentially valuable non-

invasive neural stimulation techniques based on direct

current, magnetic fields [120], ultrasound [121], or infra-
red light [122]. By combining future high-resolution neural

stimulation technologies with an advanced neurofeedback-

based BCI, neural stimulation could assist the user in

achieving desired brain processing through the stimulation

or suppression of activity in brain regions of interest. This

potentially could drastically improve the performance of

the neurofeedback-based brain-process modification. A

considerably further term (and higher risk) possibility
would be for the system to use neural stimulation to place

the user into the appropriate brain state for the relevant

task the user is performing, although this would require

considerable improvements in neural state detection and

autonomy, as well as a strong consideration of the ethics

involved.

While the ability to modify brain-processes shows pro-

mise, the incredible complexity of the brain and the large
between-persons variability in neural processing suggests

that it may be difficult to determine optimal neural goal

states for a specific individual. Further, as neural feedback

is still largely unexplored, the potential impact of this type

of training on other tasks is not well understood. These

factors suggest that while brain-processing modification

BCIs may enhance training and rehabilitation, it is unlikely

that these technologies will revolutionize these domains in
the near term.

E. Mental State Detection
One of the recent common themes in BCIs is the

detection and use of mental states, as opposed to specific

instances of neural processing such as an ERP, to modify a

system [123]. As alluded to in the above sections, the

ability to reliably and accurately detect fatigue, attentional,
arousal, and affective levels could allow systems or envi-

ronments to adapt to the state of the user, increasing joint

user-system performance across a wide range of tasks [124]

or helping the user achieve a desired mental or emotional

state. As one example, there is a considerable amount of

current research on predicting fatigue-based performance

decrements while driving [73], [125]. By integrating such

predictors with fatigue-mitigation techniques, lifesaving
BCI technologies are envisioned that can decrease the odds

of catastrophic driver errors. Similar fatigue- or attention-

based systems may generalize to a wide variety of similar

vigilance-based tasks, where attention must be maintained

over long periods of time.

Training systems offer another opportunity for mental-

state-monitoring-based BCIs. Training systems, such as
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intelligent or adaptive tutoring systems, are intended to act
as a replacement for a human tutor, providing personalized

training and feedback to develop individual proficiency at a

specific skill or task [126]. These intelligent tutoring tech-

nologies could greatly benefit from state detection systems

that identify brain states indicative of a lack of learning,

such as fatigue, frustration, confusion, strong negative

affect, or low arousal; and brain states that are associated

with learning or the sufficiency of learning. In the near
term, these detection capabilities could conceivably be

used in combination with behavioral and task performance

data to isolate potential influences on a student’s progress,

and in the long run could be combined with pedagogical

theories and user modeling to allow adaptation of the

training system to the user’s mental state in real time,

improving the learning outcomes of the tutoring system.

State-based detection is also beneficial to medical ap-
plications. Diagnosis BCIs are envisioned that could re-

duce diagnosis time and expense. For example, in hospital

fMRI-based BCIs could analyze neural states (or even speci-

fic instances of neural processing) during task performance

and in real time alter tasking as specific diagnoses are

eliminated and others are narrowed in on. Similarly, mobile

EEG-based applications could allow patients to periodically

perform this type of iterative examination in their own
homes, which would be beneficial to a wide range of patient

populations and may provide greater opportunities for cost-
effective preventative medical approaches. State-based

approaches could also be combined with the aforementioned

rehabilitation BCIs to enhance performance.

F. Opportunistic State-Based Detection
Once technology reaches the point where useful oppor-

tunistic BCIs can be realized, a wide range of state-based

applications can be envisioned (see Fig. 2). Neural state

monitoring could be used in combination with pervasive

intelligence to opportunistically change the environment.
For example, affective state could have numerous home,

entertainment, and medical applications, including pro-

viding entertainment, exercise, or food suggestions, or

directly adjusting music selections. Similarly, with a phy-

sician’s recommendations, early markers of the onset of

ailments such as migraines could be used to trigger recom-

mendations for medication, stopping particular activities,

or could directly adjust room lighting or other environ-
mental factors to help alleviate an individual’s symptoms.

Fatigue and sleep-based BCIs offer another area for

opportunistic applications. Most alarm clocks indiscrimi-

nately go off regardless of what stage of sleep the user is in,

despite the fact that a person’s energy level upon awaken-

ing is tightly linked to the sleep stage they were in just

before waking [127]. By incorporating brain activity into

Fig. 2. BCIs based on pervasive technologies embedded in an office environment. A task-oriented BCI includes: (A) dry, wireless EEG sensors

embedded into a baseball cap; (B) EEG signal collection and processing on portable smartphone, which also integrates with other devices in the

environment; and is used to (C) improve human–computer interaction and work performance from online detection of cognitive and affective

brain states, potentially including error-related signals, emotion, and time-on-task fatigue. The use of the task-oriented BCI avails opportunistic

BCIs that (D) modify music selection and image in digital frame based on online detection of affective state; (E) alter lighting and office shades

due to detection of oncoming migraine through EEG, and/or (C) cue the user to potential nonwork activities based on lack of sleep-based

fatigue or stress. In addition, longer term data collection and analysis could result in diagnostics and recommendations for neural ailments.
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an interactive system that wakes the user up during an
optimal phase of the sleep cycle, the user could awaken

feeling more refreshed and alert in the morning. Similarly,

a sleep-related BCI could monitor the amount of rapid eye

movement sleep, which may serve a critical function re-

lated to memory consolidation [128], to enhance memory

performance. Systems like these could also monitor sleep

patterns over time, or even incorporate day-to-day infor-

mation from a digital calendar to suggest ideal times to
sleep or the type of alarm to use on a given night.

Medical monitoring could also benefit from utilizing

opportunistic brain state detection technologies (Fig. 3).

In the longer term, instead of providing the user with

periodic tasks or exams used for medical diagnosis, the

testing routines could be opportunistically derived from

the individual’s daily living, potentially allowing for mini-

mally invasive testing and the earliest detection of slow
onset neural pathologies, such as Alzheimer’s disease.

Such technologies also could make possible increased fre-

quency of brain monitoring for rehabilitation patients or to

support at-home care, potentially making higher quality

medical care and independent living easier for clinical or

elderly populations. For example, pervasive brain moni-

toring applications that could detect the onset of clinically

relevant symptoms could be coupled with automated, re-
mote, active treatment modalities to minimize or even

prevent the onset of harmful or even deadly conditions,

such as epileptic seizures. Moreover, these types of appli-

cations could mesh well with technologies like virtual

medical agents (e.g., [129]), in particular for applications

such as stroke rehabilitation. An agent like this could

utilize both task-oriented and opportunistic brain state

monitoring systems to provide the patient with periodic
neuropsychological rehabilitation treatments or evaluation

tasks, while also monitoring the patient’s progress during

the performance of real-world tasks as part of their day-to-

day living.

While neural state detection applications face many of

the same developmental issues faced by other applications,

the benefits of such technologiesVin task-oriented and

opportunistic applicationsVmay provide ways to both im-
prove human–system task performance, and to develop

assistive medical applications for individuals with neural

ailments, with the potential to provide numerous benefits

to both healthy and clinical populations. In addition, by

integrating these technologies with pervasive computing

or assistive agent technologies, it may become possible to

achieve vastly improved outcomes.

V. CONCLUSION

The current explosion of neuroscience research and neu-

rotechnologies provides the opportunity to provide compu-

ters predictive capabilities for the emotional and cognitive

states and processes of the people using them, potentially

revolutionizing not only interfaces, but also the basic in-

teractions people have with these systems. However, to
reach their full potential, the development of BCI technol-

ogies over the coming decades will have to overcome a

number of obstacles. For example, the amazing abilities of

people to adapt to dynamic, complex tasks and environ-

ments present difficulties in interpreting an individual’s

neural processes and behavior at any given time. These

difficulties may arise due to the signal noise caused by

environmental effects, overlapping neural processes aris-
ing from the performance of multiple concurrent tasks,

and changes in neural signatures over the short and long

term, in addition to the wide variation in neural signals

across individuals.

In order to address these obstacles, near-term applica-

tions are likely to be task oriented, focusing on applications

where neural signals can provide information that is diffi-

cult or impossible to obtain through other measures, where
perfect performance is not required for the application to

successfully produce value, and that emphasize applica-

tion-specific performance instead of attempting to detect

abstract constructs (i.e., attempting to predict perfor-

mance declines at specific tasks over time, instead of

attempting to predict general fatigue). Near-term appli-

cations are also more likely to be successful if they focus

Fig. 3. An example of a potential opportunistic medical

diagnosis-based BCI. Based on diagnosis by a doctor (e.g., depression),

a BCI could be used to detect particular neural states or activities

and politely suggest activities to alter the mental state or lifestyle of

the patient.
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on the individual user, through calibration or individual-
based classification algorithms, instead of attempting to

perform across broad groups or utilize normative popula-

tions [130], [131].

In the far term, we envision a more holistic approach

to BCIs that merges critical brain, behavioral, task, and

environmental information obtained with advanced per-

vasive, multiaspect sensing technologies, sophisticated

analytical approaches, and enabled by advances in com-
putational infrastructure such as extensions of cloud

technologies. Such an approach may also benefit from

exploring synergies between the human and the computer

as well as the large-scale collection of data consisting of

both brain function (e.g., EEG, fMRI) and brain structure

(e.g. diffusion weighted imaging [132]) at multiple scales,

ranging from individual neurons up to maps of the entire

brain. These data could provide a great deal of insight into
how differences and changes in physical brain structure,

both within and between individuals, cause changes in the

functional brain data that can be detected in real time,

thus providing much greater capabilities to individualized

BCI technologies. The pervasive integration of neuro-

technologies will also avail the development of a broad

range of opportunistic BCI technologies in the far term,

which have the potential to dramatically influence quality
of life on a daily basis if scientists and developers can

overcome the hurdles associated with detecting and in-

terpreting neural signatures in relatively unconstrained

settings.

In this paper, a number of potential BCI technologies

focused on communication and other applications have

been described; however, these represent just a small

sample of the broad future potential of these technologies.
We have also focused the discussion of applications on

relatively foreseeable breakthroughs in sensor, analysis,

and computational technologies; however, unforeseen

breakthroughs, such as a novel wearable sensing technol-

ogy that provides ultrahigh resolution, real-time imaging of

both the spatial and temporal activities of the brain, would

open the door to vastly wider set of applications. h
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[112] M. Bilalić, R. Langner, R. Ulrich, and
W. Grodd, BMany faces of expertise:
Fusiform face area in chess experts and
novices,[ J. Neurosci., vol. 31, no. 28,
pp. 10 206–10 214, 2011.

[113] K. Yarrow, P. Brown, and J. W. Krakauer,
BInside the brain of an elite athlete:
The neural processes that support high
achievement in sports,[ Nature Rev.
Neurosci., vol. 10, no. 8, pp. 585–596, 2009.

[114] D. Linden and T. Lancaster, BFunctional
Magnetic Resonance Imaging (FMRI)-based
neurofeedback as a new treatment tool for
depression,[ Eur. Psychiatry, vol. 26, no. 1, p. 937,
2011, DOI: 10.1016/S0024-9338(11)72642-6.

[115] H. Gevensleben, B. Holl, B. Albrecht,
C. Vogel, D. Schlamp, O. Kratz, P. Studer,
A. Rothenberger, G. Moll, and H. Heinrich,
BIs neurofeedback an efficacious treatment
for ADHD? A randomised controlled
clinical trial,[ J. Child Psychol. Psychiatry,
vol. 50, no. 7, pp. 780–789, 2009.

[116] R. P. Reddy, J. Rajan, I. Bagavathula, and
T. Kandavel, BNeurofeedback training
to enhance learning and memory in patient
with traumatic brain injury: A single case
study,[ Int. J. Psychosocial Rehabil., vol. 14,
no. 1, pp. 21–28, 2009.

[117] K. B. Cannon, L. Sherlin, and R. R. Lyle,
BNeurofeedback efficacy in the treatment
of a 43-year-old female stroke victim: A case
study,[ J. Neurotherapy, vol. 14, pp. 107–121,
May 2010.

[118] M. H. Berman and J. A. Frederick, BEfficacy
of neurofeedback for executive and memory

Lance et al. : Brain–Computer Interface Technologies in the Coming Decades

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1597



function in dementia,[ Alzheimer’s and
Dementia, vol. 5, p. e8, Jul. 2009.

[119] S. F. Cogan, BNeural stimulation and
recording electrodes,[ Annu. Rev. Biomed.
Eng., vol. 10, pp. 275–309, 2008.

[120] F. Fregni and A. Pascual-Leone, BTechnology
insight: Noninvasive brain stimulation in
neurologyVPerspectives on the therapeutic
potential of rTMS and tDCS,[ Nature Rev.
Neurol., vol. 3, no. 7, pp. 383–393, 2007.

[121] W. J. Tyler, Y. Tufail, M. Finsterwald,
M. L. Tauchmann, E. J. Olson, and
C. Majestic, BRemote excitation of neuronal
circuits using low-intensity, low-frequency
ultrasound,[ PLoS One, vol. 3, no. 10,
p. e3511, 2008, DOI: 10.1371/journal.pone.
0003511.

[122] J. Wells, C. Kao, E. D. Jansen, P. Konrad, and
A. Mahadevan-Jansen, BApplication of
infrared light for in vivo neural stimulation,[
J. Biomed. Opt., vol. 10, 064003, 2005.

[123] T. O. Zander, C. Kothe, S. Jatzev, and
M. Gaertner, BEnhancing human-computer

interaction with input from active
and passive brain-computer interfaces,[
in Brain-Computer Interfaces. London,
U.K.: Springer-Verlag, 2010, pp. 181–199.

[124] L. George and A. Lécuyer, BAn overview
of research on Fpassive_ brain-computer
interfaces for implicit human-computer
interaction,[ in Proc. Int. Conf. Appl. Bionics
Biomech. ICABBVWorkshop W1 Brain
Computer Interfacing and Virtual Reality, 2010.

[125] S. K. Lal and A. Craig, BDriver fatigue:
Electroencephalography and psychological
assessment,[ Psychophysiology, vol. 39, no. 3,
pp. 313–321, 2002.

[126] J. R. Anderson, C. F. Boyle, and B. J. Reiser,
BIntelligent tutoring systems,[ Science,
vol. 228, no. 4698, pp. 456–462, 1985.

[127] M. A. Carskadon and W. C. Dement,
BNormal human sleep: An overview,[
in Principles and Practice of Sleep Medicine.
St. Louis, MO: Elsevier Saunders, 2000,
pp. 15–25.

[128] R. Stickgold, BSleep-dependent
memory consolidation,[ Nature,
vol. 437, pp. 1272–1278, 2005.

[129] T. Bickmore, BRelational agents for
chronic disease self management,[ in Health
Informatics: A Patient-Centered Approach
to Diabetes. Cambridge, MA: MIT Press,
2010, p. 181.

[130] D. Wu, C. Courtney, B. Lance, S. Narayanan,
M. Dawson, K. Oie, and T. Parsons,
BOptimal arousal identification and
classification for affective computing using
physiological signals: Virtual reality stroop
task,[ IEEE Trans. Affective Comput., vol. 1,
no. 2, pp. 109–118, Jul.-Dec. 2010.

[131] S. Kerick, A. Ries, K. Oie, T. P. Jung,
J. Duann, J. C. Chou, L. Dai, and
K. McDowell, B2010 Neuroscience
Director’s Strategic Initiative,[ Army Res.
Lab., Tech. Rep. ARL-TR-5457, 2011.

[132] R. Bammer, BBasic principles of
diffusion-weighted imaging,[ Eur. J.
Radiol., vol. 45, no. 3, pp. 169–184, 2003.

ABOUT THE AUT HORS

Brent J. Lance (Member, IEEE) received the dual

B.S. degree in computer engineering and com-

puter science from the University of Southern

California (USC), Los Angeles, in 2000 and the M.S.

and Ph.D. degrees in computer science from USC’s

Information Sciences Institute, Marina Del Rey, in

2003 and 2008, respectively.

He is currently a Computer Scientist working in

the Translational Neuroscience Branch, U.S. Army

Research Laboratory’s (ARL) Human Research and

Engineering Directorate, Aberdeen Proving Ground, MD. He did his

postdoctoral work jointly between ARL and USC’s Institute for Creative

Technologies, working on using virtual environments for cognitive assess-

ment. His current research interests include the use of virtual environments

for neuroscience research and the development of Army-relevant brain–

computer interaction technologies. Prior to working for ARL, his work

focused on procedurally modifying motion capture to allow embodied

conversational agents to display emotion through their nonverbal behavior.

Scott E. Kerick received the B.A. and M.S. degrees

in psychology and exercise and sport science from

St. Cloud State University, St. Cloud, MN, in 1992 and

1995, respectively, and the Ph.D. degree in kinesiology

from theUniversity ofMaryland, CollegePark, in 2001.

He served as a Postdoctoral Research Associ-

ate with the Cognitive Motor Behavior Laboratory

at the University of Maryland from 2001 to 2003,

studying cortical and kinematic adaptations asso-

ciated with visuomotor skill learning. He then was

awarded a Postdoctoral Research Associateship in 2003 from the

National Research Council via the U.S. Army Research Laboratory where

he investigated cortical dynamics of soldiers during performance of a

threat-engagement shooting task. Since 2003, he has been a Research

Psychologist at the Army Research Laboratory in the Human Research

and Engineering Directorate, Aberdeen Proving Ground, MD. His current

research focuses on measurement and analysis of brain function of

soldiers in operational environments in support of advancing technol-

ogies for enhanced soldier-system performance.

Dr. Kerick received a Department of Army Research Development and

Achievement Award for Technical Excellence in 2004.

Anthony J. Ries received the B.S. degree in

psychology from Northwest Missouri State Uni-

versity, Maryville, in 2000 and the M.A. and Ph.D.

degrees in cognitive neuroscience from the Uni-

versity of North Carolina at Chapel Hill, Chapel Hill,

in 2003 and 2007, respectively.

He previously performed human factors re-

search at Human Centric Technologies, Cary, NC,

from 2000 to 2001, and served as a Cognitive

Neuroscientist at Trideum Corporation, Aberdeen,

MD, from 2007 to 2009. Currently, he is a Research Psychologist in the

Translational Neuroscience Branch, U.S. Army Research Laboratory,

Aberdeen Proving Groun, MD. His research focuses on the assessment of

soldier performance in operationally relevant environments using

behavioral and physiological measures.

Kelvin S. Oie was born in Washington, DC, on

October 18, 1970. He received the M.A. degree in

kinesiological sciences and the Ph.D. in neurosci-

ence and cognitive sciences from the University of

Maryland, College Park, in 1999 and 2006,

respectively.

He was a Graduate Research Fellow at the

University of Maryland until 2004. Since Decem-

ber 2004, he has been a Research Kinesiologist for

the U.S. Army Research Laboratory (ARL), Aberd-

een Proving Ground, MD. His research interests include the measurement

and assessment of human cognitive function in operationally relevant

environments, and the development of techniques for integrating

neuroscience-based approaches into systems design and development.

Dr. Oie is member of the Society for Neuroscience. He received several

commendations and funding awards, and was selected as the ARL

nominee for the Presidential Early Career Award for Scientists and

Engineers in 2011.

Lance et al. : Brain–Computer Interface Technologies in the Coming Decades

1598 Proceedings of the IEEE | Vol. 100, May 13th, 2012



Kaleb McDowell (Senior Member, IEEE) was born

in Frederick, MD, on July 10, 1970. He received the

B.S. degree in operations research and industrial

engineering from Cornell University, Ithaca, NY, in

1992 and the M.S. degree in kinesiology and the

Ph.D. degree in neuroscience and cognitive sci-

ence from the University of Maryland, College

Park, in 2000 and 2003, respectively.

He is currently the Chief of the Translational

Neuroscience Branch and Chair of the Neurosci-

ence Strategic Research Area at the U.S. Army Research Laboratory

(ARL), Aberdeen Proving Ground, MD. Since joining ARL as a Research

Psychologist in 2003, he has contributed to over 30 reviewed publica-

tions, and has led several major research and development programs

focused on neuroscience, indirect vision systems, and vehicle mobility.

His current research interest focuses on translating basic neuroscience

into applications for use by healthy populations in everyday, real-world

environments.

Dr. McDowell received Department of Army Research and Develop-

ment Achievement awards for technical excellence in 2007 and 2009 and

the ARL Award for Leadership in 2011.

Lance et al. : Brain–Computer Interface Technologies in the Coming Decades

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1599


