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Comments on “Systems with Infinite-Dimensionai REFERENCES 

State Space: The Hilbert  Space  Approach” [ 11 R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman 
Lectures on Physics, vol. 111. Reading, PA: Addison-Wesley, 1965. 

[ 2 ]  J. B. Keller and D. W. McLaughlin, “The Feynman integral,” 
Amer.  Math.  Monthly, vol. 82, pp. 451-465, May 1975. 

Professor Helton has written  a very interesting  expository  paper’ on 
131 H. J. White and S. Tauber, Systems Analy&, Philadelphia: W. B. 

the applications of Hilbert space techniques to systems having infiite- 
Saunders, 1969. 

dimensional  state spaces. I find it, however, to be  rather surprising 
that  auantum mechanics. which is the best example in all mathematical Reply2 by J. W. Helfon 
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physik of the applications  of Hilbext space t&hniques to  the study 
of infiitedimensional systems, is not mentioned. 

Not only  does  quantum  mechanics provide excellent examples of 
infiitedimensional systems, the language currently used by many 
physicists to describe a  quantum  system is the same as that used by  a 
systems engineer to  descriie an engineering system from the  state 
viewpoint. To illustrate this, consider  a  singleparticle  quantum m e  
chanical system. Such a  system is completely descri-bed by  a  probabil- 
ity amplitude  function 6 (x, y ,  z, f ) .  For  fixed r, ( f  ) = (x, y ,  z, I )  is 

L2(R3).  For fmed r, this function is usually called the state of the 
required to be  an  element  of the unit  sphere  of the Hilbert space 

system even by physicists. The  propagation  in  time of the  state is given 
by Schriidinger’s equation 

@ (0) = eo 
where i = fi, h is (2n)‘l times Planck’s constant,  and X known as 
the Hamiltonian operator, is a  self-ad‘oint  unbounded linear operator 
defined on a  dense  subspace  of Lz(R ). It will be observed that this 
equation  has the form  of the usual state  propagation  equation of linear 
systems theory.  It will be observed from this equation also that 
quantum mechanics concerns itself only  with zero-input solutions. The 
quantities which a  systems engineer would call outputs of this system 
would be called observables by a  quantum physicist. An observable y 
of a  singleparticle system is related to  the state  of the system  by the 
equation 

1 

Y = (e, I: e) 
where (, ) denotes the inner  product on L2(R3)  and L is a linear self- 
adjoint  unbounded  operator  defmed on a  dense subspace of L2(R3). 
For example, if K is the Hamiltonian  operator  then the observable 
E = (e, K I$) is the energy of the system. Again, one finds  here  a 
standard type of output equation for a system having an  infinite- 
dimensional  state space and  a  onedimensional output. An excenent 
elementary  introduction to quantum mechanics from the  state view- 
pointisgivenin [ l ] .  
In the  Feynman  integral  approach  to  quantum mechanics one also 

makes use of the concept  of  state  transition  operator. Here one writes 
the  state @(f)  as 

OD-- 

@ ( t ) = L L L  
K(t, a,?, 2) ~$0 (a,?, 2) dady”d2,  

where J( is an Lz valued function known as the propagator. In fact x is the i m p u k  response of the quantum  system and is the solution to 
~chriidinger’s  equation  for  the initial state eo e,?, 9)  = 6 (X - 2) . 
6 (y -9)  6 (z - 2). Since Schrddinger’s equation  does not have a 
Green’s function  in the usual mathematical sense, x is determined as 
the value of an abstract  integral known as a  Feynman integral. An 
elementary  introduction to this approach to quantum  theory is given 

The reason for  the parallelism between the usual formulations of 
quantum mechanics and the present  formulations of systems  theory 
is that  both subjects have a  common  parent  in classical Hamiltonian 
mechanics. These origins are discussed in detail in [3] ,  part 11. Since 
both systems  theory and quantum mechanics have followed inde- 
pendent but approximately parallel paths since their origins it is pos- 

beneficial to both. 
able  that cross-fertilization between the two  subjects  could prove 

in [2]. 
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It is pleasing to hear that my article seemed natural  enough to be 
termed  expository, since sections II, III, and IV were new. Professor 
Dyer  gives a nice discussion of  how  basic  quantum mechanics itself can 
be  described  as  an  infinitedimensional system. Quantum mechanics 
was indeed not mentioned in  the paper and so here are some comments 
on  the scattering  theory  aspects of it. 

The paper introduces  a  particular  definition  of  infinitedimensional 
A ,  B,  C, D-type linear systems  and  in  Section 111 proves that  it is 
equivalent to  Lax-PWips scattering. Now their  theory  contains 
quantum mechanical scattering,  although the examples they  empha- 
size are classical. This correspondence is explained in Chapter VI, 
Section 4, of  their  book.  Roughly, to a Schrodinger equation  scatter- 
ing problem  with s-matrix S there is associated a  scattering  problem 
for a wave equation with scattering  matrix r. m e n  S(Z) = r (&I. 
Functions  with  branch cuts are not pseudomeromorphic  in the sense 
of Section IV-D of the paper and so S(z) is not pseudomeromorphic. 
Also note  that most  results d e m i  in  the exposition,  Section V, hold 
not only for classical but  for quantum mechanical scattering. We 
should emphasize that when we  say quantum mechanical scattering 
we automatically mean very special input and output operators B, C 
and so these  comments do  not address many systems based on 
Schrodinger’s equation. 

’Manuscript received A ri l7 ,  1976. ’ J. W. Helton is with tge Department of Mathematics, University of 
California at San Diego, LaJolla, CA. 

Comments on ‘‘Geometric progression Ladder RC Networks” 
L. GRUNER 

A k t m t - I t  is ahown that a large c h  of nonrecunent RC ladder 
networks including, as a special case, the geometric ladder networks 
discussed by Bha-uyya and S w m y  M be represented as an 
equivalent RCG ladder network. 

Bhattacharyya and Swamy’s [ l]  conjecture that other  nonrecurrent 
ladder  networks may be  represented in terms of recurrent  ladder  net- 
works is readily answered with  reference to the author’s earlier publica- 
tions [ 21 -[ 31. 

The application of Kirchhoff‘s law to the nth node  of  the  ladder  net- 
work of Fig. 1 shows that the voltage V(n)  satisfies the  difference 
equation 

(1) 

where for  a  nonrecurrent RC network  the series impedance Z(n) = R ( n )  
and  the shunt admittance Y(n) = sC(n). 

In the special case  of a  recurrent  ladder  network, Z ( n )  and Y(n) are 
invariant  with  respect to n; in particular, if Z ( n )  = R ,  and Y(n) = 
Gu + sC,, then replacing V(n)  by V,(n), the solution of the difference 
equation (1) is  given  by 
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Fig. 1. The generalized RC ladder network. 

Fig. 2. Equivalent  circuit  of the generalized RC ladder  network in terms of an RCG recurrent ladder. 

We consider a second-order  linear difference equation with variable 
coefficients 

hp(n + l)P(n)V(n + 1) - (als + bl)hp2(n)V(n) 

+ hp(n)p(n - 1)V(n - 1) = 0 (3) 

where p(n)  is a yet unspecified function of n whileal,  bl, and h are as 
yet unspecified constants  and s is the frequency variable. 

Comparison of (1) and (3)  suggests that 

Z(n)  = l/[hS(n)B(n - 111 (4 1 
Y(n) = halsp2(n) ( 5 )  

hp(n + l)p(n)  -hb#(n)+hS(n)p(n - 1) =O. (6 1 
Hence,  if b 1 # 2, p(n) = C3enJ’ + C4e-’$, where 

cash $ = b 1/2 (7) 

while 

B(n)=Cs +Can, i f b l  = 2 .  (8) 

The solution (3) is  readily reduced to  that of solving a linear differ- 
ence equation with constant coefficients by  letting 

B(n)V(n) = Vu@). (9) 
Equation (9) is seen to  be a generalization of Bhattacharyya and 

Swamy’s [ 11 transformation (3). 
With  reference to (1) and (3), 

a l s + b l  = 2 + R u ( G u + s C u )  

=RuCu 

bz = 2 + G a u .  (10) 

Referring to ( 2 ) ,  (7), and (8), Ci(i = 1 - 6) are arbitrary constants, 
and, assuming that  R(1) = R and C(1) = C = Cu, it follows that subject 
to  (4) and ( 5 )  

Equations (7) and (8) specify the ladder taper and  it is apparent  that, 
using the  notation  of [ 11, the geometric taper represents a special  case 
obtained by letting C3 = 0, C4 = 1, B(n) = and, hence, 

b l   =a l l2   +a - lP  and a1 =a112RC. 

The equivalent RCG ladder network may be derived  along the lines 
of [ 11 and is shown in Fig. 2 for the  network described by (4) and (5 ) .  

The ABCD parameters have been derived  earlier  by the author [ 2 ] ,  
[3]  (allowing for some differences in notation  and  one additional series 
impedance), a special  case applicable to a geometrically tapered ladder 
network having been quoted by  Pang [4].  For reference, the ABCD 

parameters of the  network shown in Fig. 1 and described  by (4) and 
( 5 )  are 

where 

L 

It may be mentioned in passing that  the ABCD parameters can be 
alternatively derived  by f i s t  finding either the open-circuit or the 
short-circuit parameters with the aid of the  appropriate discrete Green’s 
function [ 51. 

A dual  case  is obtained  if, in place of voltage equation (l) ,  the corre- 
sponding current  equation is  derived. Retracing the above steps, it will 
be found  that Z ( n )  = halp2(n) while Y(n) has a form corresponding to 
that given  by (4);  the  determination of the equivalent RCG circuit can 
be undertaken in an analogous manner  and  the ABCD parameters calcu- 
lated with the aid of [ 21. 

In conclusion, it has been shown that  it is  possible to represent non- 
recurrent ladder networks in terms of recurrent ladder networks when- 
ever either  the  appropriate voltage or  current  equation can be reduced 
to a linear difference equation with constant coefficients by means of a 
suitable transformation;  the transformation includes the geometric 
ladder network as a special  case. 
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