
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013 57

Monte Carlo Tree Search for Collaboration
Control of Ghosts in Ms. Pac-Man

Kien Quang Nguyen, Student Member, IEEE, and Ruck Thawonmas, Senior Member, IEEE

Abstract—In this paper, we present an application of Monte
Carlo tree search (MCTS) to control ghosts in the game calledMs.
Pac-Man. Our proposed ghost team consists of a ghost controlled
by rules and three ghosts controlled individually by different
MCTS. Given a limited time response, in order to increase the
reliability of MCTS results, we introduce a mechanism for pre-
dicting Ms. Pac-Man’s future movements and use this mechanism
for simulating Ms. Pac-Man during Monte Carlo simulations. Our
ghost team won the first Ms. Pac-Man Versus Ghost Team Com-
petition at the 2011 IEEE Congress on Evolutionary Computation
(CEC). Its performances for a variety of design choices are also
shown and discussed.

Index Terms—Ghosts, Monte Carlo, Monte Carlo tree search
(MCTS), Pac-Man.

I. INTRODUCTION

T HE GAME OF Ms. Pac-Man is a video game that has
simple rules but requires complex strategies for successful

game play. The player must control Ms. Pac-Man to gain as
many points as possible through eating edible objects, such as
pills, in a maze without being killed by her four opponents,
called ghosts. Although there is a considerable amount of ex-
isting work relating to automatic control of Ms. Pac-Man, there
has been very limited work done in controlling the four ghosts
in this game [1].
The main issue in ghost control is how to make them col-

laboratively catch Ms. Pac-Man. The common objective for all
ghosts is to minimize the score earned by Ms. Pac-Man. Al-
though they normally move with the same speed as Ms. Pac-
Man, ghosts cannot reverse their directions. In addition, when
ghosts are edible by Ms. Pac-Man, they can only move at half
of their normal speed. Without effective collaboration control,
it becomes nearly impossible for them to effectively trap and eat
Ms. Pac-Man.
In this paper, in order to implement collaboration among

ghosts, we adopt Monte Carlo tree search (MCTS) [2], in
particular the UCB applied to trees (UCT) method [3], for con-
trolling three ghosts (one MCTS per ghost), and a rule-based

Manuscript received January 26, 2012; revised June 09, 2012 and July 19,
2012; accepted August 16, 2012. Date of publication September 19, 2012; date
of current version March 13, 2013. This work was supported in part by the
MEXT-Supported Program for the Strategic Research Foundation at Private
Universities (2010–2014).
K. Q. Nguyen is with the Intelligent Computer Entertainment Labo-

ratory, Ritsumeikan University, Kusatsu, Shiga 603-8577, Japan (e-mail:
kien.n.quang@gmail.com).
R. Thawonmas is with the Department of Human and Computer Intelligence,

Ritsumeikan University, Kusatsu, Shiga 603-8577, Japan (e-mail: ruck@ci.rit-
sumei.ac.jp).
Digital Object Identifier 10.1109/TCIAIG.2012.2214776

approach for controlling the remaining ghost. MCTS makes
a decision based on tree search where nodes are evaluated
through random simulations of future movements. As for UCT,
it performs such simulations more often for paths whose nodes
have higher rewards and are less often visited. This is done in
order to keep balance between exploitation of paths containing
higher rewarded nodes and exploration of paths containing less
visited nodes in the tree.
In order to increase the reliability of such simulation results,

given a limited response time, we propose another mechanism
for predicting Ms. Pac-Man’s movements and simulating such
movements during Monte Carlo simulations based on its recent
actual movements. Our ghost team ICE gUCT (also known as
nqkien) won the first Ms Pac-Man Versus Ghost Team Compe-
tition [1], a game AI competition at the 2011 IEEE Congress
on Evolutionary Computation (CEC), where the winner ghost
team is the one that can best minimize the average score by all
participant Ms. Pac-Man controller teams.
The contributions of this paper are as follows:
1) a detailed description of ICE gUCT, the 2011 IEEE CEC
winner, that implements the following two salient mecha-
nisms:
a) a mechanism combining MCTS and a rule-based ap-
proach for controlling a team of multiple game AIs
(ghosts) that can adapt to a variety of opponents;

b) a mechanism for opponent (Ms. Pac-Man) modeling
that maintains a high prediction accuracy up to a cer-
tain number of movements in advance.

II. RELATED WORK

MCTS has gained in interest since its success in Computer
Go [2]. Its state-of-the-art developments for Computer Go are
summarized in [4]. Other recent applications of MCTS cover
a variety of areas such as power-plant management [5], gen-
eral game playing [6], turn-based games [7]–[13], and real-time
games [14]–[17].
With respect to Ms. Pac-Man, Ikehata and Ito [16] applied

the UCT method to controlling Ms. Pac-Man in the real game.
However, their work has nomechanism for predicting the ghosts
based on ghosts’ recent movements. Samothrakis et al. [17]
used MCTS [18] to control both Ms. Pac-Man and a team
of ghosts in a game simulator. Because Ms. Pac-Man’s (and all
ghosts’) movements are considered in growing the tree,
their approach has a larger search space than our approachwhere
separate MCTS is performed for each MCTS ghost.
Other existing work on ghost controllers includes the work of

Yannakakis and Hallam [19] and that of Wittkamp et al. [20].
Yannakakis and Hallam’s work discusses an online neuroevolu-
tion learning mechanism for controlling ghosts in order to meet

1943-068X/$31.00 © 2012 IEEE

58 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

user satisfaction criteria proposed therein. The work in Wit-
tkamp et al. is more related to our work. Rather than MCTS,
it uses neuroevolution through augmenting topologies (NEAT)
[21] for evolving a ghost through a simulated play whose timing
is one time slice ahead. In such simulated plays, the movements
of Pac-Man are simulated with Pac-Man in the actual game; in
other words, a perfect Pac-Manmodel is used. Such information
is not available in the Ms Pac-Man Versus Ghost Team Compe-
tition.
Recently, Lisy et al. [22] compared MCTS and the itera-

tive deepening search algorithm (IDS) in a multiagent visibility
based pursuit-evasion game and showed that IDS outperformed
MCTS when both were used to control an evader agent. They
stated that such a result was obtained because the evader agent
has a limited number of options it can move. It might be worth
comparing MCTS and IDS in the controlling of Ms. Pac-Man
and/or ghosts, but this is beyond the scope of this paper.

III. MS. PAC-MAN SIMULATOR

TheMs. Pac-Man simulator used in this research is the same
as the one used in the Ms. Pac-Man Versus Ghost Team Com-
petition at the 2011 IEEE CEC (version 1.0.4) [23]. It has four
mazes (A, B, C, and D as shown in Fig. 1), the same as the orig-
inal game, which are negotiated in that order. When maze D is
cleared, the simulator goes back to maze A and continues the
same sequence until the game is over. Each maze is modeled as
a graph of connected grids. A grid contains a list of its neighbor
grids. All distances between grid locations are stored in a lookup
table in advance for use by both Ms. Pac-Man and ghost team
controllers. The 2011 IEEE CEC competition officially allowed
the use of multithreading, which eases the implementation of
ghost control in a concurrent manner; this was unfortunately
prohibited at the subsequent competition at the 2011 IEEE Con-
ference on Computational Intelligence and Games (CIG) due to
security concerns in the competition platform.
Ms. Pac-Man starts in maze A with three lives; an additional

life is given at 10 000 points. Each pill and power pill eaten
scores 10 points and 50 points, respectively. Four power pills
reside in each maze. There are also four ghosts: Blinky (red),
Pinky (pink), Sue (brown), and Inky (green). Their initial posi-
tions are inside a ghost cage. From this point, we call the ghost
state neutral. When a ghost is out of the ghost cage, we call its
ghost state normal. If a power pill is eaten by Ms. Pac-Man, all
normal ghosts’ directions will be reversed, and they can be eaten
by Ms. Pac-Man during a certain period. We call such a ghost
state edible. The more advanced the game level, the shorter the
edible state lasts. The score for eating edible ghosts in succes-
sion starts at 200 and doubles each time a ghost is eaten until the
end of the edible state. If eaten during the edible state, a ghost
will become a pair of eyes, whose state we also call neutral, and
returns to the ghost cage, where it will resume its normal state.
This simulator resembles the original Ms. Pac-Man game.

However, there are still some important differences as follows.
• The speed of Ms. Pac-Man and that of the ghosts is always
identical, except that edible ghosts move slower. In addi-
tion, their speed does not change even when they make a
turn at a corner or run through a tunnel.

• Bonus fruits are omitted.

Fig. 1. Snapshots of mazes A, B, C, and D.

• Each maze is played once before shifting to the next one.
• Each level finishes after 3000 time steps, at which the
scores of all remaining pills are awarded to Ms. Pac-Man.

The last point above was introduced to prevent the ghosts from
constantly blocking a power pill in opposite directions, which
spoils the game. All ghosts and Ms. Pac-Man move synchro-
nously, one grid at a time. Every game cycle, the simulator sends
the current game state to both controllers, waits for approxi-
mately 40 ms (response time), and then updates the new game
state based on the directions received from the controllers.

IV. OVERVIEW OF THE PROPOSED METHODOLOGY

A. C Path and Time Slice

According to a game rule, a ghost is not allowed to reverse
its direction. Therefore, with the exception of backwards, we
can only control which direction it should go at a crosspoint.
Henceforth, we refer to a corridor, connecting two adjacent
crosspoints, as C path, borrowing the term from [16]. C paths
are ghosts’ primitive movement units. On the other hand, Ms.
Pac-Man can change its direction at any grid so its primitive
movement units are grids in the game maze. In the simulator,
the distance between any two closest pills is four grids in the
beginning of each maze, and, after analyzing all four game
mazes, we find that the shortest distance between two adjacent
crosspoints is three pills. As a result, each ghost has at least
480 ms to decide its new direction, unless a global reverse—a
game event where all ghosts are forced to instantly reverse their
directions—occurs, in which they have shorter movement-de-
cision time.
Since a C path is a primitive movement unit, the time for a

ghost to travel through a C path should also be considered as a
ghost’s primitive movement time unit. We refer to this amount
of time as a time slice. Because the length of a C path is variable,

NGUYEN AND THAWONMAS: MONTE CARLO TREE SEARCH FOR COLLABORATION CONTROL OF GHOSTS IN Ms. Pac-Man 59

the length of a time slice also varies, depending on the position
of a ghost of interest in the game maze.

B. Ghost Team Strategies

Our goal is to develop a strong ghost team that is able to trap
and catch Ms. Pac-Man, controlled by any kind of Ms. Pac-Man
controllers. To achieve this goal, we use the MCTS algorithm
for controlling the directions of some ghosts. More specifically,
we propose a ghost team controller where each of the following
three ghosts—Pinky, Sue, and Inky—individually decides its
direction with its tree and Blinkymoves with its predefined rules
discussed in Section IV-C.
We adopt the above combination of three MCTS ghosts and

one rule-based ghost in order to balance the tradeoff between
the reliability of MCTS ghosts and the complexity of rule-based
ghosts. Namely, the more MCTS ghosts, the fewer playouts
(number of visits to each tree’s root node) can be performed for
their trees, due to a constraint in the aforementioned response
time, thus leading to less reliable resulting directions. However,
if we used more rule-based ghosts, we would need to design
more complex rules in order to coordinate their movements. In
Section VIII, we compare the proposed ghost team controller
ICE gUCT with a version that adopts four MCTS ghosts.
Given the limited response time, in order to increase the re-

liability of the MCTS ghosts, we propose a predictor for simu-
lating Ms. Pac-Man’s movements during Monte Carlo simula-
tions. This predictor, whose detail is given in Section VI, uses
in part the -nearest neighbor (kNN) algorithm based on the
information of Ms. Pac-Man’s movements collected at every
game cycle. In Section VIII, we also compare the performance
of ICE gUCT and that of a version where the predictor is not
used during Monte Carlo simulations.

C. Default Strategies

As our default strategies, we slightly modified a sample ghost
team, Legacy, included in the 2011 IEEE CEC competition soft-
ware. The default strategies of Blinky, Pinky, Inky, and Sue
in the normal state move them toward the crosspoint that Ms.
Pac-Man is heading to via their shortest paths based on the
Dijkstra, Euclid, Manhattan, and Dijkstra distance metrics, re-
spectively. In the edible state, only ghosts that are vulnerable
to being eaten by Ms. Pac-Man will change their movement tar-
gets. In this case, such a ghost will move toward the surrounding
grid that leads to the maximum increase in the distance, based
on its distance metric, from Ms. Pac-Man.

V. COLLABORATION CONTROL OF GHOSTS

By running Algorithm 1 at every game cycle, we control our
MCTS ghosts in a concurrent manner, as shown in Fig. 2.

Algorithm 1: getDirections(gameState)

/* This algorithm returns the direction that MCTS ghost at
a crosspoint should go, given the current game state. Here,
gameState, nGhosts, dir rLvl, , and nextSlice
denote the current game state, the number of the MCTS ghosts,
the array containing the MCTS ghost directions, the reliability

level of the Ms. Pac-Man’s movement predictor pacPred, the
number of correct predictions by pacPred, the number of total
predictions by pacPred, and the game state at the beginning of
the next time slice, respectively. */

1: if the game is restarted or a new level is reached then
2: info new empty infoList
3: end if
4: curInfo Ms. Pac-Man’s state information derived
from gameState (cf. Section VI-A)

5: Append curInfo to info
6: for to nGhosts do
7: if ghost is at the end of the current time slice then

/* Stop construction of ghost i’s tree used also
by other MCTS ghosts during their Monte-Carlo
simulations (cf. Section V-D) */

8: MCTConstruction(MCT).stop()
9: MCT MCT
10: dir chooseDirection(MCT)
11: end if
12: end for
13: rLvl ()
14: pacPred new Predictor(info, rLvl) (cf.

Section VI-C)
15: for to nGhosts do
16: nextSlice nextSliceGameState(, gameState)
17: if ghost i is (re)born at the ghost cage then
18: root nextSlice.rootNode
19: MCT

new MCT(i, root, pacPred, MCT)
20: MCT MCT

/* Start new thread */
21: MCTConstruction().start()
22: end if

/* The following condition is true when ghost enters
a new time slice or a globalreverse occurs */

23: if nextSlice.rootNode MCT .rootNode then
/* The following condition is true only when a
global reverse occurs */

24: if MCT MCT then
25: MCTConstruction(MCT).stop()
26: MCT MCT
27: end if
28: root nextSlice.rootNode
29: MCT

new MCT(i, root, pacPred, MCT)
30: MCT MCT
31: MCTConstruction(MCT).start()
32: end if
33: end for
34: return dir

When an MCTS ghost enters a new time slice, we start con-
structing a new tree for it. Then, this tree continues to grow
until either the ghost reaches the end of the current time slice or
a global reverse occurs. At that moment, we stop the tree con-
struction. For the former case, we determine the ghost’s direc-
tion according to its tree (Algorithm 1). As an exception, when

60 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Fig. 2. An example of the timelines of the three MCTS ghosts: Pinky, Sue, and Inky.

the number of its MCTS playouts is still too small (less than
threshold), we use our default strategies to decide its direc-
tion as shown in Algorithm 2.

Algorithm 2: chooseDirection(MCT)

/* This algorithm decides whether to use the direction from
ghost ’s tree (MCT) or the default strategies to control ghost
i, where is a predefined threshold. */

1: if MCT .rootNode.visitedTimes then
2: return the direction to the first C path in the final
path of MCT (cf. Section V-D)

3: else
4: return the direction decided by the default strategies

of ghost i
5: end if

For the latter case, we start constructing a new tree after the
global reverse. Although not shown in the figure, this process is
then repeated. In the following sections, we describe our appli-
cation of MCTS to ghost control in Section V-A, Monte Carlo
simulations in Section V-B, node rewarding in Section V-C, and
final path selection in Section V-D.

A. MCTS for Ghost Control

For anMCTS ghost, we construct a tree whose root node (ini-
tial node) is associated with the crosspoint that the ghost is going
to visit next in the maze. According to the aforementioned game
rule on ghosts’ movements, it thus cannot turn back to the most
recently visited crosspoint unless a global reverse occurs. Under
this representation, a node represents a crosspoint, and a branch
represents a C path. Following the standard procedure of MCTS
(Algorithm 4), from the root node, we expand a path (Algorithm
5), start a Monte Carlo simulation, as described in Section V.B,
and update each node’s reward as described in Section V-C.

Algorithm 3: nextSliceGameState(i, gameState)

/* Get the game state of ghost i at the beginning of the next
time slice */

1: nextState gameState
2: while ghost .reachNextCrosspoint TRUE do
/* Repeat the following three steps until the ghost
reaches the next crosspoint */

3: Predict each ghost’s position at the next game cycle
(cf. Section V-B1)

4: Predict Ms. Pac-Man’s position at the next game
cycle (cf. Section V-B2)

5: Process the game events (e.g., those related to eating
of pills, ghosts, or Ms. Pac-Man) based on the above
predicted positions, and update nextState,
accordingly.

6: end while
7: return nextState

Algorithm 4: MCTConstruction (MCT)

/* Construct a tree for ghost i initialized with the root node */

1: while MCT .rootNode.visitedTimes maxVisitTime
do

2: path expand(MCT)
3: simResult simulation(path, i) (cf. Section V-B)
4: Update the reward for each visited node according

to time and score in simResult (cf. Section V-C)
5: end while

Algorithm 5: expand(MCT)

/* Determine the best path according to UCB1 and expand it */

1: path getBestNodes(MCT)

NGUYEN AND THAWONMAS: MONTE CARLO TREE SEARCH FOR COLLABORATION CONTROL OF GHOSTS IN Ms. Pac-Man 61

Fig. 3. Examples of game’s maps andMCTS of Pinky (pink), where “R” repre-
sents the crosspoint that Pinky is approaching and corresponds to the root node
in Pinky’s tree; subsequent crosspoints are labeled in the map and shown in the
tree accordingly. (a) Game’s map. (b) An example of Pinky’s MCTS for the left
map. (c) Game’s map after a global reverse occurs. (d) Pinky’s tree newly ini-
tialized with the root node for the left map.

2: Randomly select a child node of path.lastNode and
append it to path

3: return path

Traveling down from one node to another in its tree represents
a simulated situation where an MCTS ghost of interest moves
from the crosspoint corresponding to the former node to the
crosspoint corresponding to the latter node.
Fig. 3 shows an example of the MCTS of Pinky at a given

time slice. Fig. 3(a) shows typical ghosts’ directions while
Fig. 3(c) shows their directions right after a global reverse.
In both figures, the current path of each ghost is shown by a
dotted line whose destination is depicted by an arrow. Note that
when a global reverse occurs, after reversing their directions,
all MCTS ghosts end construction of their current trees and
start constructing new ones.
During expansion of a path from the root node, for the latest

nonleaf node in the path, we choose its child node that holds the
largest UCB1 [24] value (Algorithm 6), among all child nodes,
and append it to the path.

Algorithm 6: getBestNodes(MCT[i])

/* Select the best nodes fromMCT[i]’s root node to a leaf node
according to UCB1 */

1: path new empty nodeList
2: curNode MCT[i].rootNode
3: while curNode is not a leaf node do
4: Append curNode to path
5: curNode UCB1(x)

6: end while
7: return path

Here, the child nodes of a node, say, node , represent all adja-
cent crosspoints of the crosspoint corresponding to node , ex-
cluding its parent, and the UCB1 value of node is

(1)

where , and denote the total reward of node , a pre-
defined constant, the number of times that node was visited,
and the number of times that its parent node was visited, respec-
tively; is a small enough number . Because of this
value of , the first time a child node is visited , the
node is assigned a large enough value so that unexplored moves
are visited first.

B. Monte Carlo Simulation

In order to estimate the reward for each node residing in a
selected path, from its root node to its leaf node, a Monte Carlo
simulation is performed from the leaf node. We use the same
simulation mechanism as that of the game simulator discussed
in Section III. However, in our simulation mechanism, there
is no global reverse, and we apply additional rules, discussed
below, to the ghosts’ and Ms. Pac-Man’s movements. These
movements are also used in Algorithm 3 for predicting the game
state at the root node of an MCTS ghost of interest.
We stop a playout of interest simulation(path, i) in Algorithm

4, when one of the following events occurs.:
• Ms. Pac-Man is eaten;
• all pills and power pills are eaten;
• a certain amount of simulation cycles (called rollouts) is
passed.

We stop each playout after a certain amount of rollouts in
order to ensure a sufficient number of visits to the root node. In
Section VIII, we discuss the performance of our ghost team in
various numbers of rollouts.
1) Ghosts’ Moving Rules: In a given MCTS playout of an

MCTS ghost of interest, this ghost moves according to the path
from the root node to the most recently appended leaf node.
However, the paths of the other two MCTS ghosts, say, and ,
are those selected according to the mechanism in Section V-D
using their previous trees, MCT and MCT in Al-
gorithm 1, constructed during their previous time slices. For ex-
ample, Fig. 3(a) shows all candidate paths for Pinky (an MCTS
ghost of interest) and the selected paths of Sue and Inky, each
starting from a triangle. After reaching its leaf node, each of
these ghosts will randomly move toward a nonbackward direc-
tion once at a crosspoint.
For Blinky’s movements during an MCTS playout, we pro-

pose two versions. In the first one, Blinky moves according to
its rules in Section IV-C, as it does in the game, and in the

62 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

second one, adopted in ICE gUCT, Blinky randomly moves
toward a nonbackward direction when it is at a crosspoint. In
Section VIII, we compare the performances of these two ver-
sions.
2) Ms. Pac-Man’s Moving Rules: For simulating Ms. Pac-

Man, we adopt the following rules that simplify its movements.
• Ms. Pac-Man only makes a movement decision at a corner
or a crosspoint. If the distance that it has moved is still
shorter than a certain number of grids (called prediction
cycles), its direction will be decided according to the pro-
posed predictor in Section VI-C; otherwise, such a direc-
tion will become random. In Section VIII, we discuss the
performance of our ghost team with the number of predic-
tion cycles being varied.

• As an exception to the above rule, if there is a normal
ghost ahead within a certain amount of grids and there is no
power pill lying in between, Ms. Pac-Man will turn back
suddenly.

C. Node Rewarding

After each playout, all nodes in the selected path, from the
root to the leaf, of an MCTS ghost of interest will be equally
rewarded according to the simulation result. We use two kinds
of criteria to decide such a reward. The first is the inverse of
the score earned by Ms. Pac-Man, and the second is the inverse
of the simulation time. In addition, we consider that our MCTS
ghosts should stay spread out from each other. They should also
keep a close enough distance to Ms. Pac-Man in the normal
state, in order to effectively make a pincer attack, while, in order
to effectively avoid being eaten, keeping a safe distance from
Ms. Pac-Man in the edible state. Therefore, we add a penalty
to the score and another penalty to the time for each of the fol-
lowing two cases:
Case 1) there is another MCTS ghost in the first C path from

the root node of the selected path;
Case 2) there are some MCTS ghosts that either do not stay

close enough toMs. Pac-Man when the ghost state is
normal or stay far enough from Ms. Pac-Man when
the ghost state is edible.

We also set the score for eating an edible ghost four times larger
than the score for doing so in the game. This is done to penalize
paths leading to a situation where an edible ghost will be killed
by Ms. Pac-Man.
Let us assume that node has been visited times so far and

that, at the th playout, the corresponding simulation lasted for
, during which Ms. Pac-Man earned points. In addition,

, and denote the score penalty for case 1, the
score penalty for case 2, the time penalty for case 1, and the
time penalty for case 2, respectively, where each penalty will
be zero if the corresponding case does not hold and will have a
predefined positive value otherwise. In the UCB1 formula (1),
our definition of the total reward of node , is

where is a parameter whose value is within the range of
and denote the minimum score and the minimum

simulation time among all playouts, respectively; and
denote the score reward and the time reward of node at

the th playout, respectively, each given as

In Section VIII, we compare ICE gUCT with a version that em-
ploys only the case 1 score and time penalties and another ver-
sion that employs only the case 2 score and time penalties.

D. Final Path Selection

The direction of an MCTS ghost of interest, say, MCTS ghost
, must be decided based on its constructed tree MCT ,
when the ghost reaches a crosspoint. This decision is required
not only in a game but also in a Monte Carlo simulation of an-
other MCTS ghost. For the former case, we need only the di-
rection leading to the first selected node (C path) while we need
a sequence of directions leading to all selected nodes (C paths)
that form a path for the latter case.
We select node , among all candidate child nodes , that has

the highest average reward, i.e.,

In addition, for tie breaking, we select the node that has the
highest ; if there are multiple nodes with that number, we
randomly select one of them.

VI. MS. PAC-MAN’S MOVEMENT PREDICTION

Given a current Ms. Pac-Man state, formed by the features
discussed below, we predict Ms. Pac-Man’s next movements
based on its movement objectives in similar previous states. We
simplify here and divide Ms. Pac-Man’s movement objectives
into two types: increasing or decreasing the distances between
itself and certain objects, such as the nearest ghost.

A. Ms. Pac-Man States

Based on our experiences in developing a series of rule-based
Ms. Pac-Man controllers for the Ms. Pac-Man competition [25],
we use the following 10-dimensional vector , for defining
the state of Ms. Pac-Man , at game cycle . Let and

denote the Dijkstra distance between objects and
and the position of object at , respectively. In addition, let

, and denote the nearest ghost, the
second nearest ghost, the ghost nearest to the nearest power pill,
the nearest power pill, the nearest pill, and the nearest cross-
point, respectively. We define each element of as fol-
lows:
• : the state of ;
• : the state of ;
• : the state of ;
• ;
• ;

NGUYEN AND THAWONMAS: MONTE CARLO TREE SEARCH FOR COLLABORATION CONTROL OF GHOSTS IN Ms. Pac-Man 63

• ;
• ;
• ;
• ;
• .

The first three features have three possible values: , , and
corresponding to normal, neutral, and edible, respectively.

This is done such that the transition from the normal state to the
edible state, or vice versa, leads to the highest difference in the
value. The space spanned by vectors is called Ms. Pac-Man
state space.

B. Ms. Pac-Man Objectives

Focusing on relevant objects , and ,
we can express the objectives of Ms. Pac-Man’s movement at
with respect to these objects by a 10-dimensional vector
defined as

(2)

Note that according to this definition, , and are al-
ways zero, because we only focus on an increase or decrease in
the distance between Ms. Pac-Man and each of the above fo-
cused objects. For the other elements, their values will be neg-
ative if the objectives of Ms. Pac-Man’s movement at are to
move toward the corresponding objects, given their positions
fixed at , and will be positive otherwise. The space spanned by
vectors is called Ms. Pac-Man objective space.

C. Predictor

Because is used in (2), only vectors at previous
game cycles are derivable. Henceforth, let denote the current
game cycle. As shown in Fig. 4, given , we perform the fol-
lowing procedure for predicting which direction Ms. Pac-Man
will take at . First, we find previous vectors in the Ms. Pac-Man
state space that are similar to . Then, we use their counter-
part vectors in the Ms. Pac-Man objective space to find an ap-
proximated vector of , denoted as . In particular,
is the weight average of those counterpart vectors, the weight
of which is the inverse of the distance to . Next, we find the
direction, among all possible directions, of Ms. Pac-Man at
whose corresponding vector in theMs. Pac-Man objective space
is nearest to . Eventually, using a probability derived from
the reliability level of the predictor (rLvl in Algorithm 1), we se-
lect the final direction from a range between this direction and a
randomly selected direction; the higher the reliability level, the
more often the former direction will be chosen. This procedure
is given in detail as follows.

Fig. 4. Prediction of Ms. Pac-Man’s next movement based on its movements
objectives in similar previous states. (a) Predicting of the movement objectives
at the current state from the current and previous game states of Ms. Pac-Man.
(b) Predicting of the direction that should be taken byMs. Pac-Man at the current
state.

• Among previous vectors in theMs. Pac-Man state space,
, find the nearest vectors

to , denoted as .
• Compute by

where denotes the counterpart vector in the Ms.
Pac-Man objective space of and
represents the Manhattan distance between and

.
• For all possible directions to whichMs. Pac-Man can move
at , select the direction selectedDir that minimizes the
Manhattan distance between and , i.e.,

where denotes the resulting vector in the Ms.
Pac-Man objective space, if we assume that Ms. Pac-Man
decides to move to dir at , by which the position of Ms.
Pac-Man at and hence can be derived.

• Select the final direction between selectedDir and a ran-
domly selected dirwith the probability of rLvl and rLvl,
respectively.

If in step 1 is too large, some earlier vectors might not fit for
the current situation thatMs. Pac-Man is facing, leading to a low
prediction accuracy. If is too small, most of them will become
the nearest vectors to and be used in the computation
of , regardless of their distances to , which also leads

64 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Fig. 5. Histograms showing the occurrence frequency in making continuously correct predictions of DFSPac’s movements.

TABLE I
PERFORMANCE COMPARISON AMONG THE TOP THREE

GHOSTS AT THE 2011 IEEE CEC COMPETITION

to a low prediction accuracy. In Section VIII, we examine the
proposed ghost team controller with a variety of and .

VII. RESULTS AT THE 2011 IEEE CEC COMPETITION

As mentioned earlier, the proposed ghost team ICE gUCT
came in first at the 2011 IEEECEC competition. In this competi-
tion, there were eight ghost controllers and 11Ms. Pac-Man con-
trollers. As its summarized description, ICE gUCT used rule-
based Blinky together with the other three MCTS ghosts, but
moved Blinky randomly during Monte Carlo simulations. This
version had the number of prediction cycles of 40, which is the
maximum number of cycles during which the Ms. Pac-Man’s

movement predictor in Section VI is used. In addition, it had the
number of rollouts of 400, considered both path (case 1) and dis-
tance (case 2) penalties for node rewarding, and used and

in the predictor. The number of playouts was limited
to 1000. These parameters were manually tuned based on the
performances of ICE gUCT against Ms. Pac-Man controller en-
tries, submitted during the test-play period, and against sample
Ms. Pac-Man controllers, provided together with the competi-
tion software.
Table I compares the performance of ICE gUCT with the

second place (BruteForce) and third place (emgallar) ghost
controllers against all Ms. Pac-Man controllers. BruteForce
used a set of hand-coded rules, while emgallar was based on
ant colony optimization. This table shows that ICE gUCT out-
performed BruteForce and emgallar against most Ms. Pac-Man
controllers. It slightly underperformed BruteForce when they
played against MsAriadne and claygarrett. There is one ex-
ception for the Ms. Pac-Man controller Atif, based on genetic
programing, against which ICE gUCT lost significantly more
points than BruteForce. However, because ICE gUCT still
outperformed emgallar in this case, we consider that this was
because Atif had serious weak points against the hand-coded
BruteForce, rather than that ICE gUCT had weak points when
it played against Atif.

VIII. EXPERIMENTS

We performed three experiments. The first experiment was
aimed at analyzing the performance of the proposed mecha-
nism for predicting Ms. Pac-Man’s movements in terms of how

NGUYEN AND THAWONMAS: MONTE CARLO TREE SEARCH FOR COLLABORATION CONTROL OF GHOSTS IN Ms. Pac-Man 65

Fig. 6. Histograms showing the occurrence frequency in making continuously correct predictions of NPEPac’s movements.

accurately it can predict Ms. Pac-Man’s actual movements.
The second experiment was to portray the characteristics of
our MCTS implementation by examining how the number of
rollouts and the number of prediction cycles affect the perfor-
mance. In the third experiment, we compared ICE gUCT with
a variety of versions that use different design choices.
We conducted these experiments on Intel(R) Core(TM) 2

Quad central processing unit (CPU) 2.83-GHz 4-GB RAM ma-
chines, with the ghosts being played against two types of Ms.
Pac-Man: DFSPac that adopts the same rules as ICE Pambush
3 [26] and NPEPac that always moves to the nearest pill. For
the first two experiments, we set in (1), , and to 1, 3, and
20, respectively. In all experiments, we limited the number of
playouts to 1000.

A. Performance of the Ms. Pac-Man Movement
Predicting Mechanism

In this experiment, we evaluated the performance of our Ms.
Pac-Man movement predicting mechanism on all four mazes
over 100 games each. Note that, during Monte Carlo simula-
tions, the more precisely we can simulate Ms. Pac-Man’s move-
ments, the faster (with a lower number of playouts) and more
reliable the MCTS algorithm can decide its ghost’s next direc-
tion. This idea is intuitive but was confirmed in previous work
[12], [16]. Therefore, we here aimed at identifying in how many
consecutive game cycles Ms. Pac-Man’s actual movements can
be correctly predicted.

We compared two predicting mechanisms. One is the pro-
posed mechanism that predicts Ms. Pac-Man’s movements
according to Ms. Pac-Man’s moving rules in Section V-B2.
The other is a baseline mechanism that also uses the same
moving rules but always replaces the results from the pre-
dictor in Section VI with random directions. We obtained
the results in Figs. 5 and 6 through predicting the current
Ms. Pac-Man’s movement at a given game cycle, say , with
each mechanism based on each of Ms. Pac-Man’ previous
200 state sets, each having vectors . As mentioned above,
we set to 20 here, resulting in the set

(corresponding to four-cycle-ahead pre-
diction), the set (cor-
responding to eight-cycle-ahead prediction), , and the set

(corresponding to
800-cycle-ahead prediction). From Figs. 5 and 6, one can
observe that the predictor, used in the proposed mechanism,
can significantly increase the number of continuously correct
predictions of the baseline mechanism. Because of its straight-
forward behaviors, as expected, NPEPac’s movements can be
more easily predicted than DFSPac. The probability in making
continuously correct predications for each mechanism is

shown in the corresponding regression equation , where
is the probability of making a single correct prediction (four

cycles ahead) and is the number of attempted predictions.
For example, of the proposed mechanism and the baseline
mechanism for DFSPac in map A are 0.79 and 0.73, respec-
tively, while for NPEPac, they are 0.86 and 0.78, respectively.

66 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Fig. 7. The performance of our ghost team against DFSPac and NPEPac with various numbers of rollouts and prediction cycles, where adjacent
color bands are different from each other with statistical significance.

Fig. 8. Comparison of a number of variants of our ghost team, where the -axis indicates the score obtained by Ms. Pac-Man.

B. Performance of the Ghost Team With Different
Numbers of Rollouts and Prediction Cycles

In this experiment, we aimed at evaluating the performance
of our ghost team with a variety in the numbers of rollouts
and prediction cycles. The lower the score obtained by Ms.
Pac-Man, the better performance the ghost team achieves.
We progressively increased the number of rollouts from 200
to 1000, in increments of 200, and the number of prediction
cycles from 0 to 100, in increments of 20. We note here
that, given the limited response time of 40 ms, an increase
in either parameter leads to a decrease in the number of
playouts of Monte Carlo simulations, leading to a performance

tradeoff. In order to obtain statistically significant differences
among score ranges, we conducted 400 games for each set
of parameters; we used the -test with the significance level
of for visualizing results in Fig. 7.
From the performance of our ghost team against DFSPac

(Fig. 7), one can see that the best performance is achieved in
the darkest color band residing around 60 and narrowly around
100 prediction cycles with the number of rollouts above 400 and
600, respectively. For NPEPac, the best performance is obtained
in the darkest color band residing around 20 prediction cycles
with the look-ahead cycle above 600. However, a large number
of parameter sets can also give promising performances.

NGUYEN AND THAWONMAS: MONTE CARLO TREE SEARCH FOR COLLABORATION CONTROL OF GHOSTS IN Ms. Pac-Man 67

C. Performance of Various Ghost Team Versions

Here, we compared ICE gUCT, whose parameters were given
in Section VII, with its variants (Fig. 8), each being run for 400
games. In the four-MCTS-ghosts version, all four ghosts move
according to their MCTS results. The deterministic-Blinky ver-
sion moves Blinky according to its rules during Monte Carlo
simulations. In the case 1 penalty version, only the path score
and time penalties are considered. The case 2 penalty version
only considers the distance score and time penalties. For the re-
maining four versions in Fig. 8, the number of Ms. Pac-Man’s
game-state nearest vectors or previous vectors are changed
accordingly.We conducted the -test, with the significance level

, when we compared ICE gUCT with each variant.
From the results in Fig. 8, one can observe that the perfor-

mance of ICE gUCT is superior to the version with all four
ghosts being driven by MCTS. Their performance differences
against both DFSPac and NPEPac are also statically signif-
icant, which validates our strategy to use a combination of
one rule-based ghost and three MCTS ghosts as discussed in
Section IV-B. The performance of ICE gUCT against DFSPac
is inferior to the deterministic-Blinky version but outperforms
the case 2 penalty version, with statistical significance. Changes
in and do not lead to any performance difference against
DFSPac, while against NPEPac, ICE gUCT outperforms three
versions, i.e., , and , with statistical
significance.
In summary, ICE gUCT outperforms most of its variants. It

is only inferior to the deterministic-Blinky version, which indi-
cates that precise movements during Monte Carlo simulations
of the rule-based ghost Blinky contributes to a better ghost team
performance against a complex Ms. Pac-Man controller such as
DFSPac. This finding will be explored by our ghost team in sub-
sequent competitions.

IX. CONCLUSION AND FUTURE WORK

We showed that the proposed approach—a combination of
rule-based and MCTS methods—can be successfully used in a
real-time game for collaboratively controlling a team of multia-
gents. The performance of this approach is better than that of the
approach using only MCTS to control all agents. Our reason for
this is that the proposed approach allows direct embedding of
knowledge into the team’s strategies. We used such knowledge
in implementing our Blinky. In addition, our results show that
exploitation of the same knowledge in Monte Carlo simulations
gives a better performance, as shown in the performance of the
deterministic-Blinky version.
We embedded another piece of knowledge in Ms. Pac-Man’s

movement rules and used these rules, together with the pro-
posed predictor, for simulating Ms. Pac-Man’s movements
during Monte Carlo simulations. This predicting mechanism
contributes to an increase in the performance of our ghost team.
In addition, it enables our ghost team to effectively play against
different types of Ms. Pac-Man controllers.
The approach presented in this paper should be readily ap-

plicable to other games that require real-time control of multi-
agents against their opponent(s). As our future work, we plan
to expand our approach, such that determination of rule-based

and MCTS-based agents can be done during games according
to some criteria. In addition, we plan to apply online learning
algorithms to learn the importance of each reward or penalty.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their helpful comments. They would also like to thank their lab
members, in particular, the game AI group members, and Prof.
F. Rinaldo, for their fruitful discussions.

REFERENCES

[1] P. Rohlfshagen and S.M. Lucas, “Ms Pac-Man versus Ghost team CEC
2011 competition,” in Proc. IEEE Congr. Evol. Comput., 2011, pp.
70–77.

[2] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Proc. 5th Int. Conf. Comput. Games, 2006, pp. 72–83.

[3] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proc. 17th Eur. Conf. Mach. Learn., 2006, pp. 282–293.

[4] A. Rimmel, O. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-R.
Tsai, “Current frontiers in Computer Go,” IEEE Trans. Comput. Intell.
AI Games, vol. 2, no. 4, pp. 229–238, Dec. 2010.

[5] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bon-
nard, “Continuous upper confidence trees,” in Proc. 5th Int. Conf.
Learn. Intell. Optim., Italy, 2011, pp. 433–445.

[6] Y. Björnsson and H. Finnsson, “CadiaPlayer: A simulation-based gen-
eral game player,” IEEE Trans. Comput. Intell. AI Games, vol. 1, no.
1, pp. 4–15, Mar. 2009.

[7] R. J. Lorentz, “Amazons discover Monte-Carlo,” in Proc. Int. Conf.
Comput. Games, 2008, pp. 13–24.

[8] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte Carlo tree
search in Lines of Action,” IEEE Trans. Comput. Intell. AI Games, vol.
2, no. 4, pp. 239–250, Dec. 2010.

[9] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo tree
search in Hex,” IEEE Trans. Comput. Intell. AI Games, vol. 2, no. 4,
pp. 251–258, Dec. 2010.

[10] S.-J. Yen and J.-K. Yang, “Two-stage Monte Carlo tree search for
Connect6,” IEEE Trans. Comput. Intell. AI Games, vol. 3, no. 2, pp.
100–118, Jun. 2011.

[11] D. Whitehouse, E. J. Powley, and P. I. Cowling, “Determinization and
information set Monte Carlo tree search for the card game Dou Di
Zhu,” in Proc. IEEE Conf. Comput. Intell. Games, 2011, pp. 87–94.

[12] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning non-random
moves for playing Othello: Improving Monte Carlo tree search,” in
Proc. IEEE Conf. Comput. Intell. Games, 2011, pp. 305–312.

[13] J. A. M. Nijssen and M. H. M. Winands, “Monte-Carlo tree search
for the game of Scotland Yard,” in Proc. IEEE Conf. Comput. Intell.
Games, 2011, pp. 158–165.

[14] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree
search: A new framework for game AI,” in Proc. 4th Artif. Intell. In-
teractive Digit. Entertain. Conf., 2008, pp. 216–217.

[15] R.-K. Balla and A. Fern, “UCT for tactical assault planning in realtime
strategy games,” in Proc. 21st Int. Joint Conf. Artif. Intell., 2009, pp.
40–45.

[16] N. Ikehata and T. Ito, “Monte-Carlo tree search in Ms. Pac-Man,” in
Proc. IEEE Conf. Comput. Intell. Games, 2011, pp. 39–46.

[17] S. Samothrakis, D. Robles, and S. Lucas, “Fast approximate max-n
Monte Carlo tree search for Ms. Pac-Man,” IEEE Trans. Comput. In-
tell. AI Games, vol. 3, no. 2, pp. 142–154, Jun. 2011.

[18] N. Sturtevant, “An analysis of UCT in multi-player games,” Int.
Comput. Games Assoc. J., vol. 31, no. 4, pp. 195–208, 2008.

[19] G. Yannakakis and J. Hallam, “A generic approach for generating inter-
esting interactive Pac-Man opponents,” in Proc. IEEE Symp. Comput.
Intell. Games, 2005, pp. 94–101.

[20] M. Wittkamp, L. Barone, and P. Hingston, “Using NEAT for contin-
uous adaptation and teamwork formation in Pacman,” in Proc. IEEE
Symp. Comput. Intell. Games, 2008, pp. 234–242.

[21] K. O. Stanley and R.Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127,
2002.

[22] V. Lisý, B. Bošanský, and M. Pěchouček, “Anytime algorithms for
multi-agent visibility-based pursuit-evasion games,” in Proc. Int. Conf.
Autonom. Agents Multiagent Syst., 2012, vol. 3, pp. 1301–1302.

68 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

[23] CEC 2011 Ms. Pac-Man Competition: Submission Site [Online].
Available: http://cec11.pacman-vs-ghosts.net/

[24] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,”Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[25] Ms. Pac-Man Competition (Screen-Capture Version) [Online]. Avail-
able: http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html

[26] H.Matsumoto, T. Ashida, Y. Ozasa, T.Maruyama, and R. Thawonmas,
“ICE Pambush 3,” Team’s Description, Aug. 30, 2009 [Online]. Avail-
able: http://cswww.essex.ac.uk/staff/sml/pacman/cig2009/ICEPam-
bush3/

Kien Quang Nguyen (S’12) received the B.Eng.
degree in human and computer intelligence from
Ritsumeikan University, Kusatsu, Shiga, Japan, in
March 2012, where he is currently working toward
the M.Eng. degree in human information science,
under the Japanese Government (MEXT) Scholar-
ship.
His interests include machine learning, game

theory, neural networks, and evolutionary algo-
rithms.
Mr. Nguyen is the principal developer of the

winning ghost team at the 2011 IEEE Congress on Evolutionary Computation
(CEC) Ms. Pac-Man Versus Ghosts Competition. During his undergraduate
study, he was a recipient of the Human Higher Education Development Support
Project on ICT (HEDSPI) Scholarship.

Ruck Thawonmas (M’97–SM’99) received the
B.Eng. degree in electrical engineering from Chu-
lalongkorn University, Bangkok, Thailand, in 1987,
the M.Eng. degree in information science from
Ibaraki University, Ibaraki, Japan, in 1990, and
the D.Eng. degree in information engineering from
Tohoku University, Sendai, Japan, in 1994.
Before joining Ritsumeikan University, Kusatsu,

Shiga, Japan, in April 2002, he had worked at var-
ious institutions: Hitachi, Ltd.; RIKEN; University
of Aizu; and Kochi University of Technology. Since

April 2004, he has been a Full Professor in the Department of Human and Com-
puter Intelligence where he leads the Intelligent Computer Entertainment Labo-
ratory. His research interests include game AI, automatic comic generation, and
player-behavior analysis.
Dr. Thawonmas was a recipient of the Japanese Government Scholarship

during 1987–1993. His laboratory has won a number of game AI competitions:
the winning controllers at the 2009 IEEE Congress on Evolutionary Computa-
tion (CEC) and the 2009 IEEE Conference on Computational Intelligence and
Games (CIG) Ms. Pac-Man Competitions (screen-capture version), the winning
ghost team at the 2011 IEEECECMs. Pac-ManVersus Ghosts Competition, and
the winning human bot and judge bot at the 2011 BotPrize (at the 2011 IEEE
CIG).

