
Scanning the Issue

Special Issue on Modeling and Design of Embedded Software

I. INTRODUCTION

Perhaps the biggest impact of the “IT explosion” in the
last decade has been the emerging role of computing and
software as the “universal system integrator.” Systems are
formed by interacting components. The new trend is that
an increasing number of components and interactions in
real-life systems arecomputational. From electric shavers to
airplanes and from cars to factory robots, computers monitor
and control our physical environment. Distributed control
and process automation systems integrate manufacturing
production lines. Flight control and avionics systems keep
airplanes flying. This trend is based on a fundamental
technical reason: computing is uniquely suitable for im-
plementing and controlling complex interactions among
physical system components.

Information processing that is tightly integrated with
physical processes is calledembedded computing. The
pervasiveness of this technology is well illustrated by the
following facts: 1) the total shipment of microprocessor
units (MPUs) and microcontrol units (MCUs) in 2000 was
more than 8.2 billion units; of this, about 98% related to
embedded applications [1]; 2) between 1994 and 2004,
the need for embedded software developers is expected to
increase tenfold [2]. The profound technical and economic
implications of embedded computing and the well-doc-
umented difficulties of embedded software development
present a significant challenge for the research community:
we need to obtain a much deeper understanding of the nature
of embedded software design and need to use this under-
standing for developing much improved design technology.

Is there anyessentialdifference between embedded soft-
ware development and software development in general? Al-
though no one argues that embedded software is much harder
to design, the source and effects of differences have not been
investigated well in the past. The most frequently mentioned
differentiators—such as hardware closeness, domain speci-
ficity, or real-time response—capture only some attributes
(although interesting ones) of embedded software. Recently,
there is an increasing recognition in the research community
that existing software design techniques are not suitable for

Digital Object Identifier 10.1109/JPROC.2002.805816

building large embedded software systems. The differences
are fundamental requiring a full rethinking of basic princi-
ples. The U.S. Department of Defense, whose development
programs are most exposed to flaws in embedded software
concluded that “there may be some scientific problems which
are intrinsic to all military systems that systems developers
are not grasping” [3].

Broad-based discussion in the research community at a
number of workshops led by the National Science Founda-
tion and the Defense Advanced Research Projects Agency
(DARPA) (e.g., [4]) has led to the recognition of the fol-
lowing challenges embedded software and system presents
for developers.

1) Physicality of Embedded Software: Embedded com-
puters are surrounded by physical processes: they receive
their inputs from sensors and send their outputs to actua-
tors. Accordingly, embedded computing devices, viewed
from their sensor and actuator interfaces, act like physical
processes, with dynamics, noise, fault, size, power, and
other physical characteristics. The role of the embedded
software is to “configure” the computing device so as to
meet physical requirements. This deep integration of com-
puting with physical systems implies that essential physical
characteristics of systems (such as latency, noise, power con-
sumption) are strongly influenced—or simply determined
by—software. Consequently, software requirements become
multifaceted, i.e., computational platforms and software
must satisfy logical (computational) and physical require-
mentssimultaneously. Although the state of practice has
clearly shown that many of the abstractions of mainstream
software technology are either indifferent to or at odds with
the requirements of embedded software, embedded software
programming has never transitioned into an independent
software development paradigm. In nonembedded soft-
ware, where physical properties are secondary, functional
composition is the focus of software technology. The best
concepts of modern software component technologies
such as objects, application program interfaces, connector
mechanisms, all support functional composition. It is not
surprising that using current software technology, physical
properties are not composable; they appear as crosscutting
constraints in the development process. The effects of these
crosscutting constraints can be devastating for the design.
Meeting specifications in one part of the system may destroy

0018-9219/03$17.00 © 2003 IEEE

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003 3

performance in others; additionally, many of the problems
will surface at system integration time. Consequently, we
need to change our approach to the design of embedded
software: productivity increases must come from modeling
methods and tools that directly address the design of the
whole system with its many different physical, functional,
and logical aspects.

2) Assurance of Embedded Software: Embedded com-
puting implements and controls physical interactions in
systems. Physical interactions mean energy and material
flows that have direct and immediate impact on the phys-
ical environment and the people involved. As a result,
almost all embedded software is subject to high or ex-
tremely high assurance requirements. As it is frequently
phrased: “In embedded software systems,crash is not just
a metaphor.” There are tremendous roadblocks toward
achieving high-confidence design technology for embedded
software. Modeling and verification techniques for physical
and computational systems have developed along very
different paths. Advancement in design technology for
embedded software and systems requires full integration
of these technologies, and in some cases, such as hybrid
systems [5], even the development of new theoretical foun-
dations. Fault management in embedded systems requires
the propagation of effects of physical and logical faults
across physical and information system boundaries. Our
current software technology, which builds systems in layers
of abstraction, completely loses traceability of the effects of
physical faults on system behavior.

3) Systems with Dynamic Structure: Networked
Embedded Systems: Embedded systems are increasingly
becoming distributed, providing interaction among multiple,
spatially distributed information and physical processes.
Monitoring, control, and diagnostic functions penetrate
deeper and with smaller granularity in physical component
structures. The transition to networked embedded computing
is being accelerated by inexpensive microelectromechanical
system (MEMS)–based sensors and actuators, and by
continued progress in microprocessor and communication
technology. Given this trend, the strong separation between
physical and information processing architectures no longer
makes sense and is not sustainable. Building highly de-
pendable, robust, distributed applications with hundreds or
thousands of nodes is a significant software and systems
challenge. As an example, we mention two extremely hard
problems facing application developers in this area. First,
applications must be highly reliable and robust, must operate
in real time, and must be formed as the coordination of
many activities. The coordinated operation of distributed
embedded systems makescoordination, distribution, and
embeddingthe fundamental technical challenge for soft-
ware. Second, many of these distributed applications are
dynamic, i.e., they continuously change their shape and
interaction patterns as the environment is changing. Design
and execution frameworks, which constrain design decisions
to bound the behavior of these systems and the related
development paradigms, constitute a major challenge that
must be addressed in the future.

These new challenges and their tremendous practical sig-
nificance inspired a profound shift in the interest of the sci-
entific community, the funding agencies, and the industry
toward embedded software and system development. Em-
bedded software development is one of the grand challenges
in computer science today.

The objective of this Special Issue of PROCEEDINGS OF

THE IEEE is to provide a source of reference for the ongoing
and future research by collecting the new intellectual direc-
tions and by exposing the present and expected challenges
embedded software poses. The issue includes 13 contribu-
tions from outstanding researchers working on fundamental
aspects of embedded software and systems. Unfortunately,
space limitations prevented us from including many more
contributions representing excellent, important research di-
rections in this emerging field. Still, we believe that the se-
lection of papers will give the readers perspective on the sur-
prising richness and the breadth and depth of the research,
which need to be addressed to achieve progress.

II. PAPER DESCRIPTIONS

The issue is divided into four sections. The first three pa-
pers deal with themathematical foundations of embedded
software: the mathematical models for describing and ana-
lyzing tightly coupled physical and information systems. The
second section provides an overview of thesynchronous de-
sign framework, which has already resulted in a wide range
of practical applications. This section includes four papers
covering synchronous languages, analysis methods for syn-
chronous design, and the time-triggered architecture (TTA)
providing hardware architecture and communication proto-
cols for synchronous design. The central theme of the third
section of the issue isapproaches to manage heterogeneityin
embedded software and system design. Because embedded
systems are both physical and computational, heterogeneity
is an intrinsic characteristic of embedded software design.
The four papers in this section provide examples for man-
aging design heterogeneity in models of computations, mod-
eling languages, code optimization, and scheduling. Two pa-
pers onembedded software design methodologiescomplete
the issue by showing practical examples for end-to-end de-
sign processes.

A. Mathematical Foundations for Embedded Software and
Systems

Embedded systems have two distinct types of components:
computational and physical. In the early 1990s, a realization
began to set in that, on the one hand, systems modeling tech-
niques from classical engineering (e.g., electrical systems)
are inadequate for capturing the computational aspects of
systems implemented increasingly in software, and, on the
other hand, the computational models from classical com-
puter science are inadequate for capturing the physical as-
pects of software that interacts with physical processes. This
led to the foundation of the field ofhybrid systemswith the
goal that both bodies of knowledge need to be combined for
the design and analysis of embedded software. There are two

4 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

ways in which such a combination may be achieved [9]. In a
shallowcombination, hybrid systems are described in a lan-
guage that results from connecting expressions describing
physical processes (such as difference and differential equa-
tions) with expressions describing computational processes
(such as state machines or pseudocode). Although a shallow
combination enables the description (requirements specifica-
tion, architectural and behavioral description) of mixed phys-
ical-computational systems, it does not,per se, support the
design and analysis of such systems. For this, adeepcom-
bination of the two worlds is being developed. Deep com-
position requires that the properties of a composite system
can be derived solely from the properties of the component
systems and the type of the connection. In the case of hy-
brid systems, this must apply to both computational proper-
ties—functionality, efficiency, accuracy—and physical prop-
erties—stability, timing, resource usage.1

The emerging theory of hybrid systems provides the
new semantic foundation for embedded software design.
Although it is not the purpose of this special issue to provide
a review of progress in hybrid system theory (interested
readers are referred to the PROCEEDINGS OF THE IEEE
Special Issue on Hybrid Systems [5]), we do intend to show
the significance of sound semantics in modeling languages
and analysis and verification tools for embedded software
and systems. The first paper in this section, “Hierarchical
Modeling and Analysis of Embedded Systems,” by Aluret
al., describes the modeling language CHARON for modular
design of interacting hybrid systems. The language allows
specification of architectural as well as behavioral hierarchy,
and discrete as well as continuous activities. The modular
structure of the language is not merely syntactic, but is
exploited by analysis tools, and is supported by a formal
semantics with an accompanying compositional theory of
refinement. The authors illustrate the benefits of CHARON
in development of embedded software using a case study
involving programming of coordinated strategies for soccer
using Sony’s legged AIBO robots.

The verification of embedded software is a particularly
challenging task because the verification of interesting prop-
erties (such as safety properties) necessarily involves the in-
tegrated behavior of the hybrid system. The paper by Tiwari
et al., “Invisible Formal Methods for Embedded Control Sys-
tems,” presents tools and techniques for performing formal
analysis on hybrid models using a symbolic approach. The
authors present a wide range of formal technologies for ma-
nipulating symbolic representations of state of hybrid control
systems, including theorem provers and decision procedures.
An interesting aspect of the proposed methods is the high
degree of automation, which enables hiding formal analysis
behind widely used formal notations.

Recent advances in MEMS technology, wired and wireless
networking, and ultralow-power processor technology have
created a new wave of embedded systems characterized by
the fine-grain integration of physical and information pro-
cesses. The resulting massively distributed networked em-

1ITR proposal

bedded systems lead to revolutionary new technologies, such
as smart structures [6] and active surfaces [7]. These systems
require fundamentally new approaches in modeling, model
representation, and analysis. In the final paper in this sec-
tion, “Physics-Based Encapsulation in Embedded Software
for Distributed Sensing and Control Applications,” Zhaoet
al. present a spatial aggregation language (SAL), which ab-
stracts sensing and control properties of a distributed MEMS
system as a set of interacting objects. Using a mechanism of
influence graph, SAL enables software for distributed sys-
tems to capture and exploit locality and continuity constraints
from distributed applications directly interfacing with phys-
ical processes. The paper describes the methodology and a
design environment for prototyping software for distributed
embedded MEMS systems, with an application to decentral-
ized optimization.

B. The Synchronous Design Framework

The interaction of computation with physical processes
makes the model of time one of the fundamental issues in
embedded computing. The synchronous design frameworks
adopt a model of time, which is similar to that of used
in synchronous digital circuits: there is a global clock,
and at each clock tick all components of the system reads
inputs from the environment and computes the new state
and the outputs before the next clock tick arrives. The
synchronous programming model has been used in a family
of synchronous languages, which were discussed in detail in
a special section of PROCEEDINGS OF THEIEEE in 1991 [8].
By today, the synchronous design framework has become
one of the most trusted, well-understood, and safe tech-
nologies for constructing safety-critical real-time systems.
Building on this success, many exciting new developments
have emerged during the past decade. This section presents
groundbreaking work, which shows current and future
directions in synchronous design.

The paper by Benvenisteet al. “The Synchronous
Languages 12 Years Later,” provides an overview of syn-
chronous languages. The paper starts with the fundamentals
of the synchronous approach: synchrony and concurrency.
They then show how the fundamentals have been incor-
porated in the synchronous languages Lustre, Esterel, and
Signal. The paper includes examples for new research in
modeling, code generation, verification, and test genera-
tion in the synchronous languages approaches. Important
conclusion of past experience is that simplicity of the basic
model enabled the use of the technology in challenging
application. The authors also discuss the frontiers of current
research on synchrony: architecture modeling, deployment
on asynchronous architectures, and building systems from
components.

The next paper, “Giotto: A Time-Triggered Language for
Embedded Programming,” by Henzingeret al., discusses a
synchronous language, Giotto, which provides an abstract
programmer’s model for the implementation of embedded
control systems with hard real-time constraints. A typical
hybrid control application consists of periodic software
tasks together with a mode-switching logic for enabling

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003 5

and disabling tasks. Pure Giotto specifies time-triggered
sensor readings, task invocations, and mode switches inde-
pendent of any implementation platform. Pure Giotto can
be annotated with platform constraints such as task-to-host
mappings, and task and communication schedules. The
annotations are directives for the Giotto compiler, but
they do not alter the functionality and timing of a Giotto
program. By separating the platform-independent from the
platform-dependent concerns, Giotto enables a great deal of
flexibility in choosing control platforms as well as a great
deal of automation in the validation and synthesis of control
software.

The paper by Sifakis and Yovine, “Building Models of
Real-Time Systems from Application Software,” develops
a method for building timed models of real-time systems
by incrementally restricting their application software. The
applied restrictions take into account execution times of
atomic statements, the behavior of the system’s external
environment, and scheduling policies. The timed models of
the application obtained in this manner can be analyzed by
using timed analysis techniques to check relevant real-time
properties. An advantage of this approach is the use of a
unified modeling framework relating functional to nonfunc-
tional aspects of the system’s behavior. Furthermore, the
framework encompasses general scheduling and schedu-
lability analysis problems usually tackled separately from
behavior modeling by using domain-specific theory. The au-
thors show an instance of the method to modeling real-time
systems programmed in the Esterel language. This language
has been extended to describe time constraints imposed
by the execution and the external environments by using
pragmas. An analyzable timed model of the application is
produced by composing instrumented C-code generated by
the compiler.

The paper “The Time-Triggered Architecture,” by Kopetz
and Bauer, presents the TTA, which is a framework for the
design and implementation of well-structured dependable
distributed embedded systems. The TTA provides the
following services to the application designer: predictable
communication with small latency and minimal jitter,
fault-tolerant clock synchronization, consistent membership
service, and transparent handling of redundancy. Central to
the TTA is a two-phased design methodology for the devel-
opment of TTA applications: the architecture design phase
and the component implementation phase. During the archi-
tecture design phase, the interactions among the distributed
components and the interfaces among the components are
fully specified in the value domain and in the temporal
domain. During the component implementation phase, the
components are designed, taking these interface specifica-
tions as constraints. This two-phased design methodology is
a prerequisite for the composability of the TTA and the reuse
of components. The paper presents the design principles of
the TTA, and explains the two communication protocols that
are at the core of the TTA, the time-triggered fault-tolerant
protocol TTP/C, and the time-triggered sensor bus protocol
TTP/A. The paper introduces the design process for devel-

oping TTA applications, supported by an appropriate tool
set.

C. Approaches to Manage Heterogeneity

While hybrid systems theory provides a semantic, mathe-
matical foundation for the integrated modeling of physical
and information systems, model-based design focuses on
the formal representation, composition, and manipulation
of models during the design process. It addresses system
specification, model transformation, synthesis of imple-
mentations, model analysis and validation, execution, and
design evolution. The primary challenge (as well as the
ultimate justification) for model-based design is the intrinsic
heterogeneity of embedded systems. The physical and
computational aspects of embedded systems need to be
modeled simultaneously, and the models need to be deep
enough to expose their interdependences. The semantic
frameworks in which these models are applied may be
domain specific, offering embedded system designers
methods and syntaxes that are closer to their application
domain. For example, domain-specific semantic frameworks
for embedded systems might represent physical processes
using ordinary differential equations, signal processing
using dataflow models, decision logic using finite-state
machines, and resource management using synchronous
models. Heterogeneity of applications brings about the
need for domain-specific languages (DSLs) and modeling
tools for system specification, makes model transformation
a central component of design environments, and extends
the traditional embedded software tool chains with model
synthesis, model analysis and validation, and model-based
code generation components. Since physical characteristics
of computations such as memory size, speed, and power are
primary factors in embedded systems; software needs to be
optimized to improve these characteristics. The contribu-
tions in this section present important research directions
in addressing heterogeneity in composition, modeling lan-
guages and generators, code optimization, and scheduling.

The first paper of this section, by Ekeret al., “Taming Het-
erogeneity—The Ptolemy Approach,” addresses the compo-
sition of embedded systems from subsystems with very dif-
ferent characteristics, that communicate and interact in a va-
riety of ways—synchronous or asynchronous, buffered or
unbuffered, etc. When designing such systems, a modeling
language needs to reflect this heterogeneity. Today’s mod-
eling environments usually offer a variant of what we call
amorphous heterogeneity to address this problem. This paper
argues that modeling systems in this manner leads to un-
expected and hard-to-analyze interactions between the com-
munication mechanisms and proposes a more structured ap-
proach to heterogeneity, called hierarchical heterogeneity, to
solve this problem. It proposes a model structure and se-
mantic framework that support this form of heterogeneity,
and discusses the issues arising from heterogeneous compo-
nent interaction and the desire for component reuse. It intro-
duces the notion of domain polymorphism as a way to ad-
dress these issues.

6 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

DSLs have significant impact on the design process. In
embedded systems, where computation and communication
interact with the physical world, DSLs offer an effective
way to structure information about the system to be de-
signed along the “natural dimensions” of the application.
The paper “Model-Integrated Development of Embedded
Software,” by Karsaiet al., describes a metaprogrammable
tool infrastructure that enables rapid composition of do-
main-specific modeling languages on different levels of
abstraction, representing heterogeneous models of compu-
tations, semantically solid pattern languages, and others.
The paper describes a generative approach for embedded
software development that is based on domain-specific,
multiple-view models. Models explicitly represent the
embedded software and the environment it operates in, and
capture the requirements and the design of the application,
simultaneously. Models aredescriptive in the sense that
they allow the formal analysis, verification, and validation
of the embedded system at design time. Models are also
generativein the sense that they carry enough information
for automatically generating embedded systems from them
using the techniques of program generators. To decrease the
cost of defining and extending domain-specific modeling
languages and corresponding analysis and synthesis tools,
the model-integrated approach is applied in a “metacircular”
architecture in the form of metamodeling, meta-analysis,
and metasynthesis.

In a broad category of embedded computing applications,
the memory system is a key factor in performance, power,
and manufacturing cost. The paper “Memory System Opti-
mization of Embedded Software,” by Wolf and Kandemir,
provides an in-depth survey of memory system analysis and
optimization techniques for embedded software. The pre-
vailing view in embedded software design is that the be-
havior of caches is too unpredictable for embedded systems.
The authors show that advancement in trace-based analysis
techniques and worst case analysis enables the safe use of
cache-based architectures. They also argue that new direc-
tions in optimization techniques such as integration of in-
ternest loop optimization with layout transformation, soft-
ware-managed on-chip memories, and hardware-based lo-
cality optimization techniques will have strong impact on fu-
ture generations of embedded software.

Large-scale, dynamic, distributed applications represent
very different challenges. Although the complexity of the
behavior of the individual nodes is limited, the global state
and behavior of the overall system composed of a large
number of interacting nodes can be extremely complex.
The problem in these systems is not the design of a specific
global behavior, which may not even be monitored or known
with perfect accuracy, but bounding the behavior in “safe
regions” of the overall behavior space. This goal can be
achieved byexecution frameworksthat introduce constraints
in the behavior of and interaction among the distributed
components. Since the development of robust execution
frameworks is extremely hard today and requires a long
maturation process, a new application-independent software
layer, the middleware, has emerged as a promising solution.

The last paper of this section, “Multiparadigm Scheduling
for Distributed Real-Time Embedded Computing,” by Gill
et al., describes technologies created and demonstrated
at Boeing, BBN Technologies, Washington University,
and DARPA related to adaptive middleware that supports
the quality-of-service requirements for next-generation
avionics systems. This adaptive middleware, which is
based on commercial standards and products, has been
successfully applied to support: 1) the interaction of diverse
temporal, physical, and architectural scales of systems; 2)
end-to-end integration of measurement and control paths
within and especially between multiple distributed resource
management layers; and 3) physical constraints on choice
of transport media and protocols (i.e., Link-16 and land-line
connections) and the corresponding implications for the
middleware and end-system, and application design. In
addition to describing how the adaptive middleware was
modeled, designed, and optimized to meet demanding
avionics real-time mission needs, this paper also presents
the key lessons learned and future research opportunities
stemming from this work.

D. Embedded Software and System Design Methodologies

Advances in model-based design have significant impact
on both the design process and the architecture of the
designed systems. In the design process, the shift toward
high-level design languages and modeling tools naturally
creates an opportunity for increased automation in verifying,
producing, and integrating code. The increased use of gen-
erative programming bridges the gap between design-time
models and implementation by the use of generator tools
that can synthesize platform-specific code customized
for specific middleware and application properties. The
existence of design-time models offers significant opportu-
nities in buildingmodel-based systems. New generations of
intelligent, robust embedded systems are being developed,
which include design-time models in their operation. This
section presents two papers representing breakthroughs in
the design process and in system architecture.

Since embedded systems are simultaneously computa-
tional and physical, it is not surprising that the need for
layered abstractions in system design has emerged very
strongly in this area. Although layered design approaches
are known in many engineering fields, a clean concep-
tualization and systematic description of the method in
embedded systems is a recent development. The basic tenets
of platform-based design by Horowitzet al. (from the point
of view of our discussion) are the following: 1) the design
proceeds in precisely defined layers of abstractions; 2) each
layer of abstraction is defined by a platform representing a
family of designs; and 3) a design is obtained by defining
platform instances by composing platform components
and by mapping one platform to the successive one. Their
paper, “Platform-Based Embedded Software Design and
System Integration for Autonomous Vehicles,” presents the
platform-based design process in the design of the flight

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003 7

control system for the automatic control of an unmanned
helicopter.

The paper by Williamset al., “Model-based Program-
ming of Intelligent Embedded Systems and Robotic Space
Explorers,” describes a new generation of sensor-rich, mas-
sively distributed model-based systems developed for deep
space explorers, ubiquitous computing environments, and
sensor webs for monitoring the earth ecosystem. Program-
ming these systems involves reasoning through complex
system interactions along lengthy paths between the sensors,
control processors, and control actuators. The resulting code
lacks modularity, and is fraught with error. Model-based
programming supports modularity by enabling engineers to
program reactive systems by specifying high-level control
strategies and by simply articulating and plugging together
commonsense models of the hardware and software modules
being controlled. To execute a control strategy, model-based
interpreters reason about the models on the fly to coordinate
between modules. The paper describes a model-based inter-
preter, recently demonstrated on the Deep Space One probe,
that is able to respond to novel situations on the order of hun-
dreds of milliseconds, by performing extensive deduction,
diagnosis, and planning within its reactive control loop. The
paper also describes how the model-based programming
paradigm extends to the coordination of networks of robots
that will perform a diverse set of tasks such as search and
rescue, Mars exploration and the study of life around other
stars.

E. The Future

Embedded computing is a transformational technology
that rapidly changes the world around us. It revolutionizes
product lines in established industries, creates industries,
and deeply impacts the foundation and practice of engi-
neering. Full understanding the profound difference in
design technology between embedded systems and their
pure physical and computational components remains the
greatest scientific and technical challenge. Recognition of
these differences and rapid adoption of new development
paradigms is increasingly becoming a key differentiator in
industrial competitiveness. We expect that the broad inter-
disciplinary research, which is sampled in this special issue,
will ultimately lead to the emergence of a new scientific and
engineering discipline.

ACKNOWLEDGMENT

The Guest Editors wish to thank the many reviewers who
volunteered their time to provide feedback to the authors.

They would also like to thank the authors for their important
contributions to this special issue.

SHANKAR SASTRY

University of California, Berkeley
Department of Electrical Engineering

and Computer Science
Berkeley, CA 94720–1770

JANOS SZTIPANOVITS

Vanderbilt University
Institute for Software Integrated Systems
Nashville, TN 37235

RUZENA BAJCSY

National Science Foundation
Computer Information Science

and Engineering Directorate
Arlington, VA 22230

HELEN GILL

National Science Foundation
Hybrid and Embedded Systems
Arlington, VA 22230

REFERENCES

[1] D. Tennenhouse, “Proactive computing,”Commun. ACM, vol. 43,
no. 5, pp. 43–50, May 2000.

[2] R. H. Bourgonjon, “Embedded systems in consumer products,”
in Lecture Notes in Computer Science, Lectures on Embedded
Systems. Heidelberg, Germany: Springer-Verlag, 1996, vol. 1494,
pp. 395–403.

[3] H. Mark, Speech to the National Defense Industrial Association Sci-
ence and Technology Conference, May 9–11, 2000.

[4] A. Porter and J. Sztipanovits. (2001) New visions for software design
and productivity: research and applications. Interagency Working
Group for Inform. Technol. Res. and Develop., Software Design
and Productiv. Coordinating Group, Vanderbilt Univ., Nashville, TN.
[Online]. Available: http//:www.isis.vanderbilt.edu/sdp

[5] P. J. Antsaklis, “Special issue on hybrid systems: Theory and appli-
cations,”Proc. IEEE, vol. 88, pp. 879–887, July 2000.

[6] R. L. Clark, W. R. Saunders, and G. P. Gibbs,Adaptive Struc-
tures. New York: Wiley, 1998.

[7] W. B. Jackson, M. P. J. Fromherz, D. K. Biegelsen, J. Reich, and
D. Goldberg, “Constrained optimization based control of real time
large-scale systems: Airjet object movement system,” inProc. 40th
IEEE Conf. Decision and Control, vol. 5, Orlando, FL, Dec. 2001,
pp. 4717–4720.

[8] A. Benveniste and G. Berry, “Prolog to the special section on
another look at real-time programming,”Proc. IEEE, vol. 79, pp.
1268–1269, Sept. 1991.

[9] L. de Alfaro, T. A. Henzinger, and R. Jhala, “Compositional
methods for probabilistic systems,”Lecture Notes in Computer
Science, CONCUR 2001—Concurrency Theory, vol. 2154, pp.
351–365, 2001.

8 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

S. Shankar Sastry(Fellow, IEEE) received the M.S. degree (honoris causa) from Harvard
University, Cambridge, MA, in 1994, and the Ph.D. degree from the University of California,
Berkeley, in 1981.

From 1980 to 1982, he was an Assistant Professor at Massachusetts Institute of Technology,
Cambridge. In 2000, he was Director of the Information Technology Office at the Defense Ad-
vanced Research Projects Agency, Arlington, VA. He is currently the NEC Distinguished Pro-
fessor of Electrical Engineering and Computer Sciences and Bioengineering and the Chairman
of the Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley. He has coauthored more than 250 technical papers and has authored, coauthored, or
coedited several books, including his latest,Nonlinear Systems: Analysis, Stability and Control
(New York: Springer-Verlag, 1999). Books on embedded software and structure from motion
in computer vision are in progress. He served as Associate Editor for numerous publications,
includingJournal of Mathematical Systems, Estimation and Control, IMA Journal of Control

and Information, International Journal of Adaptive Control and Signal Processing, andJournal of Biomimetic Systems and Ma-
terials.His research interests are embedded and autonomous software, computer vision, computation in novel substrates such
as DNA, nonlinear and adaptive control, robotic telesurgery, control of hybrid systems, embedded systems, sensor networks,
and biological motor control.

Dr. Sastry was elected into the National Academy of Engineering in 2001 “for pioneering contributions to the design of
hybrid and embedded systems.” He also received the President of India Gold Medal in 1977, the IBM Faculty Development
award for 1983–1985, the National Science Foundation Presidential Young Investigator Award in 1985, the Eckman Award
of the American Automatic Control Council in 1990, the distinguished Alumnus Award of the Indian Institute of Technology
in 1999, and the David Marr prize for the best paper at the International Conference in Computer Vision in 1999. He was a
chaired Gordon McKay professor at Harvard University, Cambridge, MA, in 1994. He has served as Associate Editor for IEEE
TRANSACTIONS ONAUTOMATIC CONTROL, IEEE CONTROL SYSTEMSMAGAZINE, and IEEE TRANSACTIONS ONCIRCUITS AND

SYSTEMS.

Dr. Janos Sztipanovits(Fellow, IEEE) graduated from the Technical University of Budapest,
Budapest, Hungary, in 1970. He received the Candidate of Technical Sciences degree from
the Hungarian Academy of Sciences, Budapest, in 1980, and the Distinguished Doctor degree
(Golden Ring of the Republic) in 1982.

From 1999 to 2001, he was Program Manager and Acting Deputy Director of the
Information Technology Office, Defense Advanced Research Projects Agency, Arlington,
VA, where he worked on the Autonomous Negotiating Teams, Model-Based Integration
of Embedded Software, and Networked Embedded Software Technology programs. He
is currently E. Bronson Ingram Distinguished Professor of Engineering in the Electrical
Engineering and Computer Science Department, Vanderbilt University, Nashville, TN. He
is founding director of the Institute for Software Integrated Systems. His research interests
include model-integrated computing, structurally adaptive systems, and embedded software
and systems. He has published more than 150 papers and is the coauthor of two books.

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003 9

Dr. Ruzena Bajcsyreceived the M.S. and Ph.D. degrees in electrical engineering from Slovak
Technical University, Bratislava, Slovakia, in 1957 and 1967, respectively. She received the
Ph.D. degree in computer science in 1972 from Stanford University, Stanford, CA.

During the 1950s and 1960s, she was an Instructor and Assistant Professor in the Depart-
ment of Mathematics and Department of Computer Science at Slovak Technical University.
In the 1970s, 1980s, and 1990s, she taught and did research in the Department of Computer
and Information Science, University of Pennsylvania, Philadelphia; after 13 years, she became
Chair of the department. At the University of Pennsylvania, she was a Professor in both the
Computer and Information Science Department and in the Mechanical Engineering and Ap-
plied Mechanics Department, and was a member of the Neuroscience Institute in the School
of Medicine. She was also Director of the university’s General Robotics and Active Sensory
Perception Laboratory, which she founded in 1978. She served as adviser to more than 20
Ph.D. recipients. From 1998 to 2001, she was the Assistant Director for the Computer Infor-

mation Science and Engineering Directorate (CISE) at the National Science Foundation, Arlington, VA, where she managed a
budget of approximately $300 million annually. She was the sixth person to be named to this position since the directorate was
created in 1986. In 2001, she was appointed as Professor and Director of CITRIS, University of California, Berkeley. CITRIS
is a multicampus (involving the University of California, Berkeley; the University of California, Santa Cruz; the University
of California, Davis; and the University of California, Merced), interdisciplinary endeavor that brings together scholars and
practitioners from engineering, sciences, and humanities and social sciences in order to explore the potential of information
technology at the societal scale and applications such as energy conservation, safety and security, transportation, environment
monitoring, education, and health care.She has done seminal research in the areas of human-centered computer control, cog-
nitive science, robotics, computerized radiological/medical image processing, and artificial vision. She is highly regarded not
only for her significant research contributions but also for her leadership in the creation of a world-class robotics lab, recognized
worldwide as a premiere research center. She is especially known for her wide-ranging, broad outlook on the field and cross
disciplinary talent and leadership, successfully bridging such diverse areas as robotics and artificial intelligence, engineering,
and cognitive science.

Dr. Bajcsy is a member of the National Academy of Engineering as well as the Institute of Medicine.

Helen Gill received the B.A. degree in mathematics from the University of Missouri, Co-
lumbia (General Honors) in 1964, the M.S. degree in computer science from the University of
Colorado, Boulder, in 1981, and the Ph.D. degree in computer science from Auburn Univer-
sity, Auburn, AL, in 1997.

From 1985 to 2000, she was a Principal Scientist with the MITRE Corporation, McLean,
VA, and from 1993 to 1996, directed programs in software engineering and programming lan-
guages at the National Science Foundation (NSF), Arlington, VA. From 1997 to 2000, she
was a Program Manager in the Information Technology Office of the Defense Advanced Re-
search Projects Agency, Arlington, VA, where she developed programs in software-enabled
control and hybrid systems and in programming technology for embedded systems, and she
managed research in modeling and formal methods for software development and evolution.
She is currently Program Director for the Computer-Communication Research Division of the
NSF, where she directs a new area of research in hybrid and embedded systems. She cochairs

the coordinating group for high-confidence software and systems under the auspices of the Interagency Working Group on In-
formation Technology Research and Development of the National Science and Technology Council. Her research publications
are in graph decomposition for concurrency analysis, partitioning and scheduling software for parallel execution, distributed
programming environments, and discrete event simulation. Her current research interests are in embedded systems, middle-
ware, hybrid discrete and continuous systems, software analysis, applied formal methods, and technology for high-confidence
software and systems.

Dr. Gill’s academic honors include Pi Mu Epsilon; Phi Kappa Phi; MU Curators, Powell B. McHaney, Burroughs, and CU
Regents Fellowships. She is a member of Phi Beta Kappa.

10 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

