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I . INTRODUCTION

The field of nanoelectronics and,

in particular, the vision of extend-

ing complementary metalYoxideY
semiconductor (CMOS) and the pos-
sibility of discovering new, highly

scalable, concepts for information

processing and memory functions is

becoming an exciting reality. Interdis-

ciplinary research of nanoscale struc-

tures embodied in a myriad of new

materials at the atomic-scale quantum

domain promises the discovery of new

paradigms for information processing.

Specifically, research in nanoelectro-

nics encompasses devices and tech-
nologies in which a critical dimension

[e.g., channel length and/or thickness

in a metalYoxideYsemiconductor

field-effect transistor (MOSFET)] is

less than 100 nm and for which these

nanoscale dimensions cause or ampli-

fy onset of new physical phenomena

(e.g., quantization of channel charge
in a MOSFET or the Coulomb block-

ade effect in a quantum dot). The

invited papers in this special issue

present a variety of nanostructures

and related materials proposed to

This Special Issue
presents a variety of
invited papers covering
nanostructures and
related materials
proposed to extend CMOS
scaling to its ultimate limit
and enable a variety of
new logic and memory
devices.
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extend CMOS scaling to its ultimate
limit and enable a variety of new

logic and memory devices. But first

we digress to explore Moore’s law

scaling of silicon CMOS and memory

technologies.

Silicon-based microelectronics

will likely continue geometric and

functional scaling for some time to
come obtaining increased CMOS gate

densities and enhanced circuit per-

formance. This scaling will be

achieved in many ways. Geometric

scaling of the CMOS gate to smaller

footprints, led by continuing improve-

ments in lithography, will continue to

drive this technology. However, geo-
metric or Moore’s law scaling even-

tually will encounter fundamental

physical limitations. One such limit

may be the extent to which electro-

nic charge can continue to be used in

its traditional role in digital electron-

ics as the information processing

Btoken.[ In this role, the presence of
electronic charge on a MOSFET suf-

ficient to realize a certain minimum

voltage constitutes a logical B1[ and

the absence of this charge on the

MOSFET constitutes a logical B0.[
Extreme scaling of CMOS will make it

increasingly difficult to place and

maintain electronic charge on this
MOSFET, due to a variety of charge

leakage mechanisms. In the domain of

memory technologies, static random

access memory (SRAM) and NAND

Flash are also facing formidable chal-

lenges scaling to and beyond the 16-nm

node. As an example, for SRAM, main-

taining an acceptable noise margin as
SRAM approaches the 16-nm node is

an issue. For NAND Flash, scaling to

the 16-nm technology generation may

be limited by electrostatic coupling of

adjacent cells and by other factors.

These eventualities place an excit-

ing set of challenges before the nanoe-

lectronics research community. The
overriding opportunity is to develop a

new concept and its enabling technol-

ogy, capable of sustaining information

processing (including memory) func-

tional scaling beyond that attainable

with ultimately scaled CMOS. This

new concept could be based on use of

a new Btoken[ (e.g., electronic spin) to
replace charge as the means to repre-

sent a bit of information.

Development of a new information

processing technology is likely to be

accomplished in two phases. The first

phase would be its integration with

CMOS to extend chip functionality

beyond that possible with the
Bultimately scaled[ CMOS platform

technology. The second phase would

be further evolution to eventually real-

ize a new, multifunctional, and scalable

platform technology. For example, a

spin-based magnetostatic RAM may

first be integrated on a CMOS platform

to replace the static RAM cache. In
time, this could be followed by devel-

opment of an all spin-based logic

technology for performing processor

logic and memory tasks.

A new concept for information

processing must provide a means for

representing and manipulating bits

(or Btokens[) as well as performing
memory and interconnect functions

using compatible technologies. Much

of the current search, however, is fo-

cused on new devices to perform the

information processing or the memo-

ry function. In both instances, re-

search in nanoelectronics is playing a

major role. As illustrated in this spe-
cial issue, many new devices and

technologies are proposed to perform

either the processor function or the

memory function, or in a couple of

instances both functions in a universal

device.

The invited papers included in

these Proceedings of the IEEE are
organized into five categories summa-

rized below.

A. Nanoelectronics: International
Collaboration and a Key Metric
for BBeyond CMOS[ Devices

The first category, consisting of the

first two papers, overviews the re-
search directions of major national

and regional publicly funded nanoe-

lectronics programs mapped onto

eight research vectors. The second

paper identifies reduced power dissi-

pation as a key factor a new technol-

ogy must offer as a replacement of

CMOS. The second paper also evalu-
ates and critiques the original five

research vectors or directions pro-

posed to guide research.

1) Many publicly funded nanoelec-

tronics programs address the daunting

challenges of extending Moore’s law

into the future. The first paper by

Brillouët et al., entitled BRegional,
national, and international nanoelec-

tronics research programs: Topical

concentration and gaps,[ is an attempt

to survey existing programs on emerg-

ing research devices and to find ways to

support them through international

collaborations. These results were ob-

tained by an international working
group [International Planning Working

Group on Nanoelectronics (IPWGN)]

founded in 2005 to provide information

on European, Japanese, and United

States nanoelectronics programs. The

purpose of this project is to encourage

international collaboration in the global

search for a new information proces-
sing paradigm and technology. This

group collected data from major pub-

licly funded programs in Europe, Japan,

and the United States on long-term

nanoelectronics research. These pro-

grams and projects were mapped onto a

set of research directions which are

expected to drive nanoelectronics re-
search for the long term. The objective

was to identify those research topics

attracting a lot of attention and those

important topics that seem less attrac-

tive. This paper gives examples of

inter-regional collaborative programs

on nanoelectronics and identifies

sources of funding specifically provided
to support international collaborations.

2) The second paper, by Theis and

Solomon entitled BIn quest of the

Bnext switch[: Prospects for greatly

reduced power dissipation in a suc-

cessor to the silicon field-effect tran-

sistor,[ provides important insight to

the search to replace the silicon
MOSFET and CMOS gate as the unit

logic device. They argue that of the

several scaling parameters one can

consider (e.g., constant voltage scaling

of MOSFET dimensions, integration

density, energy dissipation, etc.), re-

duced energy dissipation, limited by
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economics, has become the most impor-
tant. Three paths and several new device

concepts are discussed to reduce energy

dissipation. The three promising direc-

tions identified are energy filtering,

internal voltage step-up, and internal

transduction. The authors conclude that

near- adiabatic switching does provide a

theoretically possible path to low-
energy operation but is unlikely to be

implemented for a myriad of practical

reasons. The paper concludes with a

discussion critically reviewing the orig-

inal five research vectors or directions

guiding the U.S. Nanoelectronics Re-

search Initiative.

B. Ultimately Scaled CMOS:
Channel Replacement Materials

The second category, consisting of

three papers, reviews use of carbon

nanotubes, graphene, and III-V com-

pound semiconductor nanowires as

Bchannel replacement materials[ to

scale MOSFETs to their physical limit.
3) In the third paper entitled

BCarbon nanotubes for VLSI: Inter-

connect and transistor applications,[
Awano et al. discuss application of

carbon nanotubes (CNTs) to fabricate

high-performance MOSFETs, inter-

connects, and vias. Because of the

remarkable properties of CNTs, such
as high-current density, ballistic trans-

port, and ultrahigh thermal conduc-

tivity, they have potential for use as

wiring materials and as alternate chan-

nel materials for extending CMOS

performance in future very large scale

integration (VLSI) technologies. The

authors report the present status of
CNT growth technologies and the

applications for via interconnects and

FETs. Growth of multiwalled CNTs at

low temperatures with high density is

reported and the authors have shown

that a CNT via was able to sustain a

current density as high as 5.0�
106 A/cm2 at 105 �C for 100 h without
any deterioration in its properties.

Last, a Si-process compatible tech-

nique is proposed to control carrier

polarity of CNTFETs by utilizing fixed

charges introduced by the gate oxide.

4) Since its discovery in 2004, no

material has attracted more attention

than graphene, which consists of a
single or few layers of carbon atoms.

The paper by Banerjee et al. entitled

BGraphene for CMOS and beyond

CMOS applications[ summarizes sev-

eral unique properties of graphene

including very high mobility and linear

band structure as well as challenges for

digital logic applications. Furthermore,
it is shown that such unique properties

of graphene can lead to discovery and

development of new Bbeyond CMOS[
devices.

5) Semiconductor nanowires are

considered as a promising alternative

path to extend the Roadmap for scaled

semiconductor devices. The improved
electrostatic control in the cylindrical

wrap-gate geometry and the possibil-

ity to utilize heterostructures in

nanowire transistor design in both

III-V and in group IV materials, are

key advantages. The paper by

Wernersson et al. entitled BIII-V

nanowiresVExtending a narrowing
road[ presents an overview of the

nanowire field with particular focus

on the state- of-the-art for III-V nano-

wire devices implemented with a

bottom-up approach. This approach

appears to offer low contact resistance

(in particular for InAs) and advanta-

geous transport properties (high
low-field mobility and saturated veloc-

ity, or rather high injection velocity in

the ballistic limit). The III-V nanowire

technology outlined in this paper may

serve as a technology platform for

low-power, high-speed applications, in

the area of wireless technology and, at

much longer term, provide a monolith-
ic add-on of III-V optoelectronics to Si.

C. Extended CMOS: Hybrid
Beyond CMOS Devices
Co-Integrated on a CMOS
Platform

The third category consists of one

paper that discusses the co-integration
of Bbeyond CMOS[ devices onto a

CMOS platform to extend the func-

tionality of ultimately scaled CMOS.

6) The paper entitled BEnhancing

CMOS using nanoelectronic devices: A

perspective on hybrid integrated sys-

tems[ asks the question: BIn what ways

might emerging research devices be
integrated with CMOS technologies to

yield systems with increased function-

ality?[ The paper by Ricketts et al.
provides a perspective on this question

from the viewpoint of patterning tech-

nologies that enable direct writing on

CMOS wafers. These technologies, e.g.,

tip-directed, field-emission-assisted na-
nomanufacturing (TFAN), enable the

fabrication of nonvolatile, reconfigurable

radio-frequency (RF) circuits, mechani-

cal addressing of spin transfer torque

magnetic tunnel junction (STT MTJ)

memory devices, the integration of

polymer nanowire sensors with CMOS,

and perhaps ultimately, self-evolving
systems using statistical learning.

D. Beyond CMOS Information
Processing Devices:
Noncharge-Based Devices

The fourth category has five papers

addressing four new approaches to
Bb e y o n d C M O S[ i n f o r m a t i o n

process ing devices . Replac ing

electronic charge with a new infor-

mation Btoken,[ these approaches

propose as new tokens: electron spin

(spin-up and spin-down), direction of

a nanomagnetic vector, change in

molecular configuration (change in
molecular resistance) and charge-

based molecular (change in molecular

capacitance), and position of a micro-

mechanical object. The fifth paper in

this category proposes a new method-

ology, and reports preliminary results,

for benchmarking and comparing the

performance of several new informa-
tion processing devices. This method-

ology involves evaluation of higher

level logic functions implemented

using each of the new devices.

7) Recent progress in microelec-

tromechanical devices and related

process technology has renewed the

interest in mechanical computing for
ultralow-power integrated circuit ap-

plications. In the paper BMechanical

computing redux: Relays for integ-

rated circuit applications,[ Pott et al.
overview the various types of micro-

mechanical switches, with particular

emphasis on electromechanical relays
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as alternative devices for energy-
efficient logic circuits. Their reliabil-

ity and process integration challenges

are discussed together with first

demonstrations of low-power func-

tional relay logic circuits. The authors

suggest that submicron scaled relays

can potentially provide > 10� im-

provement in energy efficiency as
compared with CMOS, for applica-

tions requiring performance up to

around 100 MHz.

8) The paper by Seabaugh and

Zhang BLow-voltage tunnel transis-

tors for beyond CMOS logic[ de-

scr ibes the use of interband

tunneling to obtain steep subthresh-
old swing transistors at supply voltages

less than a 0.5 V. After showing the

potential of the tunnel field-effect

transistors (TFETs) to compete with

standard CMOS, the paper details the

underlying theory of operation of the

TFET. Finally, it addresses the key

parameters and challenges for opti-
mizing TFET performance.

9) The paper entitled BMolecular

nanoelectronics[ by Vuillaume dis-

cusses, perhaps, one of the more

challenging if not speculative ap-

proaches to realizing a new paradigm

for information processing. In addi-

tion to single molecules proposed as a
three-terminal electronic logic

switch, molecular electronics may

provide means of assembling large

numbers of molecules into nanoscaled

objects to form new devices and cir-

cuit architectures. This paper con-

fines its discussion to molecular

nanoelectronics including fabrication
and electrically contacting molecules

(a very challenging task), and molec-

ular electrical functionality based on

use of a single molecule.

10) In this paper by Sugahara and

Nitta entitled BSpin-transistor elec-

tronics: An overview and outlook,[
spin transistors are discussed as a new
concept device that unites an ordinary

transistor with useful functions of

spin (magnetoresistive) devices. Spin

transistors are expected to be a

building block for novel integrated

circuits employing spin degrees of

f r e e d o m ( i . e . , s p i n - u p a n d

spin-down). Spin transistors could be
used to realize nonvolatile informa-

tion storage and reconfigurable out-

put characteristics; features that are

very useful and that offer suitable

functionalities for new integrated

circuit architectures that are inacces-

sible to ordinary transistor circuits.

The authors review the current status
and outlook of spin transistors from

the viewpoint of integrated circuit

applications. The fundamental and

key phenomenological technologies

for spin injection, transport, and

manipulation in semiconductors, and

the integrated circuit applications of

nonvolatile logic and reconfigurable
logic are described.

11) The paper entitled BThe pro-

mise of nanomagnetics and spintro-

nics for future logic and universal

memory[ by Wolf et al. provides an

overview of basic principles as-

sociated with representing informa-

tion in the form of magnetic
polarization either as nanomagnetic

domains of ferromagnetic materials or

spin polarization of holes and elec-

trons. Spin-based memory and logic

devices are reviewed including mag-

netoresistive (MRAM) memories,

spin transfer torque (STT-MRAM)

memories, and magnetic quantum
cellular automata (MQCA) logic

structures. They introduce a new

concept for assembling MQCA arrays

called resistive arrays of magnetic

automata (RAMA). The authors con-

clude that the inherent nonvolatility

of magnetic materials at room tem-

perature have obvious applications as
memory devices and possible applica-

tions as nonvolatile logic structures.

In addition, they offer potential

energy savings relative to CMOS

devices where the computational state

must be constantly refreshed. Future

engineering improvements in mag-

netic materials, structures, and cir-
cuits are likely to drive progress in

this field.

12) The last paper in this

section, by Bernstein et al. entitled

BDevice and architecture outlook for

beyond CMOS switches,[ introduces

the U.S. Nanoelectronics Research Ini-

tiative and catalogs many new device
concepts that are being studied as an

eventual replacement for CMOS. This

paper then offers a quantitative meth-

odology and some early results for

benchmarking and comparing the per-

formance of some of these new alterna-

tive logic devices used in a few common

logic applications.

E. Nonvolatile Resistive Memory
Devices Nanoscaled to the
8-nm Node

The fifth category consists of four

papers addressing different ap-

proaches to resistive memory tech-

nologies. The first paper proposes a
methodology for system-level analysis

to examine the relationship of maxi-

mum performance of a memory

element to its operative device phys-

ics. This method is demonstrated for

DRAM and for a resistive RAM. The

other three papers all review a

different class of nanoscale resistive
memories that offer potential replace-

ment for NAND Flash and SRAM

memory, which are facing very diffi-

cult scaling challenges at the 16-, 11-,

and 8-nm nodes. Resistive RAM

technologies discussed in this catego-

ry are the phase change memory

(PCM), the atomic switch, and the
metal oxide memory.

13) This paper, by Zhirnov et al.
entitled BMemory devices: EnergyY
spaceYtime tradeoffs,[ offers an in-

teresting new principle or figure of

merit for comparing different memo-

ry elements in terms of minimizing the

product of their write/read time, write
energy dissipation, and volumetric size.

Using their new methodology, the

authors find that for a DRAM, the

optimum scaling is at F � 40Y50 nm

(F is the minimum half-pitch of

memory cells), whereas for a generic

resistive RAM, the figure of merit is a

monotonically decreasing function of
decreasing F and, therefore, does not

predict an optimum value of F. The

analytical framework seems to be a

useful tool and can be applied to other

devices. More refined analysis may be

developed based on this framework and

specific device characteristics.
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14) A comprehensive and thorough
review of PCM technologies, including

discussion of material and device is-

sues, is provided by Wong et al. in

their paper titled BPhase change

memory.[ The critical issues of PCM

discussed in this paper begin with

discussion of many approaches to

substantially lower the write/erase or
program current below 100 �A. Ap-

plication of the PCM in a crossbar

array will require a nonlinear select

device for each memory element to

ensure that only the chosen memory

element is activated and not its

neighboring elements. Currently, this

select element must be a transistor in
order to supply the large required

program current. The footprint of this

select transistor determines the den-

sity of the PCM array. The authors

discuss the issues arising in their

search for a much smaller diode select

device and related issues (e.g., nearest
neighbor thermal coupling) in scaling

PCM below 10 nm.

15) One of the ultimate switches

could be an atomic switch, where two

terminals in a metalYoxideYmetal

(MOM) structure are connected or

disconnected by a metal atomic bridge

or wirelike filament. This paper, enti-
tled BThe atomic switch[ by Aono and

Hasegawa, describes the operation

principles of the atomic switch and

recent advancements in the research.

They have demonstrated not only

two-terminal but three-terminal atomic

switches that can work as a nonvolatile

transistor. Moreover, the integration of
atomic switches with CMOS circuits

has also been demonstrated.

16) The paper entitled BResistive

random access memory (ReRAM)

based on metal oxides[ by Akinaga

and Shima reviews the class of MOM

resistive memory structures, now
called BRedox RAM,[ that depend on

a chemical oxidation/reduction process

to cause a relatively abrupt change in

the resistance of the MOM structure

upon application of a voltage pulse.

This pulse must be of sufficient magni-

tude and duration to initiate a change in

resistance states between the low
resistance state (LRS) or set (program)

state and a high resistance state (HRS)

or reset (erase) state. The authors

provide an overview of the technology,

physical mechanisms governing the

resistance switching processes, and

the challenges of some of the better

understood MOM structures. The pa-
per also discusses the separate roles

played by thermal mechanisms and

electrochemical mechanisms in distin-

guishing between the unipolar and

bipolar operations of these memory

elements. h
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