
Integrating Reservations and Queuing
in Remote Laboratory Scheduling

David Lowe, Senior Member, IEEE

Abstract—Remote laboratories (RLs) have become increasingly seen as a useful tool in supporting flexible shared access to scarce

laboratory resources. An important element in supporting shared access is coordinating the scheduling of the laboratory usage.

Optimized scheduling can significantly decrease access waiting times and improve the utilization level of RL resources, with

associated reductions in per-use costs. Current RL systems have typically supported scheduling based on either reservations or

queuing, though rarely both. In this paper, we investigate issues that arise when a single RL resource (or pool of resources) supports

both modes for gaining access, and how these two approaches can be effectively integrated. This research analyzes the scheduling

algorithm utilized by the Sahara RL system to investigate any limitations that affect the system utilization. We identify a number of

current issues and propose specific modifications to address them. The proposed modifications will lead to increased utilization and

improved student experiences.

Index Terms—Computer-assisted instruction, education, physical sciences and engineering, scheduling

Ç

1 INTRODUCTION

LABORATORIES are important tools for supporting both
student learning and scientific research. They do,

however, represent a significant financial and logistical
investment that can be difficult to develop and maintain [1].
Traditionally, the requirement for physical access to the
laboratory apparatus has limited the ability to support both
flexible usage and sharing of facilities. However, rapid
evolution of both computer technologies and near-ubiqui-
tous networking supported the emergence of remote
laboratories (RLs) from the mid-1990s. RLs have subse-
quently become increasingly sophisticated with a growing
level of deployment. Various benefits have been shown to
arise from their use, including flexibility of access [2], the
ability to share resources and labs [3], [4], [5], security of
users, data, and devices [6], among many other benefits.

The current generation of remote laboratories can be
classified into two main forms: batch laboratories and
interactive laboratories. Batch laboratories are based around
users submitting a specification of the experimental opera-
tions, and this experiment is then placed in a queue and
executed asynchronously as a “batch” task once the
apparatus is available [3]. The results are recorded and
retrieved by the user at a later time. In this scenario, the
user does not interact at all with the experimental operation
while it is executing and the overall utilization level of the
apparatus is constrained only by the algorithms that
process the queue.

In contrast to batch laboratories, the more prevalent
interactive laboratories allow users to synchronously
monitor and adjust the experiment as it executes. This has

the obvious implication that the user must be allocated to a
laboratory resource at a time when it is available. This
allocation process represents a relatively conventional
resource scheduling task, though the nature of the
laboratory infrastructure and the way in which it is used
provides some interesting opportunities and challenges.
The specific design of the laboratory scheduling will
depend on a number of factors, including: the number of
users; the number of available laboratory rigs; the typical
duration (and variability) of usage; and the access guaran-
tees provided to users. The resultant design of the
scheduling algorithms can have a significant impact on
both the user experience (e.g., how long they must wait for
access and how this access is then managed) and the
maximum level of utilization that can be achieved (and
hence the amortized cost per user).

Current approaches to scheduling are typically based on
either reservations or queuing [7], each of which has
advantages and shortcomings. A scheme that merges both
these approaches successfully can potentially benefit from
the advantages of both and limit the disadvantages. In this
paper, we consider the scheduling scheme incorporated
within the current release of the Sahara RL system [8]—an
approach that merges reservations and queuing. We show
that unintended side-effects can emerge from the interplay
between the two schemes, resulting in significant perfor-
mance problems. We then propose several modifications
and show that these are not only able to address the
problems but can result in significant overall performance
enhancements.

The remainder of the paper is organized as follows: In
Section 2, we review existing research on resource schedul-
ing in the context of RLs. In Section 3, we introduce the
Sahara Remote Laboratory System and consider the
scheduling system that it implements. Section 4 provides
a case study of Sahara scheduling using live usage data that
illustrate the interplay between scheduling and queuing
and how this can inadvertently lead to performance
degradation. In Section 5, we propose alternatives and then

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013 73

. The author is with the School of Information Technologies, The University
of Sydney, Building J12, Camperdown, NSW 2006, Australia.
E-mail: david.lowe@sydney.edu.au.

Manuscript received 14 May 2012; revised 18 Oct. 2012; accepted 9 Dec.
2012; published online 15 Jan. 2013.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLT-2012-05-0070.
Digital Object Identifier no. 10.1109/TLT.2013.5.

1939-1382/13/$31.00 � 2013 IEEE Published by the IEEE CS & ES

evaluate the performance improvements that can be
obtained through adaptation of the scheduling algorithms.
Finally, in Section 6, we provide conclusions and discuss
future work.

2 BACKGROUND

Access to appropriate and diverse laboratory apparatus has
long been recognized as an important enabler in both
education and research across a diverse range of science
and engineering disciplines [1], [9], [10]. The recent
emergence of RLs provides an additional approach to
supporting this access. RLs provide remote access, typically
across the internet, to physical laboratory apparatus that
has been appropriately instrumented so that the equipment
can be controlled and monitored by the user. A typical
example is given in Fig. 1.

RL research has considered both the supporting tech-
nologies [2], [11], [12] and the learning pedagogies [13], [14]
that underpin their use. Of particular significance is
research that has compared learning outcomes between
different laboratory modalities. Studies containing detailed
experimental analysis on student learning outcomes have
shown that while overall learning is still achieved students’
performances on different criteria can vary significantly
depending upon the form of access used [15], [16]. Indeed
some outcomes appear to be enhanced by non-hands-on
access modes (e.g., data analysis), while others seem to be
degraded (e.g., identification of assumptions). The overall
conclusion has been that RLs do indeed have a distinct role
to play in supporting science and engineering education
provided that their use takes into account the intended
educational outcomes of the laboratory experience [17].

Having accepted the educational benefits that can arise
from the use of RLs, consideration can shift to the logistical
benefits. Indeed, it is often the logistical benefits that are
used to motivate work on RLs (see, e.g., [15], [18], [19]). Two
of the key benefits that have been regularly identified are the
opportunities for flexible access and for laboratory sharing.
To illustrate the ubiquity of this argument, a random
selection of 50 RL papers from 2003-2012 (27 journal papers,
23 conference papers) was analyzed. Of the 23 papers
published during 2003-2007, 61 percent (14 papers) men-
tioned the sharing of resources as a significant factor. Of the

27 papers published during 2008-2012, this had increased to
81 percent (22 papers) mentioning sharing as a factor.

There have also been numerous projects focused
explicitly on facilitating sharing of RLs. Examples include,
but are not limited to: the NSF-funded World Wide Student
Laboratory project (originating in the mid-1990s, though
dormant since 2007) [20]; LearNet [21], ProLearn [2], and
PEMCWebLab [22] (all run during the early to mid-2000s
and involving consortium of universities focused on
sharing laboratories); the iLabs project [3] which focused,
in part, on sharing laboratory resources with disadvantaged
groups; the library of labs (LiLa) project [5] that created a
RL access portal; and the Labshare project [4], [23], an
Australian-based initiative that explicitly aimed to promote
cross-institutional sharing of RLs.

Despite this substantial emphasis on the potential for
shared access as a key motivating factor, there has been
little research on the factors that influence this shared
access, and more explicitly on understanding the capacity
of a given pool of laboratory resources. This capacity will be
highly dependent upon how the RL system manages
requests from users for access to the apparatus and this is
in turn dependent upon the number of rigs in the apparatus
pool,1 the number of users, and the usage patterns.

A typical scenario might involve a RL system that
manages a pool of interchangeable rigs. A student will log
into the system and be authorized to access this pool—often
with a set of access conditions that are dependent upon
which class of users they belong to (such as the default and
maximum access times, their priority of access, and the time
periods during which they are allowed access). The student
might then request access to a rig, upon which the RL
system will determine an appropriate scheduling of that
access and which rig within the pool can be allocated.
In essence, this is a conventional resource scheduling
problem—albeit one which has a specific set of constraints.

The problem of resource scheduling is very common,
extending across areas as diverse as communication
bandwidth allocation, parallel processing, transportation
timetabling, project management, operations management,
production scheduling, and so on. Solutions to these
problems are, however, very diverse. It has generally been
acknowledged that “the scheduling problem has so many
dimensions that it has no accepted taxonomy” [24].

Where resource demand and resource availability is
predictable, static scheduling can often be used to identify
an optimal allocation of resources [25]. Unfortunately, with
RLs, both the resource demand (i.e., request for access to a
rig) and the resource availability (i.e., rigs that are currently
available for use) are typically less predictable: Lab demand
varies due to the inherent variability in both when students
may desire access and for how long that access may be
needed; and lab availability varies due to both fluctuations
in how long a rig is used as well as maintenance and related
issues which might remove a rig from service.

To date, the scheduling approaches that have been used
in operational RL systems have been either nonexistent or
relatively simplistic. Many RLs are stand-alone rigs with
direct access by users (essentially on a “first-come, first-
served” basis) with no scheduling capability at all. Those

74 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 1. A typical RL system: The UTS hydroelectric apparatus allows
students to explore hydroelectric power generation using a system
containing water tanks, a pelton wheel and turbine, and a variable load.

1. Each discrete item of experimental apparatus is often referred to,
within the RL literature, as a rig and a collection of functionally identical
rigs is referred to as a pool.

extant systems that do support some form of scheduling
have typically either adopted a simple reservation system
or a simple queuing system. An overview of many of the
key schemes used by existing laboratories is given in [7].

Reservation (or booking) systems typically allow a user
to reserve an access time slot in advance. This approach has
been the dominant paradigm and was used in the earliest
RL scheduling systems (see, e.g., [26]). Over the last decade,
the underlying functionality has remained very similar but
the architecture has become more sophisticated and support
additional ancillary operations. For example, the reserva-
tion system implemented within the iLab architecture [3]
includes a pair of services that together support user
reservation of rigs (the lab-side scheduling service that
coordinates access to the laboratory, and the user-side
scheduling service that maps a reservation to a particular
user, among other associated functionality). The scheduling
service also provides ancillary functionality such as
notification of canceled reservations due, for example, to
unscheduled rig downtime. Other variations of reservation
systems are also possible. The BTH Security Lab [27] uses
shared resource reservations, where the user specifies a set
of resources required and the system identifies times when
all components of this set might be available.

A reservation system has the advantage of providing the
user with guaranteed access at a known time. It has the
disadvantage that typically a time slot must be reserved that
is at least as long as the maximum time allowed—and hence
there is likely to be significant proportions of idle time
when users exit the system early.

With queuing systems, when a user makes a request,
they are added to a queue. Each time a rig becomes
available, it is allocated to the user at the front of the queue.
This approach was adopted by early versions of Sahara
[28], which also provided support for priority users to be
able to “jump” the queue, the ability for a user to queue for
either a specified rig or the first available rig from a pool,
and the option for a user to extend a laboratory session if no
one was waiting in the queue. Queuing systems have the
advantage that as soon as a rig becomes available it can be
reallocated to a waiting user (rather than having to wait
until the next reservation), thereby maximizing utilization.
It has the disadvantage that users do not have a guaranteed
time at which they have access.

Reservation systems are typically more commonly used
when there is only a single rig available (and hence queuing
may lead to extensive delays). Conversely, a queuing
system is potentially more effective when there is a pool
of interchangeable rigs that can be allocated.

While few other approaches to scheduling have been
demonstrated in existing operational RLs, a number of
alternatives have been explored within the research
literature, often drawing from techniques in related
domains. As an example, Wieder et al. [29] treat RLs as
another grid resource, and so argue that existing tools
developed for this domain, including the use of schedul-
ing services and service level agreements, can be used.
They do not however discuss how this might be
implemented nor does there appear to have been any
implementation or evaluation.

A number of researchers and developers have also
started to explore hybrid approaches, often blending
reservation and queuing schemes. One of the first to

consider this approach was Li et al. [30], who discussed a
system that was based on reservations, but allowed queued
users to gain access during periods when there were no
reservations. They did not, however, describe an imple-
mentation or evaluation. In more recent work, the Sahara
system incorporated a similar blended approach. This will
be the subject of detailed analysis in the following sections.

Maiti [31], [32] has also described a hybrid (or “mixed-
mode”) approach, referred to as “slotted queuing.” This
approach involves allowing a limited number of users to
make a reservation for the same time window, and then
those users queue for use within that window. A prototype
implementation is reported but no evaluation of the effect
on performance is yet available.

Finally, it is also useful to note that the degree of
coupling between the laboratory and the scheduling system
varies enormously. Many RLs—particularly those which
include a single rig—have the scheduling mechanism
integrated directly with the software systems that manage
the hardware. This is the case, for example, with VISIR—a
widely used electronics testbed RL [33]. Other systems,
such as Sahara [28], iLabs [3], and WebLab-Deusto [34],
extract the scheduling system into a separate “RL manage-
ment system (RLMS)” which is capable of coordinating
multiple pools of rigs. This approach avoids the need to
reimplement the scheduling system for each new rig. It also
potentially allows for more complex coordination of multi-
ple resources (such as offering a user an alternative rig if the
requested rig is not available).

Approaches such as the LiLa Booking system [35] use a
“metascheduling” system that supports access to diverse
laboratories managed through the central portal. In the case
of LiLa, this includes a ticket-based reservation service that
is used both by users to make access reservations and by RL
providers to check these reservations. While the LiLa
Booking system provides a novel architecture, the under-
lying algorithms to allocate laboratories remains a simple
calendar-based reservation system.

Another approach to handling of scheduling at a
metalevel is to make use of preexisting functionality within
learning management systems. A general discussion on this
is provided by Bochicchio and Longo [36], and a specific
example (using a Moodle extension) is given in [37].

Despite the emerging research on RL scheduling
techniques, and the growing recognition of the importance
of effective scheduling to the management of the scarce RL
resources, there has not to date been a detailed analysis of
how different approaches can affect the availability of the
resources or the ease of access for users. Understanding this
issue in more detail is an important step in improving RL
flexibility and cost.

3 SCHEDULING IN SAHARA

In this section, we introduce Sahara—an RLMS developed
as part of the Labshare project. We then analyze the current
performance of Sahara with regard to its scheduling of
access to RL resources. We have chosen Sahara as it is the
only extant RL system that is in active use, supports a
significant number of RLs, and is capable of supporting
both queuing and reservation approaches, as well as
combining them into a hybrid approach.

LOWE: INTEGRATING RESERVATIONS AND QUEUING IN REMOTE LABORATORY SCHEDULING 75

3.1 Background

The earliest RLMS of the University of Technology Sydney
(UTS) was developed over the period 2000-2005. This
system, which retrospectively has come to be referred to
as Sahara release 1, was adopted as part of the much
broader Labshare project. This project was a joint initiative
of the universities belonging to the Australian Technology
Network (UTS, Curtin, UniSA, RMIT, and QUT). Labshare
aimed to “establish a national approach to the sharing of remote
laboratories that will provide higher quality remote laboratories
with greater student flexibility, improved educational outcomes,
improved financial sustainability, and enhanced scalability in
terms of coping with high loads of students.”2 To satisfy each of
these goals, Sahara has undergone a major redesign from
the ground up, producing new revisions of Sahara (release
2, 3, and onward). A final outcome of the Labshare project
was the recent creation of The Labshare Institute as a not-
for-profit organization that will be an independent service
broker promoting, maintaining and even hosting RLs [4].

3.2 Architecture

The basic architecture of Sahara is shown in Fig. 2. This
contains the following components:

. The web interface: through which users are authen-
ticated and interacted with the broader system
functionality, including selecting the rigs to which
they wish to gain access.

. The scheduling server: is the middleware that
manages the scheduling processes of the RL rigs,
including tracking the state of rigs and assigning
them to users. It is responsible for managing the
running sessions according to the allocated times as
well as logging all events and activities.

. The rig client: This component provides a software
abstraction of each rig and converts abstract requests
from the scheduling server into rig specific actions.

3.3 Scheduling

From release 3 onward, Sahara supports both queue-based
and reservation-based scheduling.

3.3.1 Reservation (Calendar Booking)

This form of access request allows users to make a
reservation that provides guaranteed access to a rig (or
one of a pool of rigs) at a specified time. The resource
allocations occur as follows:

1. A user attempts to log into the Sahara server, is
authenticated, and is then provided with a list of the
rigs (and pools of rigs) for which they have
authorization.

2. The user selects a particular rig (or pool of rigs) and
then is presented with the current status of the rig
and the option to either make a reservation or to
queue for access (see Fig. 3).

3. If the user selects “reserve,” then the reservation
page appears with the available time slots (see Fig. 4).

If the user selected an individual rig, then the
periods shown as unavailable will be those where the
specified rig is explicitly reserved, is marked as being
offline during that time, or because the pool to which
it belongs has the same number of reservations as
there are available rigs. In some cases, this rig may be
shown as available, but may be tentatively allocated
to a user who made a reservation for any rig within
the rig pool. In this case, the system is able to attempt
to move that previous reservation to a different rig
from the pool before confirming the reservation. If
this fails, the system will attempt to the next best
reservation time the user can create.

If the user selected a rig pool then the periods
shown as unavailable will only be those where the
number of reservations is the same as the number of
available rigs.

Once the user selects a period for a reservation, if
the period is longer than the maximum allowed for

76 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 2. The architecture of the Sahara RLMS (from the Sahara Development Handbook, available at http://sourceforge.net/projects/labshare-sahara/
files/Documentation, by permission of The University of Technology, Sydney).

2. See http://www.labshare.edu.au/.

this class of user then the time is reduced to the
maximum.

4. Once a time slot is selected, the reservation is
created, a confirmation message appears, and an e-
mail message is sent to the user with the reservation
details. The rig reservation page will show the
reserved time slots (colored in gray) for all future
accesses. The system can be configured to limit the
number of active reservations that can be made by a
user, and to block the user from making more than
one concurrent reservation across multiple rig types.

5. When a user is logged in, and they have a pending
reservation (within a configurable amount of time)
their primary screen changes to provide them with a
countdown to the start of their session. As soon as
their reservation time arrives, the user is allocated to
the rig, the rig page appears, and the experiment
session commences.

3.3.2 Priority Queuing

Queuing supports “on demand” requests from users,
providing “soonest available” access to a selected rig (or
collection of rigs). The basic logic for the queuing process is
the same for the first two steps of a reservation-based
access, and then proceeds as follows:

1. The user selects the “queue” option (see Fig. 3). The
request is placed in the queue, with associated
information indicating which rig (or collection of
rigs) they have requested access to, the default usage
time specified for their user class, and any other
relevant parameters. The user is provided with
information as to their current position within the
queue (see Fig. 6).

2. When any rig becomes available, Sahara scans
through the queue looking for the first request from
among those that are the highest priority, and which
satisfies the following criteria:

a. The request is either for the available rig, or for a
pool which contains the available rig; and

b. The request can be completed prior to the next
reservation for this resource (i.e., the next

reserved session for this resource is no sooner
than the current time plus the default usage time
for this user on this rig);
Note that this allocation strategy ensures that a
rig will only be allocated to a user in the queue
when it can be guaranteed that they will have
the full amount of time to which they are
entitled, if they choose to use it.

3. Once a user is allocated to a rig, the rig page will
appear and the experiment session will be started,
including a timer counting the session time defined
by the system.

In both types of scheduling, once a rig has been allocated,
the rig session will be immediately commenced. If the user
is currently logged in, then they will be redirected to the
relevant rig access page. If they are not logged in, and they
remain not logged in for a configurable amount of time
(typically 10 minutes), then the session times out and the rig
is returned to the available pool. The session is also
considered to have ended when the user explicitly
terminates their session or is inactive for a configurable
amount of time, or the allowed session time is completed
and no further extensions are allowed (a session can usually
be extended a finite number of times if there is no queued
user who wishes to use the rig or no pending booking for
that rig).

The above descriptions imply a number of dependencies
between the queuing and booking algorithms. For example,
consider the case of a user in a queue waiting for access to a
specific rig. The user cannot be allocated to the rig even if it
is currently available unless their session (at maximum
length allowed) is guaranteed to be complete before any
pending booking comes due. This interdependence can
therefore, potentially, lead to time periods where a rig is
idle even though it is currently the subject of usage
demands. An analysis of how serious an issue this is will
be presented in Section 4.

4 PERFORMANCE EVALUATION

4.1 Process

To illustrate the challenges that can arise when both
booking and queuing are supported for the same set of
rigs, an analysis was undertaken of a set of live rig
allocation data. For this analysis, an existing pool of

LOWE: INTEGRATING RESERVATIONS AND QUEUING IN REMOTE LABORATORY SCHEDULING 77

Fig. 3. Within Sahara, a user selects a rig pool to gain access (http://
remotelabs.eng.uts.edu.au/queue).

Fig. 4. Within Sahara, a user is making a reservation to use a selected
rig (http://remotelabs.eng.uts.edu.au/bookings/).

coupled tank rigs, hosted by the UTS, was selected. These
rigs are used by students to perform open-loop modeling of
the dynamics of a well-known complex nonlinear system,
and the subsequent linearization and design of the
parameters for a proportional-integral-differential control-
ler for the system.

During Spring semester 2011 (Spring semester runs
from August to November and is one to the two main
teaching semesters at most Australian Universities), two of
the UTS coupled tank rigs were made available to a cohort
of 114 students enrolled at another Australian University.
These students made use of the coupled tanks over the
period 02-Sept-2011 to 10-Oct-2011, with a total of 1,415
allocation requests and 700 successfully allocated rigs that
resulted in a usage session. Note that a reservation request
will always result in the subsequent allocation of a rig
(unless the reservation is explicitly removed) though in
some cases the user may not log in within the time-out
period, and so the session would then be canceled.
Conversely, a queue-based request will only result in the
allocation of a rig if the student remains in the queue until
the allocation occurs. The full data are as follows:

Total Requests

- Total number of requests = 1,415

- Reservation-based requests = 353

- Queue-based requests = 1,062

- Total number of successful allocations = 700

- Reservation-based rig allocations = 353

277 were used, 76 timed-out

- Queue-based rig allocations = 347

176 requests allocated without a wait

171 requests allocated after waiting

715 requests terminated before being allocated

Total rig usage time = 333 hrs 03 mins

Average allocations per active student = 7.46

Minimum student use = 1 session / 10 min 01 sec

Maximum student use = 49 sessions / 16 hrs 35 mins
25 students used the rigs for more than 5 hrs each.

While the system normally allows users to request either a
specific rig instance (“I would like to use Coupled Tanks #3”) or
any one of a given pool (“I would like to use any available
Coupled Tank rig”) in this particular case only the former
mechanism was enabled, so the students had to reserve or
queue for a specific rig. This had implications where in busy
periods there was a (relatively small) tendency for students
to queue for a specific rig, discover they are not close to the
front of the queue, and so leave the queue and make a
request for a different rig. This explains, in part, the large
number of queue-based requests that were terminated prior
to being allocated.

After the end of the usage period extracts from the UTS
Sahara system, log files were obtained and analyzed in
Matlab. The data obtained included:

1. A listing of all reservations that were made for the
relevant rigs and, where a reservation was not
canceled, the rig session that corresponded to the
redemption of this reservation;

2. A list of all allocated rig sessions, including: which
rig was accessed; when the session was requested;
when it commenced; when it ended; and why the

session was terminated (by user request, due to an
idle time out, or for some other reason); and

3. A set of information on the rig types, user classes,
permissions, rig capabilities, and so on.

Using Matlab, relevant information was extracted from
the database logs and analyzed to determine which rigs
were used and how they were used. The results were then
plotted to allow visualization of the patterns of use so that a
deeper understanding of the interplay between reservations
and queuing could be obtained.

4.2 Analysis of Actual Use

Fig. 7 shows an extract from the results of the coupled tanks
analysis. This figure contains the data for both rigs that
were in use during the period under analysis. The top
graph provides a broad view of the overall usage of the
coupled tanks rig 3. From this, it can be readily seen that for
most of the time there was no queue, and even during
heavy usage the queue rarely exceeded two users.

The bottom graph provides a more detailed view of
specific period of approximately 18 hours (extending from
hour 982 to hour 1,000, corresponding to approximately
11:00 am on 1-Oct-2011 to 5 am on 2-Oct-2011). A study of
this figure shows some interesting behaviors emerging
from the interplay between the booking and scheduling
algorithms. Tracing through the time period, we can see the
following events:

982.5: The rig is in use by a student (#1), who had queued
for access. The queue is initially empty, but around 983
another student arrives (#2) and queues for access.

983.6: Student #1 completes. Student #2 is still in the
queue, but is not allocated the rig because there is a pending
booking in 24 minutes (at 984). The student therefore
remains in the queue.
Slightly later

986.2: By this time, student #2 is still in the queue due to
a sequence of booked sessions. Several more students arrive
(#3 and #4) around 986.5 and the queue grows in length to 3.

987: The current student completes their session, but the
queued students are not allocated the rig as there is not
sufficient time before the next booking. Over the next 3
hours (until 990), a series of booked sessions are allocated
and then quickly ended due to time outs, i.e., the students
who made the bookings did not redeem those bookings.
The unredeemed bookings however did mean that the
queued students could not access the rig, and it spent
considerable time sitting idle.

990: Finally, at 990, the rig is again allocated to a booked
session, which again times out (after 10 minutes). At this
point, the next booking is not until 991.5, and so finally a
student in the queue can be allocated (after waiting over
7 hours, despite 4.5 hours of unused rig time during that
period). Not unsurprisingly, the student is not available and
their session quickly times out, as does the session for the
next student in the queue.

This sequence of events highlights a key problem with
the current algorithms used for managing the interplay
between the booking and queuing algorithms. In particular,
there may potentially be significant proportions of time
(especially during heavy usage periods) where there are
students queued for use, but the rig is idle and cannot be
allocated to users in the queue because it is waiting for a
pending reservation. To assess how significant a problem

78 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

this is, we analyzed the peak usage periods during the
timeline shown in Fig. 5. This showed the following results
for the four day period from hour 968 to hour 1,064:

Total time: 92.00 hours

In use or pending allocation: 74.90 hours

In active use: 46.64 hours (62 percent of usage time)

Idle use: 9.18 hours (12 percent of usage time)

Waiting: 19.08 hours (26 percent of usage time)

In other words, there was 74.90 hours during which the
rig was either allocated to a user, or there were 1 or more
queued users waiting to be allocated. Of this time,
approximately 9 hours (12 percent) was spent allocated to
a user who was not actually using the rig. This is typically a
user who had made a reservation, but had not yet arrived to
redeem that reservation—in this case, the system will after
10 minutes time out the user and make the rig allocatable to
the next user. More surprisingly, there was 19 hours
(26 percent of the time) that the rig was not allocated to
anyone, but there were queued users waiting who could not
be allocated because of a pending booking.

More problematic than the lost capacity that this
represents is the additional waiting time required for users
in the queue. An excellent example of this situation is
shown in Fig. 7 for coupled tank 1. As discussed above, a
user arrives at time 983 and enters the queue. They are not
subsequently allocated to the rig until just after 990 (7 hours
later!) despite significant periods of availability: 30 minutes
at 983.5, 50 minutes at 985, 30 minutes at 987, and so on. Not
unsurprisingly, by the time the student is finally allocated
to the rig (just after time 990), they fail to make use of the
allocated session and the session subsequently times out.
Presumably, they have remained logged in, but are no
longer monitoring the queue and so are unaware that they
have finally been allocated the rig.

5 SCHEDULING REFINEMENT

5.1 Modifications to the Scheduling

The above case study highlights an unanticipated conse-
quence of the interplay between booking and queuing
schemes. More importantly, it demonstrates that consider-
able care must be taken in the design of scheduling
algorithms if we are to optimize performance measures of
RLMSs, including aspects such as overall level of utilization
and queue waiting times.

In this particular case, the degradation of performance
arises due to queue-based allocations and reservation-
based allocations having the same default duration. This
means that when a reservation is not redeemed by the time
it has timed out, the remaining time until the next
reservation will always be less than the default duration
for queued users, and hence they will not able to be
allocated to the available rig.

There are a number of possible ways in which this issue
could be addressed. To illustrate the possibilities, consider
the following scenario: There are two 1-hour reservations
from 3:00 pm to 4:00 pm and from 4:00 pm to 5:00 pm,
respectively, and one user waiting in the queue. At
3:00 pm, the user with the reservation fails to log in. In
the current system, the session will not time out until
3:10 pm, leaving only 50 minutes until the 4:00 pm booking
and so the queued user (who is entitled to 60 minutes) will
not be allocated.

Consider the following alternative scheduling algorithms

that address the above issues:

1. No allowance: Removal of the time allowance at the
commencement of a session. The current Sahara
implementation provides a configurable period
(typically 10 minutes) during which a session will
not be canceled if the user is either idle or has not yet
logged in to the system. This means, for example,
that a user who has a reservation at 3:00 pm will have
until 3:10 pm to log in and commence their session
before the session is canceled (though if they log in
after 3:00 pm, the session would still be limited to
completion by 4:00 pm). We could remove this
period, so that if a user is not logged in at the
commencement of a reserved session, then it will
be immediately canceled, leaving the full period for a
different user. While this would be beneficial, and
would have minimal effect on the user experience, it
only addresses part of the problems identified above.
There are still many cases where a student may be
logged in but idle (e.g., they may have left their
computer) or complete an experiment very quickly,
resulting in very short sessions, and the associated
problem arising from a subsequent gap until the next
reservation that is large, but not quite a full time slot.

2. FReduce: Allocation strategy modified to include forced
reduction in maximum session duration for queued users.
In this approach, the system can choose to allocate
shorter periods than the normal session length (up to

LOWE: INTEGRATING RESERVATIONS AND QUEUING IN REMOTE LABORATORY SCHEDULING 79

Fig. 5. Within Sahara, a user is waiting for the time of their reservation
(http://remotelabs.eng.uts.edu.au/bookings/).

Fig. 6. A user is at the front of the queue, waiting for access to a selected
rig (http://remotelabs.eng.uts.edu.au/queue/).

some maximum reduction in session length) in
circumstances where this facilitates system perfor-
mance. In the above scenario, at 3:10 pm the
reservation is canceled, and then the queued user
could be allocated a shorter 50 minute session rather
than the normal default 60 minutes session. This is
possible the simplest of the solutions and ensures a
greater utilization of available rig time and mini-
mization of queue lengths and waiting times, but at
the expense of compromising the amount of time
available to individual users.

3. OReduce: Allocation strategy modified to include optional
reduction in maximum session duration for queued users.
This is similar to the above approach but the user is
given a choice as to whether they will accept the
shorter session. When a shorter time window
becomes available (the 50 minute window from
3:10 to 4:00 pm in the above example) users in the
queue, who are nominally entitled to a longer period,
are sequentially asked whether they would like to
accept this shorter period until one is found who will
accept the session. In many cases, they may know
that they are able to complete the experiment quickly
and would be willing to accept a shorter time slot if
one is available in preference to waiting for a slot that
guarantees their maximum time allocation. While
requiring a more complex set of user interactions, it
has the benefit that it does not force a user to accept a

shorter session, and hence allows sessions of almost
any length to be offered to users.

4. Delay: Allocation strategy modified to include possible
delay of commencement of reserved sessions by up to a
configurable amount. This involves modifying the
interpretation of reservations so that they represent
an approximate time at which a rig will be made
available, rather than a guaranteed time (much like a
reservation to see a doctor, where you arrive at the
appointment time, and may need to then wait a
“short” amount of time before the doctor is able to
see you). If we have the flexibility to delay the start
of the 4:00 pm booking until 4:10 pm, then the
queued use can be allocated at 3:10 pm and still have
the full 60 minute session (if they need it). In many
cases, it would be likely that the queued user would
complete the experiment in less time than the
maximum allowed, and the 4:00 pm booking may
not end up being affected at all.

5. Both: Allocation strategy modified to include both the
option of a reduced length session and the possible delay of
commencement of reserved sessions (as described above).

5.2 Evaluation Process

Options (3), (4), and (5) above represent the modifications
that are most likely to result in the greatest enhancements in
the scheduling system performance, while having minimal
consequences for the user experience. To assess the impact

80 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 7. Rig usage analysis: In each of the two graphs (one for each rig instance), the top curve shows the queue length over time (with the time axis
measured in hours) and the bottom curve shows the status of the rig—specifically, whether it is idle, in use by a user who queued for access, or in
use by a user who made a reservation. Where the rig status line is above the dotted line, this indicates that the rig was actively used (e.g., at time
984 coupled tanks 1 was allocated to a user with a reservation who made active use of the rig). Where the status line is below the dotted line, it
indicates the session was allocated to the user but the rig was not used during that session (e.g., just after time 990 the rig was allocated to a user
with a reservation, and then twice allocated to queued users, but none of these three made use of the rig and so all were timed out, after 10 minutes
each). The upper graph shows the full time period of 1,200 hours (50 days). The lower graph has been zoomed into a period of 18 hours so that
specific detail can be seen.

of these possible changes, a simulation of the scheduling
system has been developed, and this has been applied to the
same reservation and queue requests made by the students
from the case study using the following assumptions:

. For reservation-based accesses

- Where a user failed to redeem a reservation in
the original case study, they will also fail to
redeem the reservation in the simulations;

- Where a user redeemed a reservation, in the
simulations their session time will be the same
as for the case study.

. For queue-based accesses

- When a user queued for access, but failed to
redeem a session once allocated, the same
situation will apply in the simulations. In the
case where this user is offered a shorter session,
they will not respond to the offer.

- When a user queued for access and subse-
quently made use of an allocated session, their
usage time in the simulation will remain the
same. If they are offered a session that is shorter
than the maximum, then their probability of
accepting the offer will be modeled as follows:

pðacceptÞ

¼ Toffered � Ttaken
� �

= Tdefault � Ttaken
� �� �k

;
ð1Þ

where Toffered is the length of the session offered
to the student, Ttaken is the actual time that the
student took in the real case study, and Tdefault is
the normal session time that is allocated (usually
1 hour in the case study). The parameter k
adjusts the likelihood that a student will accept
the offer (and for our simulations, we set k ¼ 1).
This formula results in users always accepting
any offer when Toffer � Tdefault, and never accept-
ing any session offer when Toffer � Ttaken.

To assess the effect of these modified scheduling
algorithms, we report on the following performance
characteristics:

. Average queue length;

. Average time spent waiting in queue;

. Proportion of time a rig was not allocated while
there were users waiting in a queue.

. For the OReduce and Both algorithms, the number of
times the option of a reduced length session was
accepted, and the average reduction in maximum
allowed time.

. For the Delay and Both algorithms, the number of
times the commencement of a reservation was
delayed, and the average delay.

5.3 Results

Fig. 8 provides an extract showing the rig allocations for one
of the coupled tank rigs, comparing the existing baseline
allocation strategy (Fig. 8a) with the performance achieved
using the OReduce and Delay alternatives that have been
studied in depth. The impacts can be illustrated subjectively
as follows:

OReduce: Allocation strategy modified to include optional
reduction in maximum session duration for queued users (Fig. 8b);

. At time 1,036, we have three queued users. With the
original allocation strategy there was only 50 minutes
between the end of the reservation at 1,036:10 and
the commencement of the next reservation at
1,037:00, and so none of the three queued users
were allocated. In the modified strategy, each of the
three was offered a shorter session (50 mins, 40 and
30 mins, respectively) and all three accepted, thereby
reducing the queue length and wait time. A similar
situation occurred at time 1,049.

. At time 1,051, again a 50 minute session was offered
to a queued user, who accepted the offer and
subsequently used the rig for 27 minutes. This
contrasts to the queued user at time 1,044, who
was offered a 50 minute session at time 1,044:10 but
declined the offer, subsequently using the rig for a
full 60 minutes at 1,048:10.

Delay: Allocation strategy modified to include possible delay of
commencement of reserved sessions by up to a configurable amount

. At time 1,043:17, a queued user arrives, and there is
only 43 minutes until the reservation at 1,044. With
the original strategy, this user cannot be allocated,
but in the modified algorithm, the reservation can be
delayed by up to 20 minutes, and so the queued user
is immediately allocated. This user uses the rig for a
full 60 minutes, and so the user with the reservation
at 1,044 is delayed until 1,044:17.

. At time 1,036:10, the next reservation was in
50 minutes, at 1,037:00, but given the option of a
delay, this created the possibility of a 70 minute
session—10 minutes longer than the default 60 min-
utes. Consequently, a queued user was allocated to
the rig. This session subsequently only lasted
10 minutes and so there was no resultant delay to
the reservation at time 1,037. A similar situation
occurs at time 1,051:10, though in this case the
resultant user uses the rig for 25 minutes—again
with no resultant delay to the reservation. This
appears to be the predominant situation—i.e., a
potential delay that does not eventuate.

Subjectively, the results shown in Fig. 8 illustrate the
impact of the changes to the scheduling algorithm, and
highlight specific instances of changes in the timing of user
allocation to rigs. It does not, however, provide a quantita-
tive indication of the overall impact. To achieve this, we
measured the performance parameters identified in Sec-
tion 5.2. The results are shown in Table 1, both for the whole
period of 1,200 hours, and for the peak period of use between
hour 968 and hour 1,064. These results show what would be
likely to have occurred during the use of the coupled tank
rigs, based on the recorded data of the actual usage.

We begin by considering the OReduce rig allocation
algorithm that incorporated offering shorter sessions, when
available, to queued users. The results show that we would
be likely to achieve significant improvements—particularly
during heavy utilization periods. During the peak period of
use, the uptake of the offers was 40 percent, with a resultant
reduction in the average time that users spent waiting in the

LOWE: INTEGRATING RESERVATIONS AND QUEUING IN REMOTE LABORATORY SCHEDULING 81

queue from 2.28 to 0.90 hours. It is important to note that

there are factors that will be likely to affect the performance

gains that are beyond our ability to simulate—such as the

extent to which users are aware of the amount of time they

are likely to need. Nevertheless, we expect that these factors

will be more likely to lead to greater improvements than

lesser, than was shown by the simulations. For example, in

our simulation, if a user who took 40 minutes in reality was

offered 30 minutes, then they would decline the offer. In

reality, we may find that such a user, rather than declining

the offer and continuing to wait in the queue, would accept

the offer and attempt to complete within the reduced time,

or else use the allocated session and then reenter the queue

again to complete their experiment.

82 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 8. Comparison of performance of resource allocation strategies: (a) an allocation strategy as implemented in current Sahara releases; (b) a
OReduce allocation strategy modified to include offer of available shorter sessions to queued users; (c) a Delay allocation strategy modified to
include delay of commencement of reserved sessions (by up to 20 minutes); and (d) a Both strategy including both offer of a reduced duration
session and delayed commencement of session. See Fig. 7 for an interpretation of the graphs.

Next consider the Delay strategy, where we delay the
commencement of reservations (by up to 20 minutes, in
this simulation) when this allows a queued user to gain
access earlier. In this case, we have also achieved
significant improvements, though not quite as substantial
as for the option to have reduced session allocations: The
average waiting time in the queue, during the peak period,
reduced from 2.28 to 1.18 hours. Of the 69 reservations that
were assigned during this period, 12 (17.4 percent) were
delayed, though the average delay was only 3.0 minutes
(with only two delays greater than 4 mins: 10.9 and
15.1 minutes, respectively).

If we use both the option for reduced sessions and the
possibility of delayed reservations (the Both strategy), then
we find even greater improvements. The average waiting
time in the queue, during the peak period reduces down to
0.62 of an hour (from the original level of 2.28 hours).

5.4 Final Observations

The results show that, in general, significant improvements

in performance can be achieved, and that both strategies

that have been identified (OReduce and Delay) can provide

significant performance improvements, but that the best

outcomes are achieved when the two strategies are

combined (Both).
One aspect that has been ignored in the previous

discussions is the mechanisms by which users are informed

about, and respond to, the proposed changes. A key aspect of

managing the scheduling will be user management, and

hence offering shorter sessions if they are available and

delaying reservations when necessary will both require

careful provision of information to users. Fig. 9 shows a mock

up of a typical interface for supporting the usage of shorter

sessions. In this scenario, users who are waiting in the queue

can indicate that they would be prepared to accept any

session that is longer than a specified minimum value (with

the entry box initialized with the default session length for

this user). This mechanism removes the need to repeatedly

ask the user as each new session becomes available, but also

allows the user to change the setting as desired.
A similar mechanism would be used to inform users

with reservations when the start of their booked session has

been delayed.

6 CONCLUSION

This paper has considered current approaches to the
allocation of RL resources to users. The majority of existing
RLMSs utilizes an allocation scheme based on either prior
reservations or first-available queuing. Both approaches
have merits and are typically suited to different usage
characteristics. More recently, consideration has begun to be
given to an approach that merges the two schemes to
leverage the benefits of both.

The analysis of a case study based on live usage data has
shown that a simple merge of queuing and booking can
lead to a complex interplay that results in suboptimal
performance. A series of modifications have been proposed
that address these problems. The modifications have been
analyzed through a series of simulations and shown to lead
to enhanced performance, particularly during periods of
heavy resource utilization.

LOWE: INTEGRATING RESERVATIONS AND QUEUING IN REMOTE LABORATORY SCHEDULING 83

Fig. 9. Example user-interface mock-up for accommodating changes to
allocation strategies: Users waiting in the queue are provided with the
option to indicate the shortest session they would be prepared to accept.

TABLE 1
Summary of Scheduling Simulation Results

The techniques that have been explored have the
potential to be of significance for the management of access
to any resources that utilize a combination of queuing and
booking techniques.

ACKNOWLEDGMENTS

The author thanks Michel de la Villefromoy, Michael
Diponio, and Tania Machet for assistance with access to,
and interpretation of, the case study data used in this paper.
He also thanks Nagham Orou for discussions related to the
potential variations to the scheduling algorithms.

REFERENCES

[1] A. Hofstein and V. Lunetta, “The Laboratory in Science Education:
Foundations for the Twenty-First Century,” Science Education,
vol. 88, no. 1, pp. 28-54, Jan. 2004.

[2] L. Gomes and S. Bogosyan, “Current Trends in Remote
Laboratories,” IEEE Trans. Industrial Electronics, vol. 56, no. 12,
pp. 4744-4756, Dec. 2009.

[3] V.J. Harward et al., “The iLAB Shared Architecture: A Web
Services Infrastructure to Build Communities of Internet
Accessible Laboratories,” Proc. IEEE, vol. 96, no. 6, pp. 931-950,
June 2008.

[4] D. Lowe et al., “LabShare: Towards Cross-Institutional Laboratory
Sharing,” Internet Accessible Remote Laboratories: Scalable E-Learning
Tools for Engineering and Science Disciplines, first ed., A. Azad, M.
Auer, and J. Harward, eds., pp. 453-467, IGI Global, 2012.

[5] T. Richter, D. Böhringer, and S. Jeschke, “LiLa: A European Project
on Networked Experiments,” Proc. Sixth Int’l Conf. Remote Eng. and
Virtual Instrumentation (REV ’09), 2009.

[6] C. Gravier, J. Fayolle, B. Bayard, M. Ates, and J. Lardon, “State of
the Art about Remote Laboratories Paradigms-Foundations of
Ongoing Mutations,” Int’l J. Online Eng., vol. 4, no. 1, p. 19, 2008.

[7] P. Orduña, “Scheduling Schemes among Internet Laboratories
Ecosystems,” Proc. Eighth Int’l Conf. Remote Eng. and Virtual
Instrumentation (REV ’11), pp. 1-6, 2011.

[8] Labshare, “Sahara Labs,” http://sourceforge.net/projects/
labshare-sahara/, 2010.

[9] E.H. Hegarty, “Levels of Scientific Enquiry in University Science
Laboratory Classes: Implications for Curriculum Deliberations,”
Research in Science Education, vol. 8, no. 1, pp. 45-57, 1978.

[10] A. Hofstein and V. Lunetta, “The Role of the Laboratory in Science
Teaching: Neglected Aspects of Research,” Rev. Educational
Research, vol. 52, no. 2, pp. 201-217, 1982.

[11] J. Trevelyan, “Lessons Learned from 10 Years Experience with
Remote Laboratories,” Proc. Int’l Conf. Eng. Education and Research
Progress through Partnership (iCEER ’04), no. 2001, pp. 687-697,
2004.

[12] S. Murray, D. Lowe, E. Lindsay, V. Lasky, and D. Liu,
“Experiences with a Hybrid Architecture for Remote Labora-
tories,” Proc. 38th Ann. Frontiers in Education Conf. (FiE ’08), 2008.

[13] C. Bright, E. Lindsay, D. Lowe, S. Murray, and D. Liu, “Factors
that Impact Learning Outcomes in Remote Laboratories,” Proc.
World Conf. Educational Multimedia, Hypermedia and Telecomm. (Ed-
Media ’08), p. 15, 2008.

[14] J. Ma and J.V. Nickerson, “Hands-On, Simulated, and Remote
Laboratories,” ACM Computing Surveys, vol. 38, no. 3, article 7,
Sept. 2006.

[15] E. Lindsay and M. Good, “Effects of Laboratory Access Modes
upon Learning Outcomes,” IEEE Trans. Education, vol. 48, no. 4,
pp. 619-631, Nov. 2005.

[16] S.K. Taradi, M. Taradi, K. Radic, and N. Pokrajac, “Blending
Problem-Based Learning with Web Technology Positively Impacts
Student Learning Outcomes in Acid-Base Physiology.,” Advances
in Physiology Education, vol. 29, no. 1, pp. 35-39, Mar. 2005.

[17] E. Lindsay, D. Liu, S. Murray, and D. Lowe, “Remote
Laboratories in Engineering Education: Trends in Students’
Perceptions,” Proc. 18th Ann. Conf. Australasian Assoc. for Eng.
Education (AaeE ’07), 2007.

[18] Z. Nedic, J. Machotka, and A. Nafalski, “Remote Laboratories
versus Virtual and Real Laboratories,” Proc. 33rd ASEE/IEEE
Frontiers in Education Conf., 2003.

[19] J.E. Corter, J.V. Nickerson, S.K. Esche, C. Chassapis, S. Im, and J.
Ma, “Constructing Reality: A Study of Remote, Hands-On and
Simulated Laboratories,” ACM Trans. Computer-Human Interaction,
vol. 14, no. 2, article 7, 2007.

[20] A. Arodzero, “World Wide Student Laboratory,” Dept. of Physics,
Univ. of Oregon, 1998.

[21] C. Rohrig and A. Bischoff, “Web-Based Environment for
Collaborative Remote Experimentation,” Proc. 42nd IEEE Conf.
Decision and Control, Dec. 2003.

[22] P. Bauer, V. Fedák, and O. Rompelman, “PEMCWebLab—Distance
and Virtual Laboratories in Electrical Engineering—Development
and Trends,” Proc. Power Electronics and Motion Control Conf.,
pp. 2354-2359, 2008.

[23] D. Lowe et al., “Towards a National Approach to Laboratory
Sharing,” Proc. Australasian Assoc. for Eng. Education Conf. (AAEE
’09), pp. 458-463, 2009.

[24] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo,
“Implications of Classical Scheduling Results for Real-Time
Systems,” Computer, vol. 21, no. 1, pp. 287-25, June 1995.

[25] T.L. Casavant and J.G. Kuhl, “A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems,” IEEE Trans.
Software Eng., vol. 14, no. 2, pp. 141-154, 1988.

[26] C. Rohrig and A. Jochheim, “Java-Based Framework for Remote
Access to Laboratory Experiments,” Proc. IFAC/IEEE Symp.
Advances in Control Education, pp. 1-6, 2000.

[27] J. Zackrisson and C. Svahnberg, “OpenLabs Security Laboratory -
The Online Security Experiment Platform,” Int’l J. Online Eng.,
vol. 4, no. 2008, pp. 63-68, 2008.

[28] H. Yeung, D. Lowe, and S. Murray, “An Investigation into
Supporting Interoperability of Remote Laboratories,” Proc. Seventh
Int’l Conf. Remote Eng. and Virtual Instrumentation (REV ’10),
pp. 71-79, 2010.

[29] P. Wieder, O. Waldrich, and W. Ziegler, “Advanced Techniques
for Scheduling, Reservation, and Access Management for Remote
Laboratories,” Proc. Second IEEE Int’l Conf. e-Science and Grid
Computing (e-Science ’06), pp. 128-134, 2006.

[30] Y. Li, S.K. Esche, and C. Chassapis, “A Scheduling System for
Shared Online Laboratory Resources,” Proc. 38th Ann. Frontiers in
Education Conf., pp. T2B-1-T2B-6, 2008.

[31] A. Maiti, “Time Scheduling Schemes in Online Laboratory
Management Systems,” Int’l J. Online Eng., vol. 6, no. 4,
pp. 44-48, Nov. 2010.

[32] A. Maiti, “A Hybrid Algorithm for Time Scheduling in Remotely
Triggered Online Laboratories,” Proc. IEEE Global Eng. Education
Conf., pp. 921-926, 2011.

[33] I. Gustavsson, J. Zackrisson, L. Håkansson, I. Claesson, and T.
Lagö, “The VISIR Project—An Open Source Software Initiative for
Distributed Online Laboratories,” Proc. Int’l Conf. Remote Eng. and
Virtual Instrumentation (REV ’07), pp. 1-6, 2007.

[34] J. Garcia-Zubia et al., “Towards an Extensible WebLab Architec-
ture,” Proc. Third IEEE Int’l Conf. E-Learning in Industrial Electronics
(ICELIE ’09), pp. 115-120, 2009.

[35] V. Mateos, A. Gallardo, T. Richter, L. Bellido, P. Debicki, and V.
Villagra, “LiLa Booking System: Architecture and Conceptual
Model of a Rig Booking System for On-Line Laboratories,” Int’l
J. Online Eng., vol. 7, no. 4, pp. 26-35, 2011.

[36] M.A. Bochicchio and A. Longo, “Extending LMS with Collabora-
tive Remote Lab Features,” Proc. 10th IEEE Int’l Conf. Advanced
Learning Technologies, pp. 310-314, 2010.

[37] J.M. Martins Ferreira and A.M. Cardoso, “A Moodle Extension to
Book Online Labs,” Int’l J. Online Eng., vol. 1, no. 2, 2005.

David Lowe received the BE (hons.), PhD, and
GradCert (higher education) degrees. He is the
associate dean (education) and a professor of
software engineering at the Faculty of Engineer-
ing and IT, The University of Sydney. He is also
the CEO of the not-for-profit organization The
LabShare Institute, and president of the Global
Online Laboratory Consortium. He has active
research interests in the areas of real-time
control of embedded systems in the web

environment, and remote access to, and control of, physical laboratory
systems. He has published widely, including more than 150 papers and
three books. He is a senior member of the IEEE.

84 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

