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Abstract—Today, medical endoscopy is a widely used procedure
to inspect the inner cavities of the human body. The advent of en-
doscopic imaging techniques—allowing the acquisition of images
or videos—created the possibility for the development of the whole
new branch of computer-aided decision support systems. Such sys-
tems aim at helping physicians to identify possibly malignant ab-
normalitiesmore accurately. At the beginning of this paper, we give
a brief introduction to the history of endoscopy, followed by intro-
ducing the main types of endoscopes which emerged so far (flexible
endoscope, wireless capsule endoscope, and confocal laser endomi-
croscope). We then give a brief introduction to computer-aided de-
cision support systems specifically targeted at endoscopy in the gas-
trointestinal tract. Then we present general facts and figures con-
cerning computer-aided decision support systems and summarize
work specifically targeted at computer-aided decision support in
the gastrointestinal tract. This summary is followed by a discus-
sion of some common issues concerning the approaches reviewed
and suggestions of possible ways to resolve them.

Index Terms—Computer-aided decision support, confocal laser
endomicroscopy, endoscopy, gastrointestinal tract, wireless cap-
sule endoscopy.

I. INTRODUCTION

S INCE medical endoscopy is a minimally invasive and
relatively painless procedure, allowing us to inspect the

inner cavities of the human body, endoscopes play an important
role in modern medicine. In medical practice different cavities
within the body exist which are regularly inspected with an
endoscope,1 e.g., the lower respiratory tract (bronchoscopy),
the urinary tract (cystoscopy), or the female reproductive
system (gynoscopy). But there also exist procedures which
are performed through small incisions to reach cavities which
are normally closed, such as for example the abdominal or
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pelvic cavity (laparoscopy) or organs of the chest (thorascopy).
Another important field in medical endoscopy, which this
survey focuses at, is the inspection of the gastrointestinal tract
(GI tract).
Based on endoscopy of the GI tract, physicians are able to

detect severe diseases already in early development stages and
therefore the mortality rate for many diseases, especially dif-
ferent types of cancers, has been lowered drastically throughout
the last years [1], [2]. Some examples of conditions which are
known to be premalignant or to increase the risk of cancer in
the GI tract are adenomas, Barrett’s esophagus, Crohn’s disease,
celiac disease, and a Helicobacter pylori infection. But also the
detection of GI bleeding, being a sign of malignancy, is impor-
tant in gastrointestinal endoscopy.
The advent of endoscopes with the ability to take digital

pictures created the whole new field of computer-aided deci-
sion support systems (CADSSs) in medical endoscopy. Such
systems are designed to detect and/or classify abnormalities
and thus assist a medical expert in improving the accuracy of
medical diagnosis. In addition, different methods have emerged
which do not directly provide decision-support. Instead they
aim, for example, at enhancing image quality, detecting de-
graded images, or provide endoscope navigation support.
Throughout this work we use the term “supportive systems”
for such methods.
To highlight the relevance of CADSSs and supportive

systems we conducted an exhaustive search for publications
dealing with these topics (on PubMed2 and on ScienceDirect3),
which yielded the search results presented in Fig. 1. In order
to find relevant publications our search was based on key
terms corresponding to different endoscopic techniques and
pathologies (the respective search queries can be found in [3]).
The results show that there is a rising interest in this research
topic, starting about one decade ago.
The remaining part of this work is structured as follows:

Section II reviews the technological advances in endoscopy.
We then discuss CADSSs in more detail in Section III. This
discussion includes a brief overview of CADSS, general facts
and figures, and a detailed review of proposed CADSSs found

2PubMed located at http://www.ncbi.nlm.nih.gov/pubmed
3ScienceDirect located at http://www.sciencedirect.com
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Fig. 1. Number of publications between 1988 and 2010 found on PubMed and ScienceDirect when searching for publications aiming at supporting medical
endoscopy in the GI tract (search was conducted on the 6th of June, 2011).

in literature. Problems inherent to CADSSs and possible ways to
copewith them are discussed in Section IV. SectionV concludes
this work.

II. TECHNOLOGICAL ADVANCES IN ENDOSCOPY

Endoscopy, as we know it today, is performed using a flexible
endoscope, sometimes also referred to as videoscope. This type
of endoscope has been introduced in the mid 1960s. While the
first endoscopes used fiber optics and an eyepiece lens to visu-
alize the inner cavities of the human body, modern endoscopes
are very compact devices, including a light source, and a charge-
coupled device (CCD) or CMOS chip for taking pictures. But
the basic concept did not change very much since those days. In
addition to the digital imaging chip, modern endoscopes con-
tain a light source at the distal tip and are equipped with an ac-
cessory channel, which allows the entry of medical instruments
to take tissue samples, perform cleansing of poorly prepared
areas, perform polypectomies, and perform endoscopic resec-
tions without any invasive surgery involved. Depending on the
region within the GI tract to be inspected there exist different
terms for endoscopic procedures, such as colonoscopy (colon),
sigmoidoscopy (inspection of the last part of the colon), gas-
troscopy or esophagogastroduodenoscopy (upper part of the GI
tract down to the duodenum), or endoscopic retrograde cholan-
giopancreatography (inspection of the bile duct or pancreatic
duct).
More recent advances in endoscopy are zoom-endoscopy and

chromoendoscopy. Zoom-endoscopy allows one to zoom in at
regions of interest, using a magnification factor of up to 150.
Such devices offer a significant advance since smaller and finer
details in the region to be examined get uncovered [6]. An-
other possibility to obtain images with a higher level of de-
tail are high definition (HD) endoscopes, which also provide
images of higher resolutions and therefore allow us to detect
subtle changes in the mucosa. Chromoendoscopy aims at en-
hancing superficial patterns on a mucosal layer by topically ap-
plying color dyes. An alternative to this rather time-consuming
procedure is to use narrow band imaging (NBI), which allows
us to enhance the contrast of vascular patterns on the mucosal
surface [7]. Since NBI is based on a rotating filter in front of
the light source (narrowing the spectrum of the visible light to

Fig. 2. Sample images showing a colonic polyp, acquired by using different en-
doscopic techniques: (a) endoscopy [4], (b) zoom-endoscopy, (c) confocal laser
endomicroscopy [5], and (d)WCE (Copyright ©2005-2011, Given Imaging. All
Rights Reserved).

bands of blue and green) this technique is not dependent on ap-
plying color dyes. Other systems similar to NBI, like Fujinon In-
telligent Chromoendoscopy (FICE) or I-scan, use computer al-
gorithms to postprocess endoscopic images. Systems like NBI,
FICE, or I-scan are referred to as “virtual chromoendoscopy”.
Another recent advance in endoscopy is confocal laser

endomicroscopy (CLE) [8]. This procedure allows one to
inspect the mucosal surface in a highly detailed manner. This
is achieved by a laser-based endomicroscope which scans the
surface of the mucosa and even allows us to inspect subsurface
features up to a depth of 250 microns by adjusting the focal
point of the laser. The resulting images have a resolution cor-
responding to a magnification factor of 1000, making “smart”
biopsies possible, thus avoiding random and possibly unnec-
essary biopsies. Throughout the last years two distinct types
of CLE technologies have emerged, namely eCLE and pCLE.
While in case of eCLE the endomicroscope is integrated at the
distal tip of the endoscope, a CLE probe is inserted into the
accessory channel of an endoscope in case of pCLE. Hence,
while eCLE and pCLE are similar in terms of the resulting
imagery, an endoscope can be easily upgraded with pCLE.
It has already been shown that the diagnostic accuracy of CLE

is comparable to histology [9]. It must be noted that CLE actu-
ally belongs to the category of flexible endoscopy. Neverthe-
less, due to the completely different imaging modality in CLE
endoscopes, we make a distinction between CLE and flexible
endoscopy throughout the remaining part of this paper.
Since the small intestine is very long and convoluted a

traditional flexible endoscope is only of limited use. A recently
developed technique to overcome this limitation and to make
endoscopic procedures more safe, less invasive, and more com-
fortable for the patient, is wireless capsule endoscopy (WCE)
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Fig. 3. Common steps involved in a decision support system (colored boxes denote optional steps). Layers depict the possibility that multiple frames from endo-
scopic video may be processed simultaneously to exploit interframe relationships.

[10]. To perform WCE the patient swallows a small capsule,
containing a light source, lens, camera, radio transmitter, and
batteries. Propelled by peristalsis, the capsule then travels
through the digestive system for about eight hours and auto-
matically takes more than 50 000 images. These are transmitted
wirelessly to a recorder worn outside the body. Throughout
the last years WCE has already proven to be a valuable tool to
detect the cause of gastrointestinal bleeding within the small
bowel [11]. Recently also other areas of interest for WCE
within the GI tract have emerged, such as the colon [12] or
the esophagus [13]. But it must be noted that the inspection
of these two parts within the GI tract is not well-established
yet. Although WCE currently lacks the ability to treat lesions,
obtain biopsy samples, and clean poorly prepared areas, this
new technique has already proven to be an effective diagnostic
modality for detecting small bowel tumors and small bowel
lesions [14] since the first approval of a WCE capsule by the
FDA (U.S. Food and Drug Administration) in 2001, and may
also become an important tool to detect other abnormalities in
the GI tract [15].
Another recent advance in endoscopy is virtual endoscopy

[16]–[18] (VE), also referred to as computed endoscopy. Since
in VE the data to be analyzed is acquired using helical or spiral
computer tomography (CT) or magnetic resonance imaging
(MRI) virtual endoscopy differs significantly from all other
techniques described above in terms of the underlying imaging
technique. Hence, the remaining part of this work is focused on
flexible endoscopy, CLE and WCE only.
There have been many technological advances throughout

the past decades. But while traditional white-light endoscopy
is standard-of-care, some techniques mentioned above are still
rarely used. While WCE had a deep impact on clinical routine
(in particular the investigation of the small bowel), other tech-
niques are still under investigation and thus barely used (i.e.,
CLE and virtual endoscopy). Other enhancements like NBI or
HD endoscopy are not used yet on a regular basis in clinical
practice since it is still not clear whether an investment in such
systems is worth it.
Sample images for each endoscopic imaging modality men-

tioned are given in Fig. 2. These images clearly indicate that,

while all images show a polyp within the colon, there exist vast
differences between the resulting imagery.

III. COMPUTER-AIDED DECISION SUPPORT SYSTEMS

A rough overview of common steps involved in a decision
support system for medical endoscopy is shown in Fig. 3. In
many cases the first step is a preparation of the tissue region to
be investigated (e.g., staining, treatment with fluorescent dyes).
After an image has been acquired, preprocessing may be re-
quired in order to enhance the quality of possibly degraded im-
ages. Then, depending on the aim of the application, suitable
features have to be found and extracted. Sometimes a postpro-
cessing of the features is also necessary (e.g., removing invalid
feature combinations in the case of high-level features). If the
decision support system is targeted at classification (e.g., polyp
detection, cancer detection) the features are used for a classi-
fication of the image, using a previously trained classifier. But
there also exist other systems which base their decisions directly
on the features without using an intermediate classifier (e.g., by
using feature thresholds) [19].
Similar to classification, some systems are targeted at con-

tent-based image retrieval (CBIR) or content-based video re-
trieval (CBVR). The main difference between automated deci-
sion support systems and CBIR/CBVR systems is the fact that,
in case of an automated decision support, the output of such
a system is a suggestion on the final diagnosis or additional
information for a diagnosis. This output is usually generated
without any intervention by amedical expert needed, potentially
allowing, for example, a real-time polyp detection while the en-
doscope is advanced through the colon. CBIR/CBVR systems
on the other hand present an expert a number of similar images
or videos (on demand), from which the expert is able to decide
by himself on the final diagnosis. It is also quite common that the
expert is able to interact with the system, allowing a refinement
of the search query for similar images. Hence, CBIR/CBVR sys-
tems usually have an interactive nature which limits them in
terms of real-time capabilities and restricts them to be used for
an offline processing.
As already pointed out in Section II, each endoscopic pro-

cedure generates images which exhibit specific characteristics
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Fig. 4. Different endoscopic techniques.

depending on the technique used. Therefore, computer systems
targeted at decision support must be designed accordingly. As
can be seen from Fig. 2(a) an image taken with a traditional
flexible endoscope does not allow us to see details of the tissue
under examination. A zoom-endoscope, on the other hand, al-
lows one to examine the fine structures and details of tissue too
[see Fig. 2(b)]. This, however, comes along with a rather lim-
ited field-of-view (FOV), which makes navigation more diffi-
cult. This problem is even more apparent in the case of CLE due
to the high magnification nature of this technique [see Fig. 2(c)].
But this technique produces images which contain clear and de-
tailed structures.
Fig. 4 shows a schematic illustration of standard endoscopy,

zoom-endoscopy, and CLE. As can be noticed from this figure
the distance of the distal endoscope tip to the mucosa under in-
spection differs between these techniques. This is due to the
different focal depths inherent to the different techniques. As
a result, the FOV differs also between the devices. While stan-
dard endoscopes usually have FOVs between 120 and 170 ,
zoom-endoscopes have rather limited FOVs between 50 and
70 . This naturally affects the size of the visible mucosa re-
gions. In case of CLE the FOV is even more limited, resulting
in a visible region of about 500 500 m. Nevertheless, the
limited FOV comes along with the advantage of higher image
resolutions.
In the case of WCE, the image resolution is often consid-

erably lower compared to the aforementioned techniques [see
Fig. 2(d)]. In addition, WCE suffers from the inability to con-
trol the motion and position of the capsule, which raises new
difficulties for CADSSs.
From the example images shown in Fig. 2, it is clear

that—even in case of the same pathology—images taken
with different endoscopic techniques will in general differ
significantly. One particular difference between the different
endoscopic modalities is the available image resolution. As
shown in Table I, these range from approximately 65 Kilopixel
to approximately 2000 Kilopixel. In addition, while some

TABLE I
OVERVIEW OF DIFFERENT ENDOSCOPIC IMAGING MODALITIES WITH RESPECT
TO APPROXIMATE RESOLUTION OF PRODUCED IMAGES (GIVEN IN KILOPIXEL)

AND ABILITY TO PRODUCE COLOR IMAGES

endoscopes allow us to capture color images, there also exist
endoscopes which capture grayscale images only.
In the following, we present general facts and figures for

CADSSs. We discuss the spread of the different endoscopic
imagingmodalities across CADSS-related literature. This is fol-
lowed by discussing literature found from the medical perspec-
tive of CADSSs. For this purpose we first give an overview of
the different parts of the GI tract which CADSSs have been de-
veloped for in the past. Then the different pathologies under
investigation are outlined, showing the importance of respec-
tive detection and classification systems. Finally, we discuss ap-
proaches found in literature from the image processing and clas-
sification perspective, providing details such as the transforma-
tions, features, and classifiers used.

A. Facts and Figures

In Section II, we already covered the main endoscopic
techniques which currently exist to examine the GI tract.
From these technologies flexible endoscopy, which includes
zoom-endoscopy as well as chromo-endoscopy, is the most
commonly used one. Since this technique has been developed
about half a century ago, it is no surprise that the first CADSSs,
which appeared in the 1980s and 1990s, were solely focused
on this imaging modality.
This, however, changed with the development of WCE. As

can be noticed from Fig. 5 in the year 2004 the first methods
focusing on WCE appeared. Since then, a fair amount of WCE-
related work has been published. This can be explained by the
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Fig. 5. Number of publications on CADSSs throughout the last two decades.

Fig. 6. Number of CADSS-related publications found for different endoscopic image modalities (between 1988 and 2010).

Fig. 7. Number of CADSS-related publications per GI tract part (between 1988 and 2010).

fact that, as already mentioned above, during a WCE session a
huge number of images is generated. Since the analysis of all
these images by a medical expert is a time consuming task, it is
a logical consequence that there is a rising interest in developing
CADSSs for WCE.
Because of the fact that CLE is the most recent technique,

the number of respective CADSSs targeting this technique is
still low. The methods which can be found at the time of this
writing are based on pCLE. Up to our knowledge, there exists
no CADSSs related work based on eCLE so far.
Fig. 6 shows the number of publications found in literature

dealing with CADSSs using the different endoscopic imaging
modalities. This figure shows that flexible endoscopy is clearly
the most frequently targeted endoscopic technique (about 58%),
followed by WCE (about 38%), and pCLE (about 4%).
1) Areas for CADSSs in GI Tract: The most important parts

of the GI tract, most commonly inspected using an endoscope,
can be broken down into the esophagus, the stomach, the
small intestine, and the colon. Fig. 7 shows the distribution of
the methods found in literature with respect to the different
GI tract parts and the endoscopic techniques used. About 71%
of the CADSS-related literature focuses on one particular part
of the GI tract only. But there also exists a lot of work which
aims at examining the complete GI tract and looking out for
abnormal pathologies (denoted as “Complete” in Fig. 7). As
one can easily see, the majority of these approaches is based

on WCE. This is quite natural as the capsule travels through
the whole GI tract and therefore a WCE-based CADSS is able
to search for abnormal pathologies in almost the complete
GI tract (basically only restricted by the endurance of the
on-board battery).
It is also quite interesting to see that, besides examining the

complete GI tract, the colon is obviously the most frequently
targeted part of the GI tract (about 50% of the CADSS-related
publications). This is most probably due to the fact that colon
cancer is the third most common malignant disease in western
countries. As a consequence, finding abnormalities within the
colon is considered a very important field of research. Some of
these abnormalities are known to either develop into cancer or
to be precursors of colon cancer, hence, an early detection of
such pathologies can lower the mortality rate drastically. But
also the complete inspection of the GI tract amounts to a rather
high share of CADSS-related publications (about 29%). As we
have already seen in Fig. 7, the endoscopic imaging modality
most frequently used in this case is WCE.
2) Pathologies Under Investigation—Medical Perspective:

These days endoscopy is used to detect various types of patholo-
gies, as already indicated in Section I. As a consequence there
exists a variety of pathologies which are targeted by different
CADSSs. Roughly spoken, such systems either try to detect
or detect and classify certain pathologies. The respective work
from literature is discussed in more detail in Section III-B.



78 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 4, 2011

Fig. 8. Number of CADSS publications per pathology category and GI tract part (between 1988 and 2010).

As we notice from Fig. 8, the detection and classification of
polyps is the most dominant field of research ( 47 of all ap-
proaches found in literature), with the colon being the GI tract
part of particular interest. This stems from the fact that colonic
polyps have a high prevalence, although other parts of the GI
tract may also develop polyps. In addition, adenomas are a spe-
cial type of polyps which, while being benign, carry a high risk
of developing into cancer.
Another rather high share of CADSSs-related research

focuses on the distinction between normal and abnormal re-
gions 19 , while not being specific about the underlying
pathology.
While gastrointestinal bleeding may be caused by angiodys-

plasia as well, GI bleeding is quite often an indication for many
diseases such as, for example, colon cancer, Crohn’s disease,
esophageal cancer, small intestine cancer, or the typhoid fever.
Hence it is not surprising that the detection of GI bleeding is
also the aim of a rather high share of approaches found in liter-
ature (about 12%).
The remaining work targets at the detection or classification

of other pathologies such as ulcers 7 , celiac disease, tu-
mors ( 5 each), Crohn’s disease 2 , cancer, intestinal
dysfunctions, Barrett’s esophagus, or Helicobacter pylori ( 1
each).
From Fig. 9 we notice that the most frequently used technique

to detect polyps is flexible endoscopy. But also in case of other
pathologies this technique is commonly used (e.g., detection of
celiac disease or Helicobacter pylori). Nevertheless, we also no-
tice that there exist pathologies where WCE is already the dom-
inant technique. This especially accounts to GI bleeding, ulcers,

and Crohn’s disease, which may potentially affect various parts
of the GI tract.

B. Image Processing Techniques and Classification in CADSSs

In this section we summarize work on CADSSs found in liter-
ature. For this purpose we review the different approaches sep-
arated by pathology, grouped by the part of the GI tract the re-
spective methods are targeted at. This is done from the image
processing and classification perspective. If a working group has
published more approaches which are only slightly different, we
discuss the most recent one only.
A more comprehensive overview, including all methods

found in literature along with a summary on supportive sys-
tems, can be found in a technical report we recently published
[3].
1) Features Used: Throughout the approaches found in liter-

ature different types of features are used. These can be roughly
categorized into features which are extracted in the spatial do-
main, those which are extracted in the frequency domain, and
those which describe images at a higher level. An overview of
these feature categories is given in Table II. In order to cope with
various different types of features falling into each category, we
also provide a rough subcategorization.
2) Comparison of Approaches: In order to allow a compar-

ison of approaches, which aim at a computer-aided decision
support targeted at endoscopy in the GI tract, we provide a sum-
mary of some basic properties of the methods listed in Tables III
and IV. The following properties have been included in these
tables.
1) Reference (denoted by “Ref.”)
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Fig. 9. Number of CADSS publications per pathology category (between 1988 and 2010).

TABLE II
OVERVIEW OF COMMONLY USED FEATURES IN CADSSS TARGETED AT ENDOSCOPY IN GI TRACT

In this column we provide the reference to the respective
work.

2) Technique
Denotes the endoscopic technique used (i.e., flexible
endoscopy, capsule endoscopy denoted by WCE, and
probe-based confocal endomicroscopy denoted by pCLE).
In the case of flexible endoscopy, indicators in columns
show whether a certain enhancement has been used (“C”
for chromo-endoscopy, “Z” for zoom-endoscopy, “N” for
NBI, and “H” for HD endoscopy).

3) Pathology

Information about the pathology the respective method
aims to detect or classify. If there is no explicit statement
made about the underlying pathology, this is denoted by
“Abnormalities”. In the case of Barrett’s esophagus, Heli-
cobacter pylori, Crohn’s disease, and motility assessment
the abbreviations BE, H. pylori, CrD, CD, and MA are
used, respectively.

4) Number of images (denoted by “# imgs”)
Indicates the number of images available in the image data-
base used. A “N/A” in this column indicates that there is
no clear information available on the imagery used.
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TABLE III
OVERVIEW OF CADSS-RELATED APPROACHES TARGETING AT A GI TRACT FOUND IN LITERATURE

5) Number of videos (denoted by “# vids”)
Indicates the number of videos available.

6) Ground truth information
The column, denoted by “GT”, indicates the method-
ology used to obtain the ground truth information used
throughout the experiments conducted in the respective
work (“H” indicates a histologically verified ground truth,
while “V” indicates a visually obtained ground truth).

“N/A” indicates that the respective publication does not
contain any information on the way the ground truth has
been obtained.

7) Validation
This column indicates the validation protocol which has
been used to verify the respective method. LOO-CV,
LOPO-CV, LOPIO-CV, and DS are the abbreviations for
leave-one-out cross validation, leave-one-patient-out cross
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TABLE IV
OVERVIEW OF CADSS-RELATED APPROACHES TARGETING AT A GI TRACT FOUND IN LITERATURE

validation, leave-one-parent-image-out cross validation,
and distinct sets for training and validation, respectively.
A “N/A” in this column indicates that there is no clear
information on how the verification has been carried out
in the experiments.

8) Features
Denotes the type of features used in the respective ap-
proach. The features, which belong to the different feature
types, are listed in Table II (except for feature type “Var-
ious”, which indicates that the respective method is either
based on multiple feature types or that a comparison of dif-
ferent features is carried out). A “N/A” in this column indi-
cates that there is no explicit information available on the
features used.

9) Classification
This column provides information on how the classifica-
tion or detection in the respective work has been carried
out. SVM, k-NN, ANN, GMM, and DC are the abbre-
viations for the support vector machines classifier, the
k-nearest neighbors classifier, different flavors of artificial
neural networks or related classifiers, Gaussian mixture
models, and classifiers based on discriminant analysis,
respectively. In the case of “Ensemble” the classification
is carried out by the combination of different weak classi-
fiers into an ensemble classifier.

From these tables we see that the most commonly used fea-
ture types are spatial domain features (used in about 50%) and
frequency domain features (used in about 39%), followed by
high-level features, which are used in a rather low share of ap-
proaches only (about 19%).
We also notice that themost commonly used classifiers are the

SVM classifier (used in about 26%), the k-NN classifier (used
in about 24%), and some sort of ANN or related network-based
classifiers (used in about 21%). The popularity of the SVM clas-
sifier can be explained by the fact that it adapts very well to
classification problems, even when using high-dimensional fea-
tures. In addition, usually only a small set of feature vectors is

needed for the training of the classifier. The k-NN classifier, on
the other hand, is a very simple classifier which nevertheless
often achieves competitive classification rates (as compared to
other classifiers). ANNs are popular since this type of classi-
fiers, in contrast to SVM and k-NN, is able to adapt to problems
by employing different learning schemes.
Another interesting thing we notice from these tables is that

the approaches targeted at the detection of GI bleeding are dom-
inated by spatial domain features. This can be attributed to the
fact that the most common way to find bleeding is the detection
of certain color patterns, which can be achieved fairly well in
the spatial domain (e.g., by histograms or thresholding).

IV. DISCUSSION

As we have seen in the previous section, there exist various
different approaches aiming at assisting a medical expert
during the process of decision-making. Apart from that, in
Section III we already pointed out that the interest in the field
of CADSSs has increased throughout the past two decades.
Nevertheless, despite the vast amount of approaches found in
literature some common weaknesses exist among a big share
of these approaches. In this section we will discuss these issues
and propose possible ways to cope with them.

A. Different Image Databases

When it comes to the assessment of techniques for CADSSs a
common problem are the images or videos used. Although there
exist publicly available image databases containing medical im-
ages or videos from the GI tract, almost each working group
bases their experiments on their own image database, which in
most cases has been created in a collaboration with only a few
medical experts. As a consequence, work found throughout lit-
erature cannot be compared directly. Moreover, it gets nearly
impossible for other working groups to verify results presented
in this field or to assess the quality of the images used throughout
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TABLE V
OVERVIEW OF PUBLICLY AVAILABLE IMAGE DATABASES DEALING WITH ENDOSCOPY IN A GI TRACT. COLUMNS V AND I INDICATE THE NUMBER OF
VIDEOS AND IMAGES AVAILABLE, RESPECTIVELY. IN COLUMN “REGIONS” E, ST, SB, AND C ARE ABBREVIATIONS FOR ESOPHAGUS, STOMACH,

SMALL BOWEL, AND COLON, RESPECTIVELY (INFORMATION COLLECTED ON THE 25TH OF NOVEMBER, 2010).

a work (i.e., the medical expertise of the involved experts is usu-
ally not known). In Table V, we give a short overview of avail-
able image databases (abbreviated as DB-14, DB-25, DB-36,
DB-47, and DB-58).
Despite the fact that these image databases contain a variety

of images and videos, none of these databases can be easily
downloaded entirely (the image material has to be downloaded
either image by image, video by video, or case by case).
Database DB-5 even needs an account to be created in order
to be able to download any image material. Another problem,
which limits the usability of these databases for an evaluation
of automated algorithms, is the fact that none of these databases
provides a detailed ground truth for the respective images and
videos.
Another issue, which can be frequently observed throughout

literature, is the use of a quite limited number of images in some
approaches. This is a severe problem, since results based on a
few images only must be doubted due to a limited significance.
Throughout the work the number of images used varies signif-
icantly as shown in Table VI. This table shows the number of
methods which base their experiments on a number of images
within a certain range (in absolute values as well as the respec-
tive proportions). SinceWCE-based work is usually using com-
plete videos, leading to a higher number of images available for
experiments, we present these numbers separated by the under-
lying endoscopic technique (either WCE or flexible endoscopy,
including pCLE-based systems). As we notice from this table,
most approaches are based on image databases consisting of be-
tween 100 and 500 images (41% and 40% in case of WCE and
flexible endoscopy, respectively). But there is also work which
lacks any information on the quantity of the imagery used or, at
least, make no clear statements about the number of images used
for training and testing (denoted by “N/A” in Table VI). Such
problematic examples can be found in [32], [52], [59], [80],
[82], [92], and [98]. A special case is constituted by approaches
which provide information about the number of videos used but
do not give any information about the total number of frames
used from these videos [61] (denoted by “Videos” in Table VI).
Image databases consisting of less than 100 images are not

suitable to estimate the accuracy of a CADSS. Using between
100 and 500 images may already be sufficient to support pre-
sented results. While using more than 500 images seems to be
more appropriate in order to achieve reliable and significant re-

4DaveProject, http://daveproject.org
5The Gastrointestinal Video Atlas, http://www.gastrointestinalatlas.com
6Endoskopie-Atlas, http://www.endoskopiebilder.de
7The Atlas of Gastrointestinal Endoscopy, http://www.endoatlas.com
8Given Imaging Image Atlas, http://www.capsuleendoscopy.org

TABLE VI
NUMBER OF APPROACHES WHICH ARE BASED ON GIVEN NUMBER OF IMAGES

ALONG WITH RESPECTIVE PROPORTIONS

sults (used in about 33% and 24% of all work in case of WCE
and flexible endoscopy, respectively), we have to point out that
the sufficiency also depends on the number of image classes
used in a work.
While in other fields of research (e.g., biometrics) the use

of well-established databases is already common practice, this
is still not the case in the field of CADSSs. Nevertheless, it
is absolutely necessary to establish commonly used image
databases (depending on the underlying endoscopic technique),
containing a sufficient amount of images and made available
to researchers in this field. Especially in cases where a visual
inspection is common practice to obtain the ground truth in-
formation, involving several different medical experts in the
process of creating such a database would be necessary to lower
the inter-observer disagreement.
As a consequence of the usually limited image databases

many methods are not evaluated on two distinct image sets (one
for the training and one for the validation of the underlying
classifier). Different sets are only used in about 31% of all
methods found in literature. The remaining work is either based
on some variant of cross validation [107] (in about 50%) or the
authors provide no clear information about the training- and
validation-strategy used (in about 20%). While cross validation
is a common way to deal with small image databases there also
exist pitfalls. One problem is a possible overfitting if two or
more images in the database originate from the same patient
and have been taken in the very same region within the GI
tract. Depending on the features used, the feature vectors for
such images are likely to exhibit a high similarity. To cope with
this problem the leave-one-patient-out (LOPO) cross validation
is an option, ensuring that the training set does not contain
images from patients in the validation set. However, this type
of cross validation is rarely used throughout literature (in only
about 4% of the methods using cross validation). Another
pitfall arises when some sort of feature selection is used along
with cross validation. In this case it is important to perform the
cross validation on each feature candidate set in order to avoid
overfitting (inner cross validation) [108].
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In order to facilitate a meaningful evaluation of methods
aiming at computer-aided decision support, researchers working
on this topic should at least adhere to the following key advice.
1) The image database behind published results should be
made available to the public whenever possible.

2) Published results should be accompanied by as many de-
tails about the images used as possible (e.g., image dimen-
sions, color or grayscale, number of images used or the
number of patients in the database).

3) Image databases used for the evaluation of approaches
should contain a sufficient number of images (500 images
or more).

4) If the image database used is sufficiently large it is advis-
able to split the image set into separate sets for training and
validation.

5) For small image databases leave-one-patient-out cross val-
idation must be preferred over leave-one-out cross valida-
tion (if splitting into separate sets for training and valida-
tion is not possible).

B. Ground Truth Establishment

Basically there exist two different ways of obtaining ground
truth information for experiments. The respective class labels
may be gathered either by a visual inspection of endoscopic im-
agery or based on histological findings.
If the ground truth is obtained by visual means there is no pro-

found knowledge about the real pathology for a given image. In
addition, the judgment on the pathology in case of a visual in-
spection may differ significantly between different experts (i.e.,
the inter-observer agreement may be rather low, depending on
the level of expertise of the experts).
For WCE-based CADSS there is usually no other option

than to rely on visual inspections by one or more medical ex-
perts, since taking biopsies is not possible with current capsule
endoscopes.
In the case of flexible endoscopy the ground truth can be gath-

ered histologically since taking biopsies is possible. But even
if histological findings are available, an endoscopic image does
not necessarily correspond to the biopsy site due to slight move-
ments of the endoscope tip, which for example may be the result
of the preparation for taking a biopsy (especially in case of mag-
nified endoscopy).
A special case is constituted by CLE since this technique al-

lows in vivo histologies due to the high level of magnification.
As already stated earlier, it has been shown that the diagnostic
accuracy of CLE is comparable to histology [9], [109], [110].
Hence, the inter-observer agreement is also expected to be sim-
ilar to the agreement in case of histology.
Considering the existing methods which are based on flexible

endoscopy (including pCLE), 10 out of 63 methods base their
experiments on a visually obtained ground truth (about 17%),
while the vast majority of the methods (40 out of 63) is based on
histological findings (about 65%). However, there are also quite
a few approaches which do not unveil the way the ground truth
has been obtained (12 out of 63 approaches, which corresponds
to about 19%) [31], [32], [52], [57], [59], [62], [79]–[84].
Making a recommendation concerning this issue is not easy,

since the best way of obtaining the ground truth information

very much depends on the endoscopic technique used. While
in case of WCE a visual inspection is usually the only way a
ground truth can be obtained, in case of pCLE a visual ground
truth gathering is likely to be sufficient due to its closeness to
histology. In the case of the remaining work based on flexible
endoscopy a histological ground truth is highly desired due to
its accuracy over visual inspection.
If one has to rely on a visually obtained ground truth, be-

cause a histological ground truth is not available, it is impera-
tive to make the respective ground truth as reliable as possible.
Usually this is achieved by consulting different medical experts
for a visual inspection of the imagery. This allows us to take
care of a probably low inter-observer agreement due to different
levels of expertise among different experts, by using images
only which have been classified by various experts into the same
image class with high confidence. A similar way of making a
visually obtained ground truth more reliable has been chosen
for example in [33]. In a second classification stage Sousa et
al. resolve inter-observer discrepancies by analyzing and re-
classifying images which have been classified differently with
high confidence by the medical experts in the first classification
round.
However, no matter how the ground truth has been obtained,

each method published in this field of research should be ac-
companied by this information to make it possible for a reader
to make his own judgments on the value of the results presented.

C. Accuracy and Computational Complexity

Since existing approaches do not only focus on different parts
within the GI tract but also target different pathologies, a di-
rect comparison in terms of the respective classification per-
formance is not possible. Despite the fact that there exist dif-
ferent ways to measure the accuracy of a system, we also iden-
tified work in the literature which does not provide any results
at all (eight out of 102 approaches, which corresponds to about
8%) [32], [52], [53], [79], [80], [82], [92], [98]. This makes a
comparison against other methods impossible. However, even
if some sort of accuracy information is given this does not au-
tomatically imply that the proposed systems are comparable.
This stems from the fact that a number of different measures
to rate a system have been established throughout literature.
These measures include the overall classification accuracy (i.e.,
the total number of correctly classified images divided by the
total number of images), the sensitivity (also known as recall),
the specificity, and area under ROC curves.
While the overall accuracy allows us to get an idea of how

well a method performs there is no evidence about the false pos-
itives or false negatives produced by the system, which however
is of particular interest for medical experts. ROC plots also give
an idea of the overall system performance by the investigation
of the area under the curve.
To make comparison among different systems feasible it is

therefore necessary to establish a set of measures which are then
used to assess the classification performance throughout diag-
nosis systems (e.g., overall classification rate, specificity, and
sensitivity). But even if the same measures are used a direct
comparison of different approaches is not meaningful if the ex-
periments are based on different image databases. But at least
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TABLE VII
RANGES OF OVERALL ACCURACIES, SENSITIVITIES, AND SPECIFICITIES REPORTED AMONG WORK FOUND IN LITERATURE (GIVEN IN PERCENT).

REFERENCE TO THE WORK REPORTING THE RESPECTIVE MAXIMUM VALUE IS GIVEN TOO

a rough comparison would be possible. Using limited or unbal-
anced datasets is also problematic as in such cases the results
are usually of low significance or biased.
In Table VII, we give an overview of the overall accuracies,

specificity values, and sensitivity values, respectively, which
have been reported in work targeted at diagnosis (no distinction
is made between detection and classification). This table con-
tains the respective ranges of the reported values. In addition,
the references of the approaches which achieved the highest
values are given. As we notice from this table there are some
pathologies which are already detected (or classified) with a
rather high accuracy (above 95%). These include GI bleeding,
celiac disease, polyps, and the distinction between normal and
abnormal cases. Also in case of the sensitivities and specificities
reported we already see rather high values (always above 90%).
But since the results are based on different image databases,
which limits the comparability between approaches, the main
purpose of this table is to give a rough overview of the results
reported throughout literature.
Another issue concerning the comparison of methods within

a publication is the statistical significance. Even if two methods
deliver different classification accuracies this does not automat-
ically imply that the difference is statistically significant. To
assess the statistical significance tools to compute a p-value
have been established (for example the McNemar test [113]).
Especially in medical literature giving evidence for statistical
significance is common practice. Throughout the literature in-
vestigated within this work, however, such information is only
given in a very few cases. Due to the reasons mentioned above
measuring the statistical significance across different methods
is hardly possible.
Another issue, which however is of minor importance, is the

computational complexity of systems proposed in literature. For
WCE-based systems complexity issues are of minor interest
since these systems are usually designed to process images or
videos offline (i.e., not in real-time). However, for other sys-
tems, which possibly allow real-time processing of images and
videos, information about the computational demand may be
of interest since other researchers may base their decision on
using a proposed method or not on this information. But it must
be noted, that while complexity information is given in a very
few cases only, one is usually able to at least roughly estimate
the computational demand of a system if the work is based on

well-known algorithms (e.g., frequency transforms, edge detec-
tion methods, statistical texture features). But including at least
rough estimates of the computational demand of a proposed
method (separately for e.g., preprocessing, training, classifica-
tion or detection) may be helpful.
Nevertheless, the approaches available so far deliver results

which are not good enough to be used in clinical practice. As a
consequence the computational complexity of algorithms is, at
least currently, of minor importance.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we gave an overview of research mainly fo-
cused at the detection or classification of different pathologies
of interest in endoscopy of the GI tract. We noticed that there
is a rising interest in this research topic, especially throughout
the last two decades. We also gave an overview of different
parts within the GI tract and respective pathologies of current
research interest.
Considering the importance of CADSSs and the benefits of

such systems (like saving time and therefore lowering the cost
for endoscopic procedures or improving the quality of diag-
nosis) the interest in CADSSs targeted at the GI tract is expected
to increase evenmore in the future. Especially when considering
the fact that for many diseases an early detection may decrease
the mortality rate significantly, the need for reliable CADSSs
gets even more apparent.
Since capsule endoscopy already had a great impact on clin-

ical routine as it has already proven to be an effective diag-
nostic modality, an increasing interest has already been seen
for this endoscopic image modality. This especially accounts
to GI bleeding detection where finding the cause is hardly fea-
sible when using other endoscopic imaging modalities. While
not discussed in this review, also the preselection of important
frames out of a complete WCE video is of special interest when
considering the high number of images generated during aWCE
exam. This allows a medical expert to interpret the outcome of
an exam more quickly.
But one can also expect a rising interest within the next years

when it comes to other, more recent technological advances like
CLE. However, with the advent of new technologies the key
challenges in developing CADSSs for endoscopy are also likely
to change slightly. Currently the major challenges include the
detection and handling of image degradations (e.g., reflections
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and sensor noise), finding robust features to detect and classify
different pathologies properly, and finding regions of interest
in an automated fashion. In CLE-based systems, for example,
this slightly changes. While degradations are a minor problem
with this technique, other limitations like for example the lim-
ited FOV and the rather high zoom factor pose new problems.
As a consequence, currently one major research area in case of
CLE is so-called mosaicing, which enlarges the mucosal area
visible to a medical expert by employing stitching algorithms.
Besides that, the endoscopist is facing new challenges (exami-
nation at a microscopic level which requires a histopathological
training). This indicates that systems for an automated classifi-
cation of lesions are an important field for future research when
working with CLE endoscopes.
While new imaging modalities have the potential to greatly

increase the efficiency of endoscopy, medical experts need to get
trained on these new techniques. In order to steepen the learning
curve for medical experts on certain new endoscopic techniques
CADSSs may also be used as an expert training tool to predict
pathology, verify the detection or prediction performance of a
medical expert, and serve as an educational resource.
From the approaches reviewed in this paper, we notice that

the majority of approaches is based on still images. However,
an endoscopy session usually generates videos. Hence, we con-
sider the analysis of videos to be a prospective field for future re-
search. This would allow us to incorporate temporal information
into classification and detection systems as well. In addition, this
might help to limit the effect of image degradations since those
can be separated more easily from the important content by an
analysis based on more than one image.
Despite the fact that there is a lot of research going on in the

area of CADSSs for endoscopy in the GI tract, there are also
some strong weaknesses existing among the literature reviewed
which hamper such systems from being used in clinical practice.
Besides the still rather low classification accuracies of such

systems, one of the biggest issues is the fact that there is a
high diversity of image databases used throughout literature.
Some of these image databases are even way too small, resulting
in a rather low expressive power concerning the results pre-
sented within the respective publications. Part of this problem is
also that at the moment there exists no publicly available data-
base which could be used among researchers to compare their
results in a meaningful manner. Hence, in order to allow the
development and evaluation of systems to be used in clinical
practice this major problem must be tackled by creating rea-
sonable image databases (i.e., sufficiently large, publicly avail-
able, and provided with a meaningful and reliable ground truth
information).
Considering the system accuracies already achieved for the

different pathologies of interest and the number of publications
found, we currently consider bleeding detection, polyp and
tumor detection and classification to be the most mature fields.
We therefore believe that the first clinically used systems will
be available within these areas of research—although this may
take some more years.
Reaching a higher level of reliability in upcoming CADSSs

will also strongly depend on advances in the hardware used to
acquire the underlying imagematerial. There are still some limi-

tations imposed by the hardware available, which leave room for
improvement as well (e.g., poor image quality). But as we have
shown in this paper, endoscopic devices are improving more
and more (in terms of patient comfort, image quality, or just to
overcome current limitations).
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