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Comments on “Computer Simulation of Frequency this effect explaining this behavior  and giving a somewhat modified 
hologram that gives rise to a proper image is being  published in these 
PROCEEDINGS [ 11, thus establishing the viability  of frequency swept Swept Imaging” 

D. N. SWINGLER AND C. S. NILSEN  imaging. 
The peculiar, but  in itself interesting, behavior  of the hologram, de- 

Abrtmct-It is demonstrated that the sweut h u e m y  holomam ob- m i d  m c) of Swinder and Nilsen’s comments and also observed in 
triDed m the above paper by Farhat, Dzikov, ;nd Det-exhibits our work, is.traced m 111 to the deviation of the frequency synthesized 
uumdous behavior urd that, m gewarl, their 2-D imqiug process scan lines used m displaying the computed hologram from their theo- 
&erns unacceptable. retically predicted length and orientations. The deviation was de- 

In the above letter, l Farhat et al. provided a computer simulatinxf  of 
a 2-D imaging  process m which one orthogonal axis of the recording 
aperture is synthesised on sweeping the illuminating frequency. It is 
the  intention of this note to demonstrate that  this imaging technique 
is, in general, not acceptable. The well defmed rectangular image shown 
in Fig. 2(b) o€ the above  paper can best be d e s c r i i  as fortuitous. 

There are four major points of interest. 
a) The far-fEld distriiution  due  to  the rectangular object used as an 

example by Farhat et al. is d e s c r i i  therein simply  by a sinc ( X )  
sinc (Y) function. Unfortunately, this does not take cognizance of the 
nonnegligiile curvature of the object wavefront which produces a sig- 
nificant phase gradient over each sidelobe and which must be taken 
into account when forming a hologram via a linear receiver array as 
in  Farhat et al. 

b) Notwithstanding a), the internal form of the actual sinc ( x )  
sinc (Y) function used is also of interest. It is rewritten here for con- 
venience as 

where m and n represent the Cartesian coordinates of the aperture. 
The mn product m the first sinc ( e )  is of concern as it has no equivalent 
in the conventional sinc (e) smc (e) distribution obtained from a 
‘‘straight’’  far-fmld recording. It thus seems unreasonable to expect 
that  the modified function should, m general, produce the same type 
of rectanguh image observable on Fourier transforming the conven- 
tional expression. 

c) It is easy to demonstrate the peculiarities of the “hologram” due 
to (A) (see Fig.  2(a) in Farhat et al., page 1453) on the optical bench. 
If, for instance, a segment at  the “bottom” [relative to Fig. 2(a)] of 
the hologram is blocked off, then a gap appears in the central region 
of  the original well defined rectangular image (see Fig. 2@) in  Farhat 
et al., p. 1453), leaving two rectangles, one to each  side of the  dc point. 
The aspect ratio of these rectangles can  be  changed at will by varying 
the depth  of blockage (their height remains more or less that of the 
original rectangle). Similarly, if one side of the hologram is obscured, 
then again areas of the original rectangle disappear this time leaving a 
set of four rectangles arranged checkerboard fashion. 

Now blocking of the hologram  simply  implies a reduction in the 
recording aperture, yet the changes m the image are very  much  of a 
gross kind. This is obviously  an unacceptable characteristic of a practi- 
cal imaging system. 

d) As a fmal check on  the performance of this type of simulation, an 
equivalent binary hologram was fabricated for the case of a circular 
disk object. (The diameter of the disk equalled the longer side  of 
Farhat’s rectangle, the offset (B) was reduced by a factor of 5 to pro- 
vide sufficient hologram fringes; all the other parameters were  as in 
Farhat et  al. The phase curvature was ignored, and the hologram 
closely  resembled a set  of nested V’s). The desired circular distribution 
codd  not be  observed m the optical Fourier transform plane, even on 
changing the hologram’s aspect ratio. 

In condusion, it seems that  the 2-D image  processing technique de- 
scribed by Farhat et al. is somewhat suspect. 

Reply2 byn! H. Farhat3 
The anomalous behavior of the hologram referred to in Swingla and. 

Nilsen’s comments has already been observed in  our work  and a note to 
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liberately-introduced a t the  time to simplify computer printout. When 
the precise orientation and length of the frequency synthesized scan 
lines produced by the postulated linear array of receivers is utilized in 
displaying the computed hologram, the anomalous behavior disappears. 
As shown in [ l ] ,  a trapezoidally shaped hologram, instead of the 
original rectangular hologram, is obtained and an edge enhanced image 
of the rectangular object is recovered from it. Such an  edge enhanced 
image is what  would be expected in conventional Fourier transform 
holography when the object diffraction pattern is recorded over a two- 
dimensional aperture that is not centered in front of the object and 
therefore records a nonsymmetric portion of the spatial frequency 
spectrum of the object. 

The quadratic phase factor produced by the curvature of the object 
wavefEld  over the receiver array, referred to in a) of Swingler  and 
Nilsen’s comments, was left out since it can be removed ultimately 
with a conical lens and its inclusion in [ 11 would  have complicated the 
discussion  unnecessarily. To see t h i s  we refer to [l, Fig. 11 and 
write the expression for  the far-fEld amp€itude produced in the xh - y h  
plane by the object wave 

where D(x0 ,   yo )  is the object transmittance (or reflection) function 
assume  to be nondispersive (independent of the wavenumber k )  and 
where D is the Fourier transform of D .  

It is instructive to recall at this point that in conventional Fourier 
transform holography, the  quadratic phase term in X,, and y h  appearing 
in (1) is eliminated by recording a hologram of the object wavefAd in 
the back focal plane  of a convergent lens, while  in  lensless Fourier 
transform holography the Same is achieved through the use of a refer- 
ence point source in the object plane, located suitably close to the 
object. In either case, a hologram containing a record of 0 (and its 
conjugate) is recorded in which the  quadratic phase  appearing  in (1) is 
not present, thus permitting image reconstruction through a direct 
Fourier transform operation. 

In frequency swept  imaging, the removal of the quadratic phase term 
is effected as follows. 

The fEld amplitude at  the mth receiver in Fig. 1 of our original letter, 
onpage 1453,locatedatxh=B,yh=rnAy,m=0,+1,+2,...,i(N/2) 
[where ( N  + 1) is the  total number of elements in the array  and A y  is 
the spacing between adjacent receivers] can be expressed  using (1) in a 
form that shows the explicit dependence on wavenumber k 

O(k, m a y )  = - ik  , - j Z 0 [   l + ( d / 2 Z : ) ] k   e - j ( k / 2 Z 0 )   ( m a y ) ’  
2nZo 

where m practice (kl = ko - (Ak /2 ) )  < k < (k2 = ko + ( A k / 2 ) ) ,   A k =  
k2 - kl being the wavenumber  sweep width, and ko = (kl + kz ) /2  is 
the mean  wavenumber  of the sweep. Note that the quadratic phase 
term in xh has been changed in (2) into a linear  phase dependence on k 
because x), = B. The quadratic phase term in y h  (now mAy)  remains. 
The effect of this term can now be determined by considering the dis- 
play  of the field O(k, m a y )  observed by  the rnth receiver  along its 
equivalent frequency synthesized scan vector in the xh - yh plane.  The 
coordinates (x,, ym) of a point on  the scan vector of the rnth receiver 
can be expressed as 
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which can be used in ( 2 )  to yield  an expression for the linearly fre- 
quency swept hologram  displayed m the (xh, yh) plane 

where 

descriis the form of the fanshaped, frequency synthesized sampling 
format produced by the linear array of receivers (see [ 1 ,  Fig. 21 ) 

Fourier tTansformation  of the frequency swept  hologram (4 )  with 
the aim of retrieving a diffraction limited image  of the object will be 
hindered by the presence  of the multiplying factor F. In particular, 
the presence in I; of the multiplier xh and the quadratic phase term in 
yh complicate matters. On the other hand the linear phase term 
in xh is not problematic and is in fact desirable since when retained it 
gives rise in the reconstruction of the hologram ( 4 )  to an off-axis  image 
that is conveniently isolated from the zero order light in a manner 
similar to  off-axis reference beam holography. 

Equation (4)  shows that  the quadratic phase term in yh can be re- 
moved through multiplicationz of the frequency swept hologram by the 
factor  exp { [jkl/2feq(xh)] yh} where feq(xh) = (Zo/B)xh. This multi- 
plying factor can be  realized with a conical  lens (21.  In this connec- 
tion, the synthesis of an inverse conical lens from two cylindrical 
lenses of equal focal lengths in tandem one of  which is tilted is particu- 
larly attractive because of simplicity and the ability to adjust the  rate 
of linear dependence of the composite focal length on the x h  coordinate 
by  merely  changing the tilt angle  of the one lens. Such an inverse 
conical lens is useful m frequency piane faering of the  quadratic phase 
term. 

Since k is a variable under control, the multiplier xh can be removed 
from the recorded data by either multiplying the output of each re- 
ceiver [as m ( 2 ) ]  by l / k  or by overlaying the recorded hologram with 
a mask whose amplitude transmittance is uniform in the yh direction 
and varies as l /xh  in the x h  direction. 

Removal of the  quadratic phase term and the multiplier Xh in 
F(xh, Yh)  permits now Fourier transforming the hologram (4 )  from 
the (xh,  yh) domain mto  the image domain (ox, ox) to obtain 

(5 1 
where b, the off-axis position of the image, is proportional to the 
quantity (Z,/B + B/2Zo) wX and w,, axe proportional to the image 
plane coordinates and F ( } symbolizes the Fourier transform of the 
bracketed quantity. Note that since the object position b is a nonlinear 
function of B ,  the imaging operation d e s m i d  by ( 5 )  is not spatially 
invariant as far as object location is concerned. This is a direct conse- 
quence of the destruction of the spatial invariance  of the diffraction 
integral under FrauPhofer (far-field) conditions. However, for the 
geometry of Fig. 1 [ 1 1 ,  where an e-lkzo reference signal is provided at 
the receivers, a linear dependence of  off-axis object position on B is 
obtained. 
Through the use of a suffciently wide frequzncy sweep  and a wide 

receiver array, the extent of the main lobe of S in  the wx, wydomain 
can be made quite narrow so that the convolution in the right hand 
side of ( 5 )  will  yield a diffraction limited image of the object D. How- 
ever, because  of the nonsymmetric  hue of the wavenumber aperture 
defming S _(only positive values of k are realizable in practice), the 
transform S will contain an exponential term linearly dependent on 

be shown to lead under certain conditions to  the enhancement of the 
wX. The effect of this exponential term m the convolution of (5) can 

edges  of the diffraction limited image that are parallel to the wy image 
coordinate. 

The procedure of frequency swept imaging outlined in some detail 
here is quite general as far as the shape of the planar object is con- 
cerned. Therefore an image  of the circular disc considered m d) of 

field data measured by the receiver array m accordance to the precise 
frequency synthesized scan format descn-bed by (3) as done in [ 1 1 .  

The one qualification on the object function made in the above 
analysis is that D be  nondispersive, i.e., it is not a function of k. This 
automatically rules out complex phase objects that are dispersive by 
d e f ~ t i o n .  For such  dispersive objects, image detail will not be purely 
geometrical but will be modified by the spectral characteristics of the 
object. In this fashion an object “signature” related to both geometri- 
cal  and spectral properties of the object can be obtained. 

FmaUy it is worthwhile to point out that  the treatment of frequency 
swept imaging  given here is for  pknar objects. Its extention to three- 
dimensional perfectly reflecting objects provides the transition to  the 
inverse scattering problem [ 31, [ 4 ] .  
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Power Factor Control of Synchronous Motors 

M. H. HAMZA 

Alnrtmct-An daptive control method is precented for controILing 
md mintrming the power factor of synchronous motors dcwe to unity 
m the p#enceof bddisturbrncea Expeimenw results aR! provided. 

One  of the features which  makes a synchronous motor attractive for 
industrial applications is that its power factor, and hence armature cur- 
rent, can be controlled by adjusting its field excitation. The curve that 
shows the relation between a constant load is known as a Varve  
because of its shape [ 1 1 ,  [ 2 ] .  For a constant power output,  the arma- 
ture current is a minimum at unity power factor  and increases as the 
power factor decreases. Points to  the right of the minimum of a V-cwe 
correspond to overexatation and leading current input, while points to 
the left correspond to underexcitation and lagging current input. As 
the load changes, the location and shape of the Vcune change. The 
purpose of this letter is to present a method for determining and main- 
taining the minimum of the  Vcune,  that is the unity power factor, m 
the presence of load disturbances. 

The system considered is shown m Fig. 1 ,  where K 1  is a constant, 
i f i t )  is the  rotor  current, ia(t)  is the stator current and d ( t )  is a load 
disturbance. The current ia( t )  is measured using an instrument G 1 (s), 
where 

K2 and T may vary slowly with time. ia is related to if through the 
Vcharacterirtics of the synchronous motor. r ( t )  is the  output of the 
controller and is taken to be 

r ( t )  = E K ( 2 )  

where K is a constant and E = i l .  It is required to determine the de- 
ision variable &) which brings and maintains &(?) close to its mini- 
num value  even when the load on the  motor is changed. ia( t )  is not 
lirectly accessiile, that is, i m ( f )  mud be used. 
If at any instant of time to,  E is changed say from ei to ef, then  there 

be a discontinuity in the second derivative  of im( t )  given by 

This work was partidly  supported by the National Research Counal of 
Manuscript  received January 21,  1977; revised February 28,  1977. 

Clnadr under Ghnt A15102: 

Swingler and Nilsen’s comment can be obtained by sorting out  the sity of Calguy, Calgary, ,Uta. T 2 N  1N4, Canada- 
The author is with the Department of Electrical Engin-, Univer- 


