
Services Oriented Architecture for Managing Workflows of Avian Flu Grid

Luca Clementi, Sriram Krishnan, Wesley Goodman, Jingyuan Ren, Wilfred W. Li, Peter W. Arzberger
National Biomedical Computation Resource, University of California, San Diego

{clem, sriram, wgoodman, jren, wilfred}@sdsc.edu, parzberger@ucsd.edu

Guillaume Vareille, Sargis Dallakyan, Michel F. Sanner
The Molecular Graphics Lab, The Scripps Research Institute

{vareille, sargis, sanner}@scripps.edu

Abstract

The Avian Flu Grid is a virtual organization dedicated
to the discovery of novel inhibitors for the pandemic avian
flu threat, leveraging grid technologies and computational
resources provided by PRAGMA and its partners. In this
context it is essential to adopt tools which increase the pro-
ductivity of the computational scientists without advanced
training on grid technologies. To reduce the learning curve,
we have augmented tools that most domain scientists are al-
ready familiar with, and hidden the complexity of the under-
laying infrastructure, through automatic user interface gen-
eration and workflow support, beyond the standard com-
mand line based approach. Here we describe the current
state of the infrastructure deployed and how it has facili-
tated the training of new researchers in the drug discovery
area. We provide details on Vision, a visual programming
environment used to define scientific workflows, and Opal,
an automatic Web service wrappers for scientific applica-
tions on Grid resources, and how they are integrated with
other established back-end technologies.

1 Introduction

PRAGMA [27] (Pacific Rim Application and Grid Mid-

dleware Assembly) was formed in 2002 to establish sus-

tained collaborations for advancing the use of grid technolo-

gies in applications among a community of investigators

working with leading institutions around the Pacific Rim.

The Avian Flu Grid (AFG) [1] is a research project and a

virtual organization (VO) of the PRAGMA grid that lever-

ages the computational tools and resources contributed by

members of the PRAGMA community to develop a global

infrastructure for the analysis of avian flu as an infectious

agent and a pandemic threat.

To discover new candidate drugs, scientists need to eval-

uate large libraries of compounds against suitable avian flu

virus targets. This process, commonly referred to as Virtual

Screening [15], has very high computational requirement

depending on the number of compounds. AutoDock is one

of the most suitable tool for this purpose [20]. It is a suite

of automated docking tools designed to predict how small

molecules, such as substrates or drug candidates, bind to a

receptor of known 3D structure. It is composed of a set of

command line based applications that have to be executed

in a particular order. Each of these commands requires sev-

eral input files from either previous steps or user inputs, and

produces output files for subsequent steps.

The process of setting up AutoDock experiments could

be very complex for beginners. Even a trained biologist

would have problems remembering all the necessary steps

without making any mistakes. Figure 1 shows a simplified

version of the workflow in an Autodock virtual screening

experiment, where rectangles represent executable applica-

tions (Autogrid, Autodock, and PrepareGPF) and arrows

represent the input and output files in the workflow.

Learning this process can be a time consuming task,

even for a scientific programmer. Research scientists would

rather not deal with the complexity of accessing distributed

computational resources across several institutions [27].

For these reasons we have adopted several grid middle-

ware components: (i) to hide complexity of the underlying

computational infrastructure, and (ii) to simplify usage of

this complex scientific application by means of a more in-

tuitive graphical environment, and preferably one that the

users are already familiar with. To address the first issue

we have leveraged the Opal toolkit which enables wrapping

scientific applications as Web services, while encapsulat-

ing standard grid security mechanisms, (meta)schedulers,

and state management for jobs. For the second problem,

we have enhanced several existing Problem Solving Envi-

ronments (PSEs) such as the Python Molecular Viewer and

AutoDockTools [5] with distributed computing capability.

Fourth IEEE International Conference on eScience

© IEEE 2008. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

Autogrid

GPF Grid
 Parameter

 File

Grid MAP
 files

…

Autodock

DLG

Ligand
PDBQT

DPF
Docking

 Parameters
 File

foreach ligands do:

NCI
 Diversity
 Library

GLG

Prepare

GPF

Receptor
 PDBQT

Figure 1. Virtual screening for the Avian Flu
Grid

However PSEs can only perform a predefined set of tasks.

For greater flexibility and better code reuse, we have be-

gun to add support for visual programming environments

(VPEs), which allow the creation of scientific pipelines,

e.g., Vision [24], Kepler [12], and Taverna [9], to name a

few.

In the following sections we discuss how we have used

these tools to help AFG researchers in pursuing their sci-

entific goals, providing them with remote computation re-

sources and simplifying the usage of their command line

applications through automatically generated graphical in-

terfaces. In particular in Section 2, we introduce our main

tools, Vision and Opal. In Section 3 we present first the im-

plementation details of the work done to integrate these two

tools and in the second part we discuss some real scientific

use cases. We discuss our experiences and future work in

Section 4, and present out conclusions in Section 5.

2 The Avian Flu Grid Infrastructure

In the next two sections we describe the two generic

tools, Vision and Opal, that we have adopted in order to

support AFG scientists in discovering novel candidates for

drug development.

2.1 The Vision Environment

Vision (originally called ViPEr) [24] has been developed

as a component-based, application-domain agnostic, cross-

platform visual programming environment. It is designed

as an extension to the Python programming language thus

providing a fully fledged, high level, object-oriented, in-

terpreted language for the interactive manipulation of data

and/or modification of the application. Some of the key fea-

tures of Vision are described below:

1. Framework: It is designed as a set of libraries of

computational nodes providing specific functionality.

These libraries are loaded dynamically to reduce the

footprint of Vision in memory, and also to avoid clut-

tering the interface. Vision network nodes are Python

objects that provide input ports and output ports. Each

library can define its own data types, with data type

validation. A node can only run if all required ports

present valid data, and triggers may be used to further

refine the execution order of workflows. Introspection

tools allow the user to inspect data on input ports and

output ports in real time.

2. Node: Each node contains a compute function with a

set of parameters, configured by the user before run-

ning the workflow. The difference between a parame-

ter and an input port is that parameters do not change

during the execution of the workflow and do not need

to be piped by some other nodes. Vision gives also the

possibility to change a parameter into an input port.

Hence, when developing a node, it is not necessary to

decide whether an input field for the computing func-

tion should be a parameter or a port. A node can be

designed interactively in Vision using the node editor

(as seen in Figure 2). All modifications made to a node

or a network are saved in the network description file.

This file contains Python code that recreates the net-

work when executed. Since the node’s compute func-

tion is written in the Python programming language, it

can be inspected and modified interactively.

3. MacroNodes: Vision also supports the concept of

”MacroNodes”, which appear as a simple node in a

network, but encapsulate a sub-network. MacroNodes

can exist inside MacroNodes, thus allowing a hierar-

chical visual representation of an algorithm, and fa-

cilitating code reuse within Vision. In addition, it al-

lows the workflow diagram to be free of details of the

subnetworks, greatly facilitating the design and imple-

mentation process by different users.

4. Execution: When a node is scheduled for execution,

it collects the data on its input ports and passes it to

the node’s compute function. This function typically

imports Python code from some other Python pack-

age to operate on the data and produce a result, which

is then sent to the node’s output port. This important

design features makes Vision ”just another” user inter-

face to functionality available to any program running

583

a Python interpreter, thus promoting code re-use and

inter-operability.

5. Libraries: The standard library comprises of nodes

exposing Python keywords (print, eval, setattr and call

methods), along with nodes enabling the generation of

simple input data. Other available libraries are the 3-D

Visualization library based on the DejaVu component,

the SymServ library which provide geometric trans-

formations, the MolKit library to manipulate molecule

data, the Python Image Library (PIL) to manipulate

images. The wslib for web services is described later.

Figure 2 shows a sample Vision workflow.

Figure 2. A molecular visualization applica-
tion built using Vision – a network used to
display a viral capsid is shown, the sub-
network embedded in the Lines Macro is
shown as an inset

Several similar tools have originated from different sci-

entific communities to support the design and execution of

workflows, such as Kepler, Taverna, Vistrails, SCIRun, and

AVS, each with a different focus. For a more comprehen-

sive comparison, please refer to [11]. In Table 1 we drew

a simple comparison of some of these tools, whose features

often change rapidly depending on requirements of their in-

tended user communities.

The choice of a tool is often decided upon the available

features, the stability of software, the user base, and the pro-

gramming language. Our choice of Vision is motivated by

its advanced support for volume rendering, 3-D visualiza-

tion of proteins and other molecules, integration with open

source electrostatics codes, and a strong user base in the

AutoDock and AutoDockTools community. In addition, the

simple yet powerful programming paradigm of Python has

made development of new Vision libraries straight forward.

By adopting a service oriented architecture, users have even

less to worry about which tools to use except for their per-

sonal preferences.

Workflow Tool Parallel

Execution

of Tasks

Programming

Language

Notable Fea-

tures

Vision no Python Advanced

visualization,

web services

support

Kepler yes Java Ontology

based annota-

tion

Taverna no Java Web ser-

vices and

provenance

Vistrails no Python Data prove-

nance and

version track-

ing

Table 1. Workflow tools comparison

2.2 The Opal Toolkit

Programming and using distributed grid resources is

quite a challenging task. A Service Oriented Architecture

(SOA) can address this problem by providing platform-

independent, language-neutral service interfaces that hide

the complexity of the implementations while providing

a well-defined and high-performance Quality of Service

(QoS). As outlined in [16], SOA systems for scientists

should be designed focusing on application-level services

in a domain oriented fashion, providing reusable interfaces,

and lowering the deployment cost.

The Opal toolkit [22] is such a simple toolkit for wrap-

ping scientific applications as Web services. Application

developers are expected to write a simple XML-based ap-

plication configuration. The application configuration con-

tains information about the scientific application, such as

application name, binary location, and application meta-

data (e.g. usage information). Using a simple Apache

Ant task, the Opal toolkit can deploy the application as a

Web service into a container based on Apache Tomcat and

Axis. Once the application is deployed as a Web service,

clients can access this service programmatically using its

Web Service Description Language (WSDL) description.

The WSDL API provides operations for job launch (which

accepts command-line arguments and input files as its pa-

rameters), querying status, and retrieving outputs. Further-

more, it provides an API for retrieving application meta-

data. WSDL savvy users could write their own clients to

access Opal based applications. However, not every scien-

tific user is capable of or even interested in writing Web ser-

584

vice clients. Hence, several interfaces have been provided

for the end-users. Apart from command-line clients written

in languages like Java, Python and Perl available from the

Opal Sourceforge site. Examples of web interfaces for Opal

based services are available through the GridSphere portal

environment [2], such as the MEME Portlet in My Work-

Sphere [18]. In addition, Opal based interfaces via Rich

Internet Applications (RIA) such as Gemstone [14], and

Problem Solving Environments (PSE) such as the Python

Molecular Viewer (PMV), AutoDockTools [5] and Conti-

nuity [19] have also been provided.

Although a detailed description of the Opal toolkit is be-

yond the scope of this paper (and can be found in [22]), the

salient features of Opal are as follows:

1. Scheduling and Cluster Management: Since dif-

ferent sites use different schedulers such as the Sun

Grid Engine, Condor [7], etc., Opal provides a uni-

form way to access them via standard APIs such as

Globus GRAM [8] and DRMAA [21]. The schedulers

are simply specified using a properties file, and Opal

configures itself appropriately to access the schedulers

via the appropriate parameters. In addition, we are cur-

rently able to submit jobs to the CSF4 metascheduler

[25] as described in [17]. Leveraging its WSRF inter-

face [13], application based scheduling and transparent

data staging, we have been able to transparently couple

it with Opal to dispatch jobs on PRAGMA resources.

2. Data management and Persistence: The Opal toolkit

manages the job data for a particular run on behalf of

the user. Every job is run in a separate workspace so

that multiple jobs from different users can be run con-

currently. Furthermore, information about job status

and outputs is persisted in a database to provide fault-

tolerance for the services.

3. Security: Opal services can be configured to use

transport-level GSI-based [10] security so as to restrict

access to only authorized users via standard Grid secu-

rity mechanisms.

4. Standardized WSDL API: All Opal services use a

standard WSDL so that they can be accessed in a uni-

form manner by different clients. We choose not to

generate application specific WSDLs to avoid regen-

eration of client-side stubs and rewriting of clients for

every application.

5. Argument Description and Dynamic Interface
Generation: Opal services can be optionally config-

ured with an XML specification for the command-line

arguments. This specification consists of a description

for flags, tagged and untagged parameters, and group-

ing of arguments. Flags are not ordered and are usually

getAppMetadata

launchJob

getOutput
…

PDB2PQR

getAppMetadata

launchJob

getOutput
…

MEME

…
Opal server

User

Vision

Kepler

1. Get application metadata

2. Render customized GUI

Browser

Figure 3. Service invocation via the Opal GUI

represented with a character prefixed with a dash and

they activate a functionality in the application (e.g. -

verbose). Tagged Parameters are usually formed by

a prefix and input value (e.g. -input <filename>) -

they can appear in any order. Untagged parameters are

not prefixed, and hence their order is relevant. The ar-

gument description is mainly useful for two purposes

- for validation of command-line arguments passed to

the application, and for automatic interface generation.

A detailed description of the argument description, and

automatic generation of Web forms from the descrip-

tion is provided in [17]. A complete life cycle of this

process is shown in Figure 3. We will discuss dynamic

interface generation in the context of the Vision envi-

ronment in Section 3.1.

The Opal toolkit is freely available from SourceForge,

and uses an Open Source BSD-style license [6].

3 Implementation Details and Use Cases

3.1 Vision and Opal Services

As we described in Section 2.1, the Vision environment

was mainly designed to run workflows on the users’ work-

stations. We have now augmented Vision to access dis-

tributed resources via the Opal toolkit. To do so, we have

developed the ”wslib” library, which we describe in this sec-

tion.

Users can now load remote Web services by loading the

wslib library. This library contains a set of generic Vi-

sion nodes for accessing Web services, and a set of service-

specific nodes that are generated on the fly. The generic

585

Figure 4. Automatic interface generation for
the PDB2PQR service in Vision

nodes of interest are:

1. Load WS: This node is responsible for looking up a

server for a list of Web services deployed using Opal,

and creating one application specific node for every

service it finds. This node gets a list of services hosted

on the remote server from the Apache Axis Servlet,

parses the list, and generates the necessary code for the

service nodes. For instance, Figure 4 shows a list of

service nodes that have been automatically generated

for services being hosted on the ws.nbcr.net server.

These nodes can now be dragged over to the network

editor, and used to access applications running on re-

mote resources.

2. Download: This node is useful for downloading out-

puts from an Opal service after the execution is com-

plete.

3. Web Browser: This node pops up a Web browser to

access results for a remote Opal job run.

When the Opal service node is dragged on to the network

editor, it fetches the service metadata which consists of the

flags, tagged and untagged parameters for the command-

line arguments as described in Section 2.2. From the Opal

metadata, it automatically generates a Python class to ac-

cess the remote service. Every entry in the Opal metadata

is mapped to a Vision widget as follows:

1. Flags are displayed as check boxes,

2. Tagged and untagged parameters are rendered as check

boxes if their type is BOOL, file input fields (with a file

browser) if their type is FILE, drop down lists if their

type is a list of mutually exclusive values, and input

text fields for all other cases.

Furthermore, a description of the parameter is displayed

if the mouse is pointed over a particular widget. When

such a node is run, it marshals the command-line argu-

ments using the input form and the metadata information

and launches a remote application via the Opal Web ser-

vices API, using the ZSI (Zolera SOAP Infrastructure) [23]

client-side libraries. Once it has finished execution, the

”Download” or ”Web Browser” nodes can be used to access

the results.

With the advent of multi- and many-core CPUs and the

constant increase in computational power of personal work-

stations, scientific users might prefer to execute some of

their computational tasks locally in order to avoid network

latencies or waiting in the queues. Opal nodes can be con-

figured to use either remote or local binaries. When a Opal

node is created by Vision, it searches an executable file on

the client’s computer with the same name as the one pub-

lished by the remote service. Otherwise the user can also

input this value manually. Finally a check box in the proper-

ties of the node allows the user to choose whether the com-

putation should be performed locally or remotely.

Figure 3 shows an example of an automatically gen-

erated interface for an Opal service inside Vision. Flags

”noopt”, ”phi”, ”psi”, ”verbose”, ”chain”, ”nodebump”,

”chi”, ”hbond”, ”clean”, ”apbs input”, ”rama”, and ”as-

sign only” are rendered as check-boxes. Tagged parameter

”inFile” is rendered as a file browser, while ”forcefield” and

”ffout” are rendered as drop down lists since they are asso-

ciated with a set of mutually exclusive values. All other

parameters are rendered as text boxes.

3.2 Use Cases

Vision and Opal are used in practice for molecular vi-

sualization and virtual screening workflows. In particular,

Vision can use Opal to run jobs on remote clusters and in-

teroperate seamlessly with the 3D visualization capabilities

provided by the Python Molecular Viewer (PMV).

3.2.1 Protein Docking using AutoDockTools

AutoDockTools [5] is a graphical front end for setting up,

launching and analyzing AutoDock runs. One benefit of

ADT is that it can set up and run all AutoDock applica-

tions from a graphical user interface. In addition, ADT

uses Vision networks or python modules to analyze and dis-

play molecular surfaces, secondary structures, and visualize

molecular dynamics trajectories.

586

Typically ADT is useful to set up docking experiments

and execute on users’ workstations. We have augmented

ADT to leverage Grid resources using the Opal toolkit.

ADT uses Python stubs generate by ZSI [23] to access re-

mote Opal-based AutoGrid and AutoDock services. Users

can specify the URL for the services, and first run Auto-

Grid to set up the Grid parameter files. Outputs from Auto-

Grid are then passed to the AutoDock service, which then

runs the docking simulations. In this case, the flow of con-

trol is hard-coded within ADT itself. For training purposes,

we have developed a workflow in Vision that performs the

same steps as ADT. The visual representation of the tasks

involved in the simulation as a network of interconnected

nodes help new users to learn the logical steps of an Au-

doDock simulation. We have used it in training the under-

graduate students in the PRIME project [4], a NSF funded

activity which supports undergraduate students to conduct

research abroad.

3.2.2 Virtual Screening within the Vision environment

In a typical scenario of virtual screening using AutoDock,

scientists have to adapt complex shell scripts to code the

workflow presented in Figure 5, where they submit jobs on a

cluster to search against each one of the compounds present

in the library. To increase code reuse, and to leverage dis-

tributed resources, we provide a Vision based workflow en-

vironment for the workflow. We deployed a set of Opal ser-

vices to wrap the most computational intensive steps, and

use a Vision network to coordinate these services in proper

order. Figure 5 shows: ADT user interface which is invoked

from our workflow to set up a grid box for the docking ex-

periment; the Vision workflow editor can be used to change

simulation parameters; and a html browser which is opened

at the end of the simulation to browse the results remotely.

3.3 Deployment Scenarios and Perfor-
mance Evaluation

The Vision network may be used to access individual

clusters or distributed resources in the PRAGMA grid. For

example, We have deployed Opal on individual clusters

such as Kryptonite, a NBCR production cluster, running the

Rocks cluster distribution (http://www.rocksclusters.org),

with a Gigabit Ethernet network. The batch queuing sys-

tem is the Sun Grid Engine. All the client requests are sent

to the login node of the cluster where an Apache web server

(http://httpd.apache.org/) redirect them to the Tomcat server

where Opal is running. Opal is configured to submit its

jobs to the local scheduler, so that they get treated exactly

like standard Unix user. Currently the virtual screening is

performed against the NCI Diversity Set [3] of almost two

thousands compounds, and more libraries are supported as

Figure 5. Using Vision remote capabilities to
perform virtual screening

required. We have also used Opal-CSF4 from a command

line client [26] or a web interface described earlier [17] to

access distributed resources.

There is some overhead in using Vision and Opal, but

negligible when the tasks are running on the order of min-

utes or more. For example, we created a Vision workflow

to simply perform a remote AutoDock submission to detect

this overhead. We set up an Opal instance on one of our de-

velopmental cluster with duo Intel Xeon CPU’s at 3.06GHz,

gigabit Ethernet network and 2 gigabyte of RAM per node.

Opal was set up not to use the batch scheduler but to fork

the process on the local system, additionally the AutoDock

executable was wrapped inside a bash script created to log

execution times. Vision was running on a Intel Core 2 Duo

2.40GHz with a gigabit Ethernet network adapter and 2 gi-

gabyte of RAM. The two systems were located into two dif-

ferent buildings interconnected by the campus gigabit Eth-

ernet network.

We performed 4 sets of experiments, each one consisting

of ten executions, and we observed the average of the execu-

tion times. The first set was executed running an empty bash

script in order to evaluate the total execution time of Vi-

sion and Opal. The other tree experiments were performed

changing AutoDock configuration parameters in order to in-

crease its execution time from 27.81 second to 36.38 and

to 44.53. Essentially, the difference between the workflow

execution time and the Autodock execution time indicated

that the overhead introduced by Vision and Opal remains

constant against the total execution time varing between 3

to 4 seconds.

We also explored how Opal-Vision overhead is impacted

587

Figure 6. Execution time with growing input
data set

by the amount of data transferred by performing a set of ex-

periments invoking an empty script (i.e. with no execution

time) with different input data size. We ran 4 simulations

with 12 files in each one but we increased the total trans-

fer size from 12 to 48 Megabyte. Additionally we also set

up an instance of Opal configured to submit jobs to CSF4

metascheduler [25]. In this case the input data is also moved

from the Opal server to the execution host by means of

GridFTP which adds an additional transfer time cost. Figure

6 shows how the execution time grew linearly with the size

of the input data set in both cases. CSF4 introduced about

a min of overhead to the test workflow, from the graph it

is also possible to notice how CSF4 data staging does not

impact sensibly the final execution time. Therefore, when

adding a metascheduler to dispatch jobs, one needs to min-

imize the amount of data transferred when possible.

These preliminary experimental results suggest that the

most important factor when analyzing the overhead intro-

duced by our middleware, is the input data size and the

number of jobs submitted. Hence it is important that when

designing service oriented infrastructure the granularity of

the deployed services is established in such a way that data

transfer and number of submissions are minimized.

From the users’ perspective, e.g., PRIME students, it

typically takes between two to four hours of training to get

them confident with the screening process. Then at least two

more hours are required to teach how to access our Unix

clusters (ssh, scp, bash scripting, etc.). Using Vision and

Opal we have been able to eliminate completely the second

part and reduce the time to learn the first.

4 On-Going and Future Work

Currently, we are working on a new release of Opal

that supports a plug-in architecture for the various back-

ends submission systems. This would allow the users

to use other metaschedulers such as GridWay or Nimrod,

in addition to CSF4. Additionally, the use of Hibernate

(http://www.hibernate.org) will increase the number of sup-

ported databases for state management. User data sources

may include common protocols such as GridFTP, FTP, in

addition to HTTP.

In [22], we discussed a bioinformatic workflow using

Kepler and Opal. However, the downside to that approach

was that we had to write application specific actors for the

scientific applications that we were interested in. The au-

tomatic interface generation approach used in Vision would

obviate the need to write such application specific actors.

We are currently developing a generic Opal actor for Kepler

[12] which first retrieves the metadata about the command-

line arguments from the Opal service, and then automati-

cally adds parameters and input and output ports to itself.

5 Conclusions

Grid computing provides an enormous opportunity to

scientific end-users to use distributed computing and stor-

age resources to enable novel science hitherto impossible

using traditional computing mechanisms. In this paper, we

described the workflow tool called Vision, a component-

based, application-domain agnostic, cross-platform visual

programming environment, and how it has been augmented

to leverage Opal based web services using Grid resources.

Further enhancements to such tools would help scientists

perform their tasks in a more intuitive way without the has-

sle of access grid resources. Advances in visual program-

ming environments may one day enable non-programmers

to intuitively and interactively build scientific workflows

and visualize their results, without having to write code or

understand the details of the back-end infrastructure.

The authors would like to acknowledge support from

the NIH P41 RR 08605 to NBCR; TATRC W81XWH-07-

2-0014 to PWA, the Gordon and Betty Moore Foundation

grant for the CAMERA project, and the NSF grants INT-

0314015 and OCI-0627026 for the PRAGMA project.

References

[1] Avian Flu Grid. http://avianflugrid.pragma-grid.net.

[2] Gridsphere Portal Framework.

http://www.gridsphere.org.

[3] NCI - Diversity Set Information.

http://dtp.nci.nih.gov/branches/dscb/diversity explanation.html.

[4] Pacific RIM undergraduate Experience.

http://prime.ucsd.edu/.

588

[5] Python-based software development at

MGL - AutoDockTools, PMV, and Vision.

http://mgltools.scripps.edu/.

[6] The Opal Toolkit. http://nbcr.net/software/opal/.

[7] J. Basney, M. Livny, and T. Tannenbaum. High

Throughput Computing with Condor. In HPCU news,

volume 1(2), June 1997.

[8] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,

S. Martin, W. Smith, and S. Tuecke. A Resource Man-

agement Architecture for Metacomputing Systems. In

IPPS/SPDP 98, Workshop on Job Scheduling Strate-
gies for Parallel Processing, 1998.

[9] T. Oinn et al. Taverna: A tool for the composition and

enactment of bioinformatics workflows. In Bioinfor-
matics Journal, volume 20(17), 2004.

[10] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke.

A Security Architecture for Computational Grids. In

ACM Conference on Computers and Security, 1998.

[11] GC Fox and D. Gannon. Workflow in Grid Systems.

Concurrency and Computation: Practice and Experi-
ence, 18(10):1009–1019, 2006.

[12] I. Altintas et al. Kepler: An Extensible System for

Design and Execution of Scientific Workflows. In 16th
International Conference on Scientific and Statistical
Database Management (SSDBM’04), 2004.

[13] K. Czajkowski et al. WS-Resource Framework.

http://www-106.ibm.com/developerworks/library/ws-

resource/ws-wsrf.pdf, 2004.

[14] K. K. Baldridge et al. GEMSTONE: Grid-Enabled

Molecular Sciences through Online Networked Envi-

ronments. In Life Sciences Grid Workshop (Satellite
of Grid Asia), 2005.

[15] W.P. Klters, M.T. Stahl, and M.A. Murcko. Vir-

tual screening-an overview. Drug Discovery today,

3(4):160–178, 1998.

[16] S. Krishnan and K. Bhatia. SOAs for Scientific Appli-

cations: Experiences and Challenges. e-Science and
Grid Computing, IEEE International Conference on,

pages 160–169, 2007.

[17] L. Clementi, et al. Providing Dynamic Virtualized

Access to Grid Resources via the Web 2.0 Paradigm.

International Workshop on Grid Computing Environ-
ments, 2007.

[18] W.W. Li, S. Krishnan, K. Mueller, K. Ichikawa,

S. Date, S. Dallakyan, M. Sanner, C. Misleh, Z. Ding,

X. Wei, et al. Building cyberinfrastructure for bioin-

formatics using service oriented architecture. Sixth
IEEE International Symposium on Cluster Computing
and the Grid Workshops Singapore, pages 39–46.

[19] AD McCulloch. Continuity 6.0: Continuum Modeling

for Bioengineering and Physiology.

[20] Garrett M. Morris, David S. Goodsell, Robert S. Hal-

liday, Ruth Huey, William E. Hart, Richard K. Belew,

and Arthur J. Olson. Automated docking using a

lamarckian genetic algorithm and an empirical bind-

ing free energy function. Journal of Computational
Chemistry, 19(14):1639–1662, 1998.

[21] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner,

A. Haas, B. Nitzberg, and J. Tollefsrud. Distributed

Resource Management Application API Specification

1.0. Grid Forum Document GFD, 22, 2004.

[22] S. Krishnan et al. Opal: Simple Web Services Wrap-

pers for Scientific Applications. In IEEE International
Conference on Web Services, 2006.

[23] R. Salz and C. Blunck. ZSI: The Zolera Soap Infras-

tructure.

[24] M.F. Sanner, D. Stoffler, and A.J. Olson. ViPEr, a

Visual Programming Environment for Python. Pro-
ceedings of the 10 thInternational Python Conference,

pages 4–7, 2002.

[25] X. Wei, Z. Ding, S. Yuan, C. Hou, and H. Li. CSF4:

A WSRF Compliant Meta-Scheduler. International
Conference, 2006.

[26] Z. Ding, X. Wei, O. Tatebe, P.M. Papadopoulos, P.W.

Arzberger, and W.W. Li. Cyberinfrastructure for
biomedical applications: metascheduling as essential
component for pervasive computing. Nova Science,

2009.

[27] C. Zheng, D. Abramson, P. Arzberger, S. Ayyub,

C. Enticott, S. Garic, M. J. Katz, J.-H. Kwak,

B. Sung Lee, P. M. Papadopoulos, S. Phatana-

pherom, S. Sriprayoonsakul, Y. Tanaka, Y. Tanimura,

O. Tatebe, and P. Uthayopas. The pragma testbed -

building a multi-application international grid. Inter-
national Symposium on Cluster Computing and the
Grid, 2:57, 2006.

589

