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In this second Point of View article on cognitive dynamic systems, we
will review the progress made and the way forward on this multidis-

ciplinary integrative field. Specifically, we will address the following

topics:

• brief historical notes on human cognition;

• advances made on cognitive radar of the monostatic kind;

• emergence of cognitive control for the first time, building on the new

concept of a two-state model;

• the significant progress made on cognitive radio on several fronts.

I . INTRODUCTION

In February 2005, a classic journal paper on cognitive radio was published [1],

which was then followed up with a seminal journal paper on cognitive radar

that was published in January 2006 [2]. The publication of these two papers

emboldened the author to write a predictive Point of View article on cognitive

dynamic systems that was published in November 2006 [3]. There has been an
exponential growth in cognitive radio, more so than in cognitive radar, in the

past five years; hence, this update on where we stand on cognitive dynamic

systems, looking ahead and address-

ing the emergence of cognitive con-

trol for the first time.

The article is organized as follows.

Section II presents brief historical

notes on human cognition. Section III,

building on the historical notes, de-

scribes Fuster’s paradigm for cog-
nition as the framework of reference

for cognitive dynamic systems.

Section IV identifies two different

classes of cognitive dynamic systems,

viewed from an engineering perspec-

tive. Sections V, VI, and VII address

three important engineering mani-

festations of cognition: radar, control,
and radio, respectively. The article fi-

nishes with concluding remarks in

Section VIII.

II . BRIEF HISTORICAL
NOTES ON HUMAN
COGNITION

With cognition being a characteristic

of the human brain, it is natural that

we consult neuroscience on what

cognition stands for. Unfortunately,

in the literature on neuroscience there

is no unique definition for cognition;

see, for example, Michael Gazzaniga’s

definitive edited volume The Cogni-
tive Neuroscience, now in its fourth

edition [4].

A large percentage of the informa-

tion processing in the brain is per-

formed in the cerebral cortex and it

plays a key role in processes attributed

to cognition by different researchers.

Since the 1950s, Vernon Mountcastle’s
work on characterizing the columnar

organization of the cerebral cortex has

influenced research carried out in thisDigital Object Identifier: 10.1109/JPROC.2012.2193709
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field; he pointed out that cortical
minicolumns are the basic functional

units of cortex [5]. In 1978, based on

the uniform appearance of the cortex,

he proposed that all regions of the

cortex may use a basic information-

processing algorithm to accomplish

their tasks. This algorithm must be

independent of the nature of the
information-bearing sensory input. In

other words, all kinds of sensory inputs

(i.e., visual, audio, etc.) are coded in a

standard form and fed to this basic

processing algorithm.

As a pioneer in computational

neuroscience, David Marr followed a

similar way of thinking that very few
fundamental techniques are used by

the cerebral cortex to process in-

formation for different tasks [6]. He

was interested in developing a general

computational theory for the brain

based on biological evidences. How-

ever, in later years, he just focused on

vision.
Following the same line of think-

ing and inspired by pioneering scien-

tists who had put a great deal of

thoughts and efforts into exploring

what the essence of cognition is,

Joaquin Fuster proposed the concept

of Bcognit[ for knowledge represen-

tation in the cerebral cortex; more-
over, he proposed an abstract model

for cognition based on five fundamen-

tal building blocks, namely percep-

tion, memory, attention, intelligence,

and language [7].

III . AN ENGINEERING
PERSPECTIVE OF
COGNITION

Hereafter, we refer to the five funda-

mental building blocks attributed to

Fuster as Fuster’s paradigm, which we

adopt as the Bframe of reference[ for

cognitive dynamic systems.

From an engineering perspective,
we may describe the functions of

these five fundamental building

blocks of cognition as follows.

• The function of the

perception–action cycle is to

produce information gain

about the environment by

processing the received sig-
nal, with the amount of infor-

mation gain increasing from

one cycle to the next.

• The function of memory, from

an information-processing

perspective, is to encode the

received signal, store the en-

coded information, and recall
it when needed in response to

some cue; for certain applica-

tion, memory may also predict

the consequences of action

taken by some parts of a cog-

nitive dynamic system.

• The function of attention is to

provide for the effective and
efficient utilization of com-

putational resources in a cog-

nitive dynamic system, so as

to avoid the information-

overload problem.

• The function of intelligence

is to enable an algorithmic

decision-making (control)
mechanism in the cognitive

dynamic systems to pick a

strategy for optimal solution

of a prescribed goal, con-

fronted by environmental un-

certainties and disturbances.

• Finally, language is intended

to provide effective and effi-
cient communication on a

person-to-person basis as well

as a group of persons.

Henceforth, language is outside

the scope of this article and not

considered further.

IV. TWO DIFFERENT
CLASSES OF COGNITIVE
DYNAMIC SYSTEMS

The way in which functions of the

perception–action cycle, memory, at-

tention, and intelligence are actually

interpreted is dependent on the

application of interest.
In particular, we may identify two

distinct classes of cognitive dynamic

systems.

• The first class embodies that

application where the design

of a cognitive dynamic system

closely mimics the human

brain, be it visual, auditory,
or some other sensory kind;

cognitive radar, a remote-

sensory application, is a good

example of this first class of

cognitive dynamic systems.

• The second class embodies

those applications where the

design of a cognitive dynamic
system is motivated by human

cognition; cognitive radio, a

communication application,

is a good example of this sec-

ond class of cognitive dynamic

systems.

Stated in another way, in the first

class, there is relatively Bclose[ map-
ping of a cognitive dynamic system

onto its human cognition counterpart.

In the second class, now such map-

ping exists.

V. COGNITIVE RADAR

Fig. 1 shows the block diagram of a
cognitive radar, where the two func-

tional parts of the system, namely the

perception–action cycle and distrib-

uted memory, feature prominently in

the figure.1

Perception, performed in the re-

ceiver, operates on radar returns from

an unknown target with a dual ob-
jective, reliable detection of the tar-

get, and its tracking behavior across

time. In this article, we focus on

tracking, which is treated as a state-

estimation problem under the Bayesian
framework.

To address the tracking problem,

the traditional approach is to start
with a state–space model that consists

of a pair of equations: the system

equation describes evolution of the

state across time with system noise as

the driving force, and the measure-

ment equation describes dependence

of the measurements on the state

1Comparing Fig. 1 for cognitive radar of a
monostatic kind with Figure 4.7 in Fuster’s book
[7], we see a reasonably close resemblance
between them. One other noteworthy point: in
engineering, a block diagram flows from left to
right; on the other hand, in neuroscience, it flows
in a bottom-up fashion. Fig. 1 follows the latter
convention.

Point of View
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corrupted by measurement noise.

Typically, but not always, the state–

space model is nonlinear, which re-

quires approximating the optimal

Bayesian filter in some sense. Here-

after, we look to an approximate

Bayesian filter to preform perception
of the environment, which is natu-

rally performed in the receiver. The

perception–action cycle requires that

the receiver be linked to the trans-

mitter. In a monostatic radar, where

the receiver and the transmitter are

collocated, such a requirement is re-

latively straightforward to handle.
Accordingly, the receiver is also res-

ponsible for computing feedback

information about the radar environ-

ment and then supplying it to the

transmitter for action in the environ-

ment. With state estimation playing

the role of perception in mathema-

tical terms, it is logical to formulate
the feedback information using the

state-estimation error vector. For the

feedback information, we may use

the Fisher information metric or the

Shannon entropy, depending on the

application of interest [8]. Next, turn-

ing to the transmitter, its function is

to control the receiver indirectly
through illumination of the envi-

ronment. Here again, with optimal

control in mind, we may look to

Bellman’s dynamic programming as

the method of choice. However, when

dimensionality of the state–space,

action–space, measurement–space,

or combination thereof, is high, which

is typically the case in tackling dif-

ficult tracking problems, we have to
resort to approximate dynamic prog-

ramming for mitigating the curse-of-

dimensionality problem. Thus, in

light of what we have just described,

the perception–action cycle embodies

four functional blocks: approximate

Bayesian filter for environmental per-

ception in the receiver, linkage for
feedback information from the re-

ceiver to the transmitter, approxi-

mate dynamic programming for

receiver control performed in the

transmitter, and finally, the state–

space model of the radar environ-

ment. The perception–action cycle

may therefore be viewed as a closed-
loop feedback control system, which,

in physical terms, is clearly visible

in Fig. 1.

Next, we turn to the requirement

that a cognitive radar must learn from

the experience gained through con-

tinued interactions with the radar

environment. This requirement is sa-
tisfied by equipping the radar with a

multiscale memory system, one part

of which resides in the receiver,

another part resides in the transmit-

ter, and the two of them are recipro-

cally coupled in the manner described

in Fig. 1. The part of memory that

resides in the receiver is called

perceptual memory. From a practical

perspective, it is desirable for the
perceptual memory to have a multi-

scale structure. In the neural network

literature, this kind of structure is

referred to as features of features.

Basically, through a learning process,

the first layer of the perceptual

memory extracts the important fea-

tures that characterize the incoming
measurement vector. Naturally, these

features act as the input to the second

layer of the perceptual memory,

which, in turn, goes on to extract

the features of features that charac-

terize the original measurement, and

so on for the third layer of perceptual

memory. The idea behind such a
learning process is summed up as

follows. The perceptual memory of

Fig. 1 is reciprocally coupled to the so-

called system-model library; this li-

brary consists of a grid of points, with

each point representing a different set

of values of the nonlinearity describ-

ing state transition and system-noise
covariance in the system equation. It

is assumed here that the library

provides a set of all possible discrete

Fig. 1. Block diagram of cognitive radar.

Point of View
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values of the system equation in the
state–space model that could arise in

practice. Accordingly, the perceptual

memory may be viewed as an asso-
ciative memory of the heterogeneous

kind, the objective of which is to cor-

relate each grid point in the system-

model space to a corresponding point

in the measurement space.
The part of the memory that re-

sides in the transmitter is called the

executive memory, whose structural

composition follows a similar format

to that of the perceptual memory.

Note also that the executive memory

is reciprocally coupled to another li-

brary called the transmit-waveform
library. Each grid point in this sec-

ond library represents, for example, a

different combination of chirp rate

and Gaussian pulse duration: two pa-

rameters that define the transmit-

waveform vector. In a manner similar

to the perceptual memory, the execu-

tive memory may be viewed as an
associative memory of the heteroge-

neous kind, except for differences in

terminology: feedback information

and transmit waveform play the role

of measurements and system-model

library, respectively.

In order to exploit the full capabi-

lity available in having the perceptual
memory and the executive memory is

to have them reciprocally coupled to-

gether. This reciprocal coupling is

achieved by means of the working
memory, as shown in Fig. 1; typically,

the working memory functions for a

relatively short time within each

perception–action cycle, so as to at-
tend to the consequences of actions

taken by the radar. With all the three

kinds of memory viewed as a whole,

we thus have an integrated system

that enables all the information-pro-

cessing steps performed in each cycle

of the perception–action cycle mech-

anism to proceed in a synchronized
(coherent) fashion across time. This

self-organized synchronous behavior

is another cardinal characteristic of

cognitive radar.

Examining the block diagram of

Fig. 1, we see that both the perception–

action cycle and memory occupy

distinct physical places of their own
within a cognitive radar. However,

this is not so when it comes to

attention. Rather, memory-based at-

tention manifests itself across the

cognitive radar through Balgorithmic[
mechanisms. Specifically, we have

perceptual attention in the receiver

and executive attention in the trans-
mitter. In a tracking problem, for ex-

ample, the so-called explore–exploit

strategy plays a key role in formulat-

ing an algorithm for the executive

attention. To illustrate, suppose that a

grid point in the waveform library was

picked for illuminating the environ-

ment in the previous perception–
action cycle. Then, in the current

cycle, that particular grid point per-

forms the role of a Bcenter[ point

within a cluster, embodying the set of

grid points that lie in the immediate

neighborhood of the center; this step

constitutes the exploration phase. The

cluster of grid points so obtained is
passed on to the controller for action

in the environment.

Considering intelligence, here

again we see that intelligence does

not occupy a distinct place of its

own in cognitive radar. Rather, intel-

ligence manifests itself artificially

through algorithmic mechanism that
is driven by the combination of at-

tention, memory, and the perception–

action cycle. Specifically, given the

cluster of grid points identified in the

exploration phase and the feedback

information computed in the receiver

the controller selects the optimum

transmit waveform by minimizing a
prescribed cost function, and with it

exploitation phase of explore–exploit

strategy is completed.

Thus, the computational effort

involved in a global search of the

transmit-waveform library is replaced

with a local search. Typically, with

the execution of this strategy being
relatively short from one perception–

action cycle to the next, we expect

evolution of the local search for the

selection of a transmitter waveform to

be relatively smooth, which is yet

another cardinal characteristic of

cognitive radar.

In a target-tracking application,
for example, the practical benefits

gained from the use of cognitive radar

may be summed up as follows [9]:

• significantly improved speed of

convergence;

• equally significantly improved

tracking accuracy;

• smooth transi t ion of the
transmit waveform from one

perception–action cycle to

the next.

Moreover, the most important

benefit to be gained by the use of

cognition is risk control (manage-

ment), which is enabled by an intel-

ligent choice of the decision-making
mechanism in the transmitter for a

prescribed goal of interest, confronted

by environmental uncertainties and

disturbances, which are physically not

implementable in the internal librar-

ies of the cognitive radar.

VI. COGNITIVE CONTROL

Fig. 2 shows the block diagram of a

cognitive control system,2 where the

right-hand side of the figure is re-

ferred to as perceptor and its left-hand

side is referred to as controller [10].

For reinforcement learning to func-

tion as the controller in Fig. 2, we
have to think in terms of a two-state

model of the environment, composed

as follows:

• state–space model, which

describes evolution of the tar-

get state, given the incoming

measurement;

• entropic-state model, which
accounts for, in probabilistic

terms, all the unknown envi-

ronmental uncertainties and

disturbances in the envi-

ronment.

Estimation of the target state and

computation of the entropic state are

both performed in the perceptor.

2In a historical context, our discovery of
cognitive control came out of work being done
on cognitive radar, in which cognitive control is
embedded. Nevertheless, cognitive control and
cognitive radar are two different manifestations
of human cognition, each with its own domain
of applications.

Point of View
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Moreover, the feedback information

passed on to the controller is simply

the entropic state.

With this two-state model in
mind, the cognitive controller de-

picted in Fig. 2 functions with much

less computational complexity on two

accounts:

• the reinforcement learning

machine (agent) controls the

perceptor;

• to accommodate this con-
trolling action, in turn, the

reinforcement learning ma-

chine has Bdirect[ access to

the entropic state.

In control-theoretic terms, we may

therefore restructure the cognitive

controller of Fig. 2 in the equivalent

simplified form shown in Fig. 3, ac-
cording to which the perceptor may

be viewed as an Bagent.[ Most im-

portantly, insofar as the action of the

controller is concerned, the simpli-

fied diagram of Fig. 3 is in perfect

accord with the reinforcement learn-

ing literature [11].

At first sight, the block diagrams
of Figs. 1 and 2 for cognitive radar and

cognitive control look essentially sim-

ilar, except for the two libraries in

cognitive radar. This should not be

surprising because they are both

motivated by human cognition. How-

ever, they differ in their respective

practical applications. Moreover, the
two-state model described for the first

time for cognitive control applies

equally well to cognitive radar.

VII. COGNITIVE RADIO

The term cognitive radio was coined

by Mitola and Maguire [12], in which
the visionary idea of cognitive radio

was introduced for the first time

within the software-defined radio

(SDR) community. Subsequently,

Mitola elaborated on the so-called

Bradio knowledge representation

language[ in his own doctoral disser-

tation [13]. Continuing on, in a short
section entitled BResearch issues[ at

the end of his dissertation, Mitola

went on to say the following:

BHow do cognitive radios

learn best? merits attention:

The exploration of learning in

cognitive radio includes the
internal tuning of parameters

and the external structuring of

the environment to enhance

machine learning. This thesis

does not attempt to answer

these questions, but it frames

them for future research.[

Then, in [1], detailed exposition of

signal processing, control, learning

and adaptive processes, and related

game-theoretic ideas that lie at the

heart of cognitive radio were pre-

sented for the first time. As depicted

in Fig. 4, three fundamental cognitive

tasks in the perception–action cycle
of cognitive radio were identified in

that paper:

1) radio-scene analysis of the

environment, which is per-

formed in the receiver;

2) dynamic-spectrum manage-

ment and transmit power

control, both of which are
performed in the transmitter;

Fig. 3. Simplified form of the cognitive controller, realized by exploiting the notion of

entropic state.

Fig. 2. Block diagram of cognitive controller.

Point of View
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3) global feedback, enabling the

transmitter to act in light of

information about the radio
environment fed back to it by

the receiver.

As mentioned previously, for a dy-

namic system to be cognitive under

Fuster’s paradigm, it has to embody

the four fundamental building blocks:

perception, memory, attention, and

intelligence. Perception is achieved by
using nonparametric spectrum estima-

tion for perception in the receiver. The

dynamic spectrum manager has the

practical means to dynamically choose

and assign a set of appropriate links for

communication to each cognitive ra-

dio unit by learning the underlying

environmental communication pat-

terns. Experimental knowledge thus

learned about the communication

patterns of the primary users in a
radio network and, to some extent,

those of other secondary users in the

local neighborhood, is stored in mem-

ory and updated from one perception–

action cycle to the next. Furthermore,

in response to an input from the

bottom-up link in Fig. 4(b), the

dynamic spectrum manager focuses
its attention on subbands with lower

interference levels. In so doing, com-

munication over the newly found

cognitive radio link is maintained,

bypassing the congested subbands. As

with human cognition, intelligence in

cognitive radio builds itself on the

processes of perception, memory, and

attention; intelligence is facilitated by
global feedback and local feedback.

In what follows, we briefly de-

scribe the three fundamental cogni-

tive tasks identified above, together

with related issues.

A. Radio-Scene Analysis
Radio-scene analysis, embodying

spectrum sensing, is a key enabling

function of cognitive radio. Simply

put, the objective of spectrum sensing

in cognitive radio is to identify

(detect) spectrum holes that represent
subbands belonging to primary (lega-

cy) users, which are not employed at a

particular point in time as well as
space. Spectrum holes are a spectral

resource that is essential to cognitive

radio, as they provide the very means

for their utilization by secondary

(cognitive radio) users for as long as

these holes remain available.

Among all the fundamental tasks

in cognitive radio, spectrum sensing is
by far the most exhaustively studied in

the literature. Specifically, we may

mention three approaches.

• Energy detection, which pro-

vides a reasonably satisfactory

performance at low computa-

tional complexity [14]–[16];

however, this approach to
spectrum sensing is model

dependent in that it requires

information about noise vari-

ance at the receiver input,

which makes it nonrobust.

• Cyclostationarity, which is

based on the use of classical

Fourier transform theory of
stationary processes with an

important modification: the

introduction of the so-called

parameter � (having the

same dimension as frequen-

cy) in the statistical charac-

terization of cyclostationary

processes that involves mod-
ulation [17]–[20]. Robustness

of the second approach de-

pends on how well the pa-

rameter � is chosen.

• Multitaper method (MTM),

which provides a nonpara-

metric approach to power

Fig. 4. (a) Directed-information flow in cognitive radio. DSM: dynamic spectrum manager;

TPC: transmit-power controller; RSA: radio-scene analyzer; RX: receiver; TX: transmitter;

TX CR: transmitter unit in the transceiver of cognitive radio; RX CR: receiver unit in the

transceiver of cognitive radio. (b) Perception--action cycle of a single cognitive radio unit,

where the transmitter and the receiver are located at different points in space.

Point of View
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spectrum estimation [21]. The
attributes of MTM include

spectral accuracy, easy-to-

quantify tradeoff between

bias and variance, regulariza-

tion, and robustness [8], [22].

In mathematical terms, MTM

is rather demanding. How-

ever, in computational terms,
its implementation may be

achieved relatively fast, using

the fastest Fourier transform

in the west (FFTW), described

in [23]: with the use of such a

tool, it can be implemented in

microseconds, given pre-

scribed library values of the
Slepian sequence that are at the
heart of the MTM.

As with energy detection, MTM

can be applied to detect spectrum

holes, using a hypothesis-testing ap-

proach. For the first time in [24],

closed-form analytic formulas are

derived for the probabilities of spec-
trum-hole detection and false alarm,

which are particularly applicable for

the sensing of primary users with

relatively narrow bands. Moreover, in

that paper, superior performance of

the MTM detector over the energy

detector is demonstrated for single

sensors as well as multiple ones.

B. Dynamic Spectrum
Management

Dynamic spectrum management

(DSM), aimed at the distribution of

available spectrum holes among sec-

ondary (cognitive radio) users, is one

of the most challenging problems for
several reasons [25]:

• DSM is equivalent to the

graph-coloring problem that

is NP hard;

• it is a time-varying problem;

• its dimensionality can assume

relatively high values, depend-

ing on the density of second-
ary users.

Despite its optimal property, we

therefore find that the traditional

centralized approach to solve the

DSM problem is not only expensive

but also unscalable. Consequently, we

are compelled to find a decentralized

approach that can achieve a satisfac-
tory suboptimal solution. In other

words, suboptimality of the DSM is a

tradedoff for scalability.

In [26], a self-organizing DSM

scheme inspired by human brain is

described. This novel approach tries

to find the best subbands for each

cognitive radio user by applying the
idea of self-organizing maps.3 These

maps constitute a special class of

neural networks, the main goal of

which is to adaptively transform an

incoming signal pattern of arbitrary

dimension into a 1-D or 2-D discrete

map in a topologically ordered man-

ner in accordance with Hebb’s postu-
late of learning [27].

In the Hebbian-based self-

organizing DSM technique, the goal

is to increase spectrum utilization as

high as possible. To achieve this goal,

the cognitive radio network continu-

ously tries to complement the space-

occupancy pattern of the legacy
network, as follows:

The spectrum-usage pattern

of the cognitive radio network is

matched to a particular pattern

of underutilized subbands in

the legacy network that has

the least or, better still, no
activity at all.

The compelling reasons for the use

of such an approach to solve the DSM

problem are summarized here.

• First, the Hebbian learning

process is a time-varying, high-

ly local correlational learning
rule; it provides a good match

for DSM that is also a time-

varying and localized problem

in its own way.

• Second, the algorithm is com-

putationally very simple to

implement.

• Last and most importantly, the
cognitive radio network oper-

ates in a decentralized manner,

with the complexity depending

on the density of cognitive radio

units and not their total num-
ber; hence, unlike the central-

ized approach, it is scalable.

C. Transmit Power Control
Transmit-power control (TPC),

reciprocally coupled to the dynamic

spectrum management, is also per-

formed in the transmitter. Its purpose
is to control the power transmitted by

each cognitive radio user so as to

maintain it at a prescribed level low

enough not to interfere with a legacy

user; moreover, the control is per-

formed in a robust manner. Such a

procedure is described in [28], which

is based on the following four pillars:
• game theory, with emphasis on

the Nash equilibrium involv-

ing rational players [29],

which is a predictive concept

well suited for modeling non-

stationary processes exempli-

fied by spectrum holes;

• information theory, wherein
the topic of particular interest

is iterative waterfilling [30];

the iterative features of inter-

active waterfilling include

relatively fast rate of conver-

gence, implementable in a

decentralized manner (and

therefore compatible with
the Hebbian-based self-orga-

nized DSM described in

Section VII), and the efficient

use of orthogonal frequency-

division multiplexing [31];

• optimization theory, in which

the practical issue of interest

is robustification of the itera-
tive waterfilling algorithm so

as to guard against unavoid-

able uncertainties in a radio

environment [28];

• control theory, wherein use is

made of variational inequality

and projected dynamic systems

for transforming the iterative
waterfilling game into a new

representation, namely an or-

dinary differential equation

(ODE) framework for cogni-

tive radio networks that is

convenient for analysis of the

network behavior [28].

3The original self-organizing map used in
the DSM is the so-called Tsigankov–Koulakov
model, in recognition of its two originators [26].
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VIII. CONCLUDING
REMARKS

Reflecting back over the past five
years, the integrative field of cognitive

dynamic systems has consolidated, in

that we now know how to apply the

fundamental principles of cognition

to build new generations of engineer-

ing systems. However, the progress

made has been varied, with cognitive

radio extensively enriched, cognitive
radar much less, and cognitive control

just about to emerge.

Following the order in which

these three different engineering

manifestations of cognition have

been discussed in this article, here

is a summary of their individual

status.
• Cognitive radar, research into

which is still in its early stages

of development. Nevertheless,

the block diagram of Fig. 1

clearly shows the distinct

physical locations of the

perception–action cycle and

memory in a cognitive radar
system, the two of which in

turn, drive the algorithmic

mechanisms responsible for

attention and intelligence.

The way in which these four

building blocks of cognition

are realized in cognitive radar

provides the basic framework
for deeper studies into it. In

particular, we need to go

beyond a single target in a

Gaussian noise environment

and start tackling more diffi-

cult practical problems involv-

ing multiple targets in the

presence of ground clutter or
sea clutter. Looking further

ahead, the grand challenge is

to work on a ground-breaking

application where cognitive

radar can make a significant

difference on the world stage.

Two such challenges are the

deployment of a cognitive
network of inexpensive radars

for weather forecasting4 and

the deployment of inexpen-

sive surveillance radars across

the Great Lakes in North

America for national security.

• Cognitive control, compara-

tively speaking, is very much
in its fancy. Fig. 2 depicts how

a cognitive control system can

be structured for the first

time in the literature. In this

structural composition, as ex-

pected, the perception–action

cycle and memory feature

prominently; as usual, atten-
tion and intelligence (driven

by perception and memory)

manifest themselves algorith-

mically. In constructing this

figure, clever use is made of

the two-state model of the

system, with the traditional

state–space model accounting
for a target in the environ-

ment and the new idea of

entropic state accounting for
all the unknown uncertainties

and disturbances in the envi-

ronment. This two-state

model is the cardinal charac-

teristic of cognitive control.

Moreover, it is equally appli-

cable to cognitive radar on

account of the control exer-
cised by the transmitter via

the environment.

• Cognitive radio, research into

which has been growing ex-

ponentially since its inception

over a decade ago. Whereas

cognitive radar and cognitive

control mimic the human
brain in their respective

ways, cognitive radio is in-

spired by the brain. Neverthe-

less, the principles of cognition

are equally well realized in

building cognitive radio, albeit

in ways entirely different than

it is in cognitive radar and
cognitive control. In any event,

from a commercializable prac-

tical perspective, it is regretta-

ble that despite the advances

that have been made on so

many fronts, cognitive radio is

yet to make a difference in the

wireless world. Hopefully,
with ever increasing interest

in femtocell networks [33],

[34], cognitive radio may find

its proper niche in the world of

wireless communications,

hopefully in the not too distant

future. h

REFERENCES

[1] S. Haykin, BCognitive radio:
Brain-empowered wireless communications,[
IEEE J. Sel. Areas Commun., vol. 23, no. 2,
pp. 201–220, Feb. 2005.

[2] S. Haykin, BCognitive radar: A way of the
future,[ IEEE Signal Process. Mag., vol. 23,
no. 1, pp. 30–40, Jan. 2006.

[3] S. Haykin, BCognitive dynamic systems,[
Proc. IEEE, vol. 94, no. 11, pp. 1910–1911,
Nov. 2006.

[4] M. S. Gazzaniga, The Cognitive Neurosciences,
4th ed. Cambridge, MA: MIT Press, 2009.

[5] V. B. Mountcastle, Perceptual Neuroscience:
The Cerebral Cortex. Cambridge, MA:
Harvard Univ. Press, 1998.

[6] D. Marr, BA theory for cerebral neocortex,[
Proc. Roy. Soc. Lond. B, Biol. Sci., vol. 176,
no. 1043, pp. 161–234, Nov. 1970.

[7] J. M. Fuster, Cortex and Mind, Unifying
Cognition. Oxford, U.K.: Oxford Univ.
Press, 2003.

[8] S. Haykin, Cognitive Dynamic Systems.
Cambridge, U.K.: Cambridge Univ. Press,
Mar. 2012.

[9] S. Haykin, Y. Xue, and P. Setoodeh,
BCognitive radar,[ Proc. IEEE, 2012,
accepted.

[10] S. Haykin, M. Fatemi, Y. Xue, and
P. Setoodeh, BCognitive control,[
Proc. IEEE.

[11] R. S. Sutton and A. G. Barto, Reinforcement
Learning. Cambridge, MA: MIT Press,
1998.

[12] J. Mitola and G. Q. Maguire, Jr., BCognitive
radio: Making software radios more
personal,[ IEEE Pers. Commun, vol. 6, no. 4,
pp. 13–18, Aug. 1999.

[13] J. Mitola, BCognitive radio: An integrated
agent architecture for software defined
radio,[ Ph.D. dissertation, Royal Inst.
Technol. (KTH), Stockholm, Sweden, 2000.

[14] S. Kim, J. Lee, H. Wang, and D. Hong,
BSensing performance of energy detector
with correlated multiple antennas,[ IEEE
Signal Process. Lett., vol. 16, no. 8,
pp. 671–674, Aug. 2009.

4In [32], the use of a meteorological
network of inexpensive radars has been pro-
posed for the purpose of weather forecasting
and the prediction of severe storms, covering
the whole of the United States. The use of
cognition in such a network makes it all the
more powerful.

Point of View

2102 Proceedings of the IEEE | Vol. 100, No. 7, July 2012



[15] S. Atapattu, C. Tellambura, and H. Jiang,
BEnergy detection based on cooperative
spectrum sensing in cognitive radio
networks,[ IEEE Trans. Wireless Commun.,
vol. 10, no. 4, pp. 1232–1241, Apr. 2011.

[16] S. Zhang, T. Wu, and V. Lau,
BA low-overhead energy detection based
cooperative sensing protocol for cognitive
radio systems,[ IEEE Trans. Wireless
Commun., vol. 8, no. 11, pp. 5575–5581,
Nov. 2009.

[17] W. A. Gardner, BExploitation of spectral
redundancy in cyclostationary signals,[
IEEE Signal Process. Mag., vol. 8, no. 2,
pp. 14–36, Apr. 1991.

[18] W. A. Gardner, W. A. Brown, and
C. K. Chen, BSpectral correlation of
modulated signalsVPart II: Digital
modulation,[ Proc. IEEE, vol. 35, no. 6,
pp. 595–061, Jun. 1987.

[19] J. Lunden, V. Koivunen, A. Huttunen, and
H. Poor, BCollaborative cyclostationary
spectrum sensing for cognitive radio
systems,[ IEEE Trans. Signal Process.
vol. 57, no. 11, pp. 4182–4195, Nov. 2009.

[20] K.-L. Du and W. H. Mow, BAffordable
cyclostationarity-based spectrum sensing
for cognitive radio with smart antennas,[
IEEE Trans. Veh. Technol., vol. 59, no. 4,
pp. 1877–1886, May 2010.

[21] D. J. Thomson, BSpectrum estimation and
harmonic analysis,[ Proc. IEEE, vol. 70,
no. 9, pp. 1055–1096, Sep. 1982.

[22] S. Haykin, D. J. Thomson, and J. Reed,
BSpectrum sensing for cognitive radio,[
Proc. IEEE, vol. 97, Special Issue on Cognitive
Radio Networks, no. 5, pp. 849–877,
May 2009.

[23] M. Frigo and S. G. Johnson, BThe design and
implementation of FFTW3,[ Proc. IEEE
vol. 93, Special Issue on Program Generation,
Optimization, and Platform Adaptation, no. 2,
pp. 216–231, 2005.

[24] Q. T. Zhang, BTheoretical performance
and thresholds of the multitaper method
for spectrum sensing,[ IEEE Trans. Veh.
Technol., vol. 60, no. 5, pp. 2128–2138,
Jun. 2011.

[25] F. Khozeimeh and S. Haykin, BBrain-inspired
dynamic spectrum management for cognitive
radio ad hoc networks,[ IEEE Trans. Wireless
Commun., submitted for publication.

[26] D. Tsigankov and A. Koulakov,
BA unifying model for activity-dependent
and activity-independent mechanisms
predicts complete structure of topographic
maps in ephrin-A deficient mice,[ J. Comput.
Neurosci., vol. 21, no. 1, pp. 101–114, 2006.

[27] D. Hebb, Self-Organization of Behavior.
New York: Wiley, 1949.

[28] P. Setoodeh and S. Haykin, BRobust transmit
power control for cognitive radio,[ Proc.
IEEE, vol. 97, no. 5, pp. 915–939, May 2009.

[29] J. Nash, BEquilibrium points in n-person
games,[ Proc. Nat. Acad. Sci. USA, vol. 86,
pp. 48–49, 1950.

[30] W. Yu, BCompetition and cooperation in
multi-user communication environments,[
Ph.D. dissertation, Stanford Univ.,
Stanford, CA, 2002.

[31] A. R. S. Bahai, B. R. Saltzberg, and M. Ergen,
Multi-Carrier Digital Communications: Theory
and Applications of OFDM, 2nd ed.
New York: Springer-Verlag, 2004.

[32] D. McLaughlin, D. Pepyne, B. Philips,
J. Kurose, M. Zink, D. Westbrook, E. Lyons,
E. Knapp, A. Hopf, A. Defonzo, R. Contreras,
T. Djaferis, E. Insanic, S. Frasier,
V. Chandrasekar, F. Junyent, N. Bharadwaj,
Y. Wang, Y. Liu, B. Dolan, K. Droegemeier,
J. Brotzge, M. Xue, K. Kloesel, K. Brewster,
F. Carr, S. Cruz-Pol, K. Hondl, and P. Kollias,
BShort-wavelength technology and the
potential for distributed networks of small
radar systems,[ Bull. Amer. Meteorol. Soc.,
vol. 90, pp. 1797–1817, 2009.

[33] S. Ortiz, BThe wireless industry begins to
embrace femtocells,[ Computer, vol. 41,
no. 7, pp. 14–17, 2008.

[34] G. da Costa, A. Cattoni, V. Roig, and
P. Mogensen, BInterference mitigation
in cognitive femtocells,[ in Proc. IEEE
GLOBECOM Workshops, Dec. 2010,
pp. 721–725.

Point of View

Vol. 100, No. 7, July 2012 | Proceedings of the IEEE 2103


