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Figure 2. Examples of One-Cycle Control renewable power converters.
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Considering the future power grid with high percentage of
renewable power injection, additional reactive power (VAR)
generation capability is necessary for power flow control,
voltage support, and grid stabilization. Furthermore, energy
storage is needed for balancing the supply and demand. With
all these features in mind for modem grid applications, OCC
provides a powerful solution as illustrated in Figure 2.
Fig. 2(a) and (b) show power flow from the solar panel and
wind generator respectively via the OCC converters to the
power grid with MPPT energy extraction and dynamic VAR
generation, while Fig. 2(c), bidirectional power between the
grid and the energy storage device with dynamic VAR as well.
Although shown in the examples is a three-phase power grid,
experimental results have been recorded for single-phase
system as well at UCI[8,I4].

The One-Cycle Control (OCC) technique [1,2] developed in
the UCI Power Electronics Laboratory is a simple and
powerful method for renewable power conversion. OCC
performs pulse-width modulation and sawtooth slope
modulation in one go, which results in accurate, fast, and
stable control ofnonlinear switching dynamics.
As shown in Figure 1 for a basic OCC core, the clock
generates a periodic pulse train that sets the flop/flop at the
beginning of the each switching cycle, and signal v2 at the
input of the integrator is integrated and the output value is
compared to signal VI, where the bandwidth of VI and V2 are far
below the switching frequency. When signals at the two
inputs of the comparator meet, it changes its state, which in
tum resets the flip/flop and the integrator. This operation can
be expressed below:

1 JdT-- v2dt=VtRC 0

where "T" is the switching period and "d" is the duty ratio (the
on time of the switch versus the switching period), Rand Care
the value of the resistor and capacitor of the integrator
respectively. This process repeats cycle by cycle adjusting the
duty ratio of the switch such that the chopped signal of V2 has
an average equal to or proportional to signal VI. Without loss
of generality, if the integration constant is chosen the same as
the switching period, the switching cycle average of the
chopped signal ofv2 equals signal VI. In other words, the duty
ratio is modulated as
-v2d =VI (2)
Equation (2) establishes a solution for the first-order
polynomial function of duty ratio d. Researchers at UCI [3-]
revealed that the control functions of most switching
converters, such as inverters, PFC rectifiers, active power
filters, and VAR generators, are all first order polynomial
equations; this discovery thus opened up a wide range of
applications for OCC. In fact, all these applications can be
generalized into real "P" and reactive "Q" power flow in
forward or backward direction; therefore, an OCC controller
with four-quadrant P and Q capability can provide universal
control of converters for all these applications. In the
following context, several examples for renewable energy
conversion are highlighted.
Renewable energy generated from solar panels and wind
turbines is wild in nature. A dc/ac or ac lac converter is
required to convert the solar power or wind power respectively
to that acceptable to the power grid, where the ac/ac converter
can be realized by ac/dc and dc/ac back-to-back combo. In
both cases, maximum power point tracking (MPPT) is
desirable to maximize the power extraction.
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T ABLE I: CROSS-REFERENCE OF DA AND DB IN THE TWO REGIONS OF A LINE

CYCLE.

This control equation guarantees MPPT at the dc side and
unity power factor current injection at the ac side. Since the
control equation is a first order polynomial, it can be
implemented by OCC as shown in Fig. 3. Experiments in the
laboratory have yielded satisfactory result for solar power
conversion as shown in Fig. 4. Due to the mounting angle of
the solar panel, the peak power did not occur at noon. The
extracted power is very close to the maximum power with 5%
error near the peak.

(4)

Fig. 5. Shows another example of three-phase inverter with
dynamic VAR generation capability. A six-switch bridge is
employed as the power stage. The control equation matrix was
derived in [11], which is rewritten below:
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where dp, d m d h Vp, Vn, ip, and in are given by Table II,
() E (!!.. 31l'), k and Vm are constant, and Rs is the sensing

2' 2
resistance.
The control equation matrix is in the format of first order
polynomial, thus the OCC method is also applicable. The
circuit diagram of the grid-tied inverter with VAR is shown in
Fig. 5. In addition to injecting active current to the grid, it can
also provide VAR on demand. A 5kVA prototype shown in
Fig. 6 was developed by One-Cycle Control, Inc. under the
sponsorship of US Department of Energy, which has
demonstrated the dynamic P and Q generation capability, as
shown in Figure 7. It is clear from the waveforms that the
phase currents have a phase shift from the associated phase
voltages. This phase shift can be accurately controlled in the

range of !!... to 3JT to respond to the demand of the power grid.
2 2

Furthermore, Accurate and fast dynamic VAR generation is
measured as shown in Fig. 8.

(3)

Article [14] presents an example of 600W single-phase solar
inverter. An H-bridge is used as the power stage. Without
getting into the details of the derivation, the control equation is
rewritten below:

{
R ·i -K·V =-{V -K V )·dSo 0 C gg a

db =1
where, Vg and Vo are the input dc and the output of ac
voltages, K and Kg are constants, da and db are duty ratios for
designated switches as given by Table I, and Ve is the control
reference.

Region d a db

0--180 d} d 3

180-360 d 2 d 4

TABLE II:
vv i i ddd

CROSS-REFERENCE OF P, n, P /I P , n , t IN ALL SIX REGIONS OF

A LINE CYCLE.

Region vp vn ip in dp d n d t

0--60 Va V e ia ic
dan den d bn

60--120 -Vb -Vc -ib -ic
d bp d ep d ap

120--180 Vb Va ib ia d bn dan den

180--240 -Vc -Va -ic
-ia

dep dap dbp

240--300 Vc Vb ic ib den dan dan

300--360 -Va -Vb -ia -ib
d ap d bp d ep

Figure 3. Circuit diagram of single-phase solar inverter with MPPT input and
unity power factor output.
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Figure 4. Experimental result of MPPT.
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Figure 5. Circuit diagram of DCC-enabled grid-tied inverter with dynamic
VAR generation.
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Figure 6. Grid-tied inverter with VAR generation (5kVA), courtesy of One­
Cycle Control, Inc.
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current. This feature is very desirable for airplane, space, and
ship applications, where high frequency power grid is used.
(3) Control of two and three level converters as well as
Hexagram converters [20] to handle low voltage (200V, 480V)
and medium voltage (2.3kV, 4.6kV) applications. (4) Robust
and stable operation with solid global convergence to ensure
dynamic stability and smooth transient. (5) Operation under
balanced or unbalanced grid voltage and load conditions. (6)
Universal control of PFC rectifier, active power filter, VAR
generator, grid-tied inverter, and non-grid-tied inverter
applications. As the direct benefit, combination of two, three,
four, even five functions in one converter is made possible.
For example, a bidirectional PFC rectifier for energy storage
conversion could also have VAR generation and line harmonic
cancellation capabilities (4 functions). This feature provides
ultimate flexibility and enables previously unimaginable
converters for modem grid applications.
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OCC method is universal and implementation is simple. From
the studies of UCI power electronics laboratory, it is evident
that OCC has following capabilities. (1) Simple circuitry
composed of an integrator with reset along with a few linear
and logic components to realize the control. Thus no DSP and
software is required in the control loop. If desire, a micro
controller can be used for supervisory control. (2) Fast
dynamic response because the inner current control loop is
embedded in the PWM modulator so as to have a dynamic
response in the speed of a switching cycle. Consequently,
power conversion at wide line frequency range 0-lkHz is
achievable with low total harmonic distortion in the line
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Figure 7. The measured phase A voltage and phase A, B, C currents with
combined P and Q at 250V and 20A/div, courtesy of One-Cycle Control, Inc.

Figure 8. The measured phase A voltage and phase A, B, C currents featuring
dynamic Q at 250V and 20A/div, Courtesy of One-Cycle Control, Inc.
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