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Abstract—Web-based testing has become a ubiquitous self-assessment method for online learning. One useful feature that is missing

from today’s web-based testing systems is the reliable capability to fulfill different assessment requirements of students based on a

large-scale question data set. A promising approach for supporting large-scale web-based testing is static test generation (STG),

which generates a test paper automatically according to user specification based on multiple assessment criteria. And the generated

test paper can then be attempted over the web by users for assessment purpose. Generating high-quality test papers under

multiobjective constraints is a challenging task. It is a 0-1 integer linear programming (ILP) that is not only NP-hard but also need to be

solved efficiently. Current popular optimization software and heuristic-based intelligent techniques are ineffective for STG, as they

generally do not have guarantee for high-quality solutions of solving the large-scale 0-1 ILP of STG. To that end, we propose an

efficient ILP approach for STG, called branch-and-cut for static test generation (BAC-STG). Our experimental study on various data

sets and a user evaluation on generated test paper quality have shown that the BAC-STG approach is more effective and efficient than

the current STG techniques.

Index Terms—Web-based testing, static test generation, multiobjective optimization, integer programming

Ç

1 INTRODUCTION

WITH the rapid evolution of the web, web-based

education has advanced significantly over the last 20

years and become a ubiquitous learning platform in many

institutions to provide students with online learning courses

and materials. Currently, we are also seeing more freely

accessible educational websites together with learning

technologies [1] being developed to support web-based

education. Such websites aim to bring free education to the

world by providing online contents, exercises, and quizzes

such as Khan Academy,1 or online classes such as Coursera,2

and Udacity.3 The large data sets of online materials have

been created and evolved over time. Different from passive

course archives like MIT OpenCourseWare,4 the online

classes are interactive and can assess learners automatically

on what they have learned. The main benefit is that learners

can take classes at their own pace and get immediate

feedback on their proficiency, unlike traditional classes.

Web-based testing has been popularly used for auto-
matic self-assessment especially in a distance educational
learning environment [2], [3]. However, there is a problem
on conducting self-assessment in an online class. As there
may have many students5 with different proficiency levels
in an online class [4], it is difficult to fulfill different
assessment requirements of students if using tests com-
posed from a small question pool [5]. To overcome this
problem, pedagogical practitioners have suggested com-
posing tests from a large question pool with different
question properties [6]. This in turn requires the availability
of a large question data set and huge human effort on
composing the tests to assess students’ proficiency.

One promising approach to support large-scale web-
based testing is static test generation (STG), which generates
a test paper automatically according to user specification
based on multiple assessment criteria. Here, the term "static
test" refers to traditional test paper in psychometry [7].
Fig. 1 shows a typical workflow of a web-based testing
environment with automatic assessment. In this environ-
ment, STG is the core component, which aims to find an
optimal subset of questions from a question database to
form a test paper automatically based on multiple assess-
ment criteria such as total time, topic distribution, difficulty
degree, discrimination degree, and so on. And the
generated test paper can then be attempted over the web
by students for assessment purpose as in traditional pen-
and-pencil test. Finally, the students’ answers will be
checked automatically for proficiency evaluation.

Generating high-quality test papers that satisfy the
constraints and maximize the assessment objective is critical

46 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

. M.L. Nguyen and S.C. Hui are with the School of Computer Engineering,
Nanyang Technological University, Block N4, B3c, DISCO Lab,
50 Nanyang Avenue, Singapore 639798.
E-mail: {NGUY0093, asschui}@ntu.edu.sg.

. A.C.M. Fong is with the School of Computing and Math Sciences,
Auckland University of Technology, New Zealand.
E-mail: acmfong@gmail.com.

Manuscript received 24 May 2012; revised 13 Sept. 2012; accepted 24 Nov.
2012; published online 29 Nov. 2012.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLT-2012-05-0075.
Digital Object Identifier no. 10.1109/TLT.2012.22.

1. http://www.khanacademy.org/.
2. https://www.coursera.org/.
3. http://www.udacity.com/.
4. http://ocw.mit.edu/index.htm.

5. http://wp.sigmod.org/?p=165.

1939-1382/13/$31.00 � 2013 IEEE Published by the IEEE CS & ES



for formal tests and examinations [8]. However, it is a
challenging problem especially with a large number of
questions [9]. Manually browsing and composing test
papers by users is ineffective because of the exponential
number of feasible combinations of questions. In essence,
STG is an optimal subset selection problem, called a
multidimensional knapsack problem (KP) [10], [11], which
is also NP-hard [9]. Formally, it is a 0-1 integer linear
programming (ILP), which optimizes multiobjective con-
straints. Moreover, STG should also be solved efficiently for
online requirement. Currently, the quality of generated test
papers are often unsatisfactory [12], [13], [14] according to
users’ test paper specifications.

One of the main issues of STG is the very large search
space of possible candidates with multiobjective con-
straints. In the early 1980s, linear programming-based ILP
[15], [16] was proposed to solve STG on very small question
data sets. Popular up-to-date commercial optimization
software packages such as CPLEX [17] and GUROBI [18]
are inefficient for 0-1 ILP of STG because of its large number
of variables in the 0-1 ILP formulation [19]. Recently, many
heuristic-based intelligent techniques such as tabu search
(TS) [13], biologically inspired algorithms [14], [20], swarm
optimization [12], [21], [22] and divide and conquer (DAC)
[23] have been proposed in the research community for
automatic test paper generation. Although these heuristic-
based techniques are straightforward to implement, they
suffer from some drawbacks. These techniques are mainly
based on traditional weighting parameters for multiobjec-
tive constraint optimization. They tend to get stuck in a
local optimal solution especially in a huge search space of
large-scale question data sets. As a result, these techniques
generally do not have performance guarantee on both test
paper quality and runtime efficiency.

In this paper, we propose an efficient 0-1 ILP approach
for high-quality STG, called branch-and-cut for STG (BAC-
STG). Generally, there exists many topics (e.g., differentia-
tion, integration, etc.) in a subject (e.g., mathematics). When
the STG problem is formulated in 0-1 ILP for a large
question data set, it has the sparse matrix property. The
proposed BAC-STG approach is based on the branch-and-
bound method with the lifted cover cutting method for
solving the 0-1 ILP by exploiting the sparse matrix property.
As branch and bound is a global and parameter-free
method to deal with multiple constraints of the STG, the
proposed approach avoids getting stuck in local optimal
solutions to achieve high-quality test papers as well as
eliminates the need of using weighting parameters as in

heuristic-based techniques. Our approach can be consid-
ered as an extension of previous work [15], [16] by taking
advantages of the recent advancement in optimization
techniques. Specifically, we have made the following two
contributions in this paper:

. We propose an effective and efficient ILP approach
for STG, which generates high-quality test papers in
a huge search space of large question data sets
efficiently. This was not possible in the past. Our
proposed BAC-STG approach is able to support
web-based testing on large question data sets for
online learning environments. Our performance
results on various data sets have shown that the
proposed BAC-STG approach has outperformed the
current STG techniques in terms of paper quality
and runtime efficiency.

. We propose a novel framework for web-based
testing with automatic assessment, in particular for
mathematics testing. The proposed framework in-
tegrates the proposed BAC-STG approach for auto-
matic test paper generation, automatic mathematics
solution checking, and automatic question calibra-
tion. It is able to generate test papers automatically
and provide students with immediate feedback on
their performance.

The rest of this paper is organized as follows: Section 2
reviews the related work. Section 3 describes the problem
specification of STG. Section 4 presents the proposed BAC-
STG approach. Section 5 shows the performance results of
the BAC-STG approach and its comparison with other STG
techniques. Section 6 gives the proposed web-based testing
framework. Finally, Section 7 concludes the paper.

2 RELATED WORK

2.1 Automatic STG

There are two major paradigms for web-based testing: STG
[7] and computerized adaptive testing (CAT) [24]. STG
generates full test papers automatically based on multiple
assessment criteria, whereas CAT generates question-by-
question tests in a dynamic and sequential manner
according to student’s ability and item response theory
(IRT). STG is basically a multiobjective combinatorial
optimization problem, whereas CAT is a sequential
optimization problem [25]. In this section, we focus only
on reviewing related work on STG, which can be
categorized into two main groups: linear programming-
based integer programming and heuristic-based methods.

LP-based IP, which was proposed in 1986 by Adema et al.
[15], [16], used the LANDO program to solve the 0-1 ILP of
STG. It is similar to our proposed approach because of the
use of linear programming (LP) and branch and bound. In
[26], [27], Boekkooi-Timminga attempted to combine ILP
with heuristics to improve runtime performance for multiple
test paper generation. Although these approaches have
rigorous mathematical foundations on optimization, they
can only solve STG for very small data sets of about 300-600
questions due to the limitations of the state-of-the-art
optimization methods at that time. An in-depth review of
the LP-based IP for STG can be found in [28].
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Fig. 1. Web-based testing workflow with automatic assessment.



For heuristic-based methods, Theunissen [29] used a
heuristic based on the characteristics of question item
information function to optimize the objective function.
Later, Luecht [30] proposed an efficient heuristic to solve
STG on a data set with 3,000 questions. However, these
heuristic-based methods were proposed to solve STG for
small data sets and are ineffective for larger data sets.

Since 2003, there has been a revived interest for STG on
larger data sets of about 3,000-20,000 questions by using
modern heuristic methods. In [9], TS was proposed to
construct test papers by defining an objective function
based on multicriteria constraints and weighting para-
meters for test paper quality. TS optimizes test paper
quality by evaluating the objective function. In [13], a
genetic algorithm (GA) was proposed to generate quality
test papers by optimizing a fitness ranking function based
on the principle of population evolution. In [14], differential
evolution (DE) was proposed for test paper generation. DE
is similar to the spirit of GA with some modifications on
solution representation, fitness ranking function, and the
crossover and mutation operations to improve the perfor-
mance. In [20], an artificial immune system was proposed to
use the clonal selection principle to deal with the highly
similar antibodies for elitist selection to maintain the best
test papers for different generations. In [21], particle swarm
optimization (PSO) was proposed to generate multiple test
papers by optimizing a fitness function which is defined
based on multicriteria constraints. In [12], ant colony
optimization (ACO) was proposed to generate quality test
papers by optimizing an objective function that is based on
the simulation of the foraging behavior of real ants. Apart
from these techniques for STG, an efficient DAC approach
[23] was proposed for online STG, which is based on the
principle of dimensionality reduction for multiobjective
constraint optimization.

To optimize the multiobjective criteria of test paper
quality, the current STG techniques (except DAC) require
weighting parameters and some other parameters such as
population size, tabu length, and so on, for each test paper
generation that are not only difficult but also computational
expensive to determine. Hence, these techniques generally
take long runtime for generating good quality test papers
especially for large data sets of questions.

2.2 0-1 Integer Programming

The 0-1 ILP [10], [11] has been extensively studied for solving
various real-world problems such as the traveling salesman
problem, quadratic assignment problem, maximum satisfia-
bility problem (MAX-SAT), KP, and so on. Specifically, the
0-1 ILP is a mathematical optimization program in which all
of the variables are restricted to be binary:

maximize cx

subject to Ax � b; x 2 f0; 1gn;

where c 2 IRn, b 2 IRm, and A ¼ ½aij�m�n is a m� n matrix
with aij 2 IR, m is the number of constraints, and n is the
number of variables or dimensions.

Solving a general 0-1 ILP problem is NP-hard. Despite
this fact, there are fast solvers available today providing
practical solutions for many 0-1 ILP problems. The
performance depends on the dimensions n and degree of

sparsity of the constraint matrix A. According to [11], there
are four main methods for solving 0-1 ILP including
heuristic algorithms, cutting planes method, branch-and-
bound, and branch-and-cut (BAC). As mentioned earlier,
although heuristic algorithms can be applied quite straight-
forwardly to solve many 0-1 ILP problems, they do not have
any performance guarantee. The remaining three methods
are global methods, which can find the exact optimal
solution based on LP for 0-1 ILP problems.

The performance of these global methods depends on the
algorithms used for LP, preprocessing techniques, and
computational processing power of the computer hardware.
In the early 1990s, there is not much improvement on the
simplex algorithm for LP. Since the early 2000s, the
development of the dual simplex algorithm and other
techniques such as lifted cover cutting planes [31] have
remarkably improved integer programming techniques [32].
The runtime performance has been improved significantly.
Currently, a large ILP of about 18,000 variables can be solved
in less than 3 minutes. However, the LP-based ILP is still not
efficient in runtime performance especially for large-scale
0-1 ILP problems. In particular, the methods implemented in
popular commercial optimization software such as CPLEX
[17] and GUROBI [18] are ineffective to handle 0-1 ILP with
more than twenty thousand of variables [19].

Among the three methods, BAC [19] is most efficient as it
is able to solve and prove optimality for larger set of
instances than the others. BAC is a global optimization
method, which is based on the branch-and-bound method
and cutting planes method such as the Gomory or Fenchel
cutting planes [11]. The main idea of cutting planes method
is to add extra constraints to reduce the feasible region and
find the integral optimal solution. For 0-1 ILP problems
with the sparse matrix property, lifted cover cutting is an
effective method for enhancing runtime performance.
However, the BAC method suffers from several drawbacks
when solving large-sized 0-1 ILP problems. It is difficult to
approximate the integral optimal solution from the frac-
tional optimal solution of the 0-1 ILP problem. In addition,
the simplex algorithm used to solve LP relaxation is also not
very efficient on large-sized ILP problems. As BAC is an
exact algorithm, the size of the branch-and-bound search
tree may combinatorially explode with the number of
variables. Hence, BAC generally suffers from poor runtime
performance on large-sized ILP problems. Moreover,
finding lifted cover cutting planes efficiently is challenging
as it is NP-hard [31].

2.3 Discussion

From the above discussion, we have the following observa-
tions. First, we note that the objective functions of the STG
formulation in the related studies may be different. It
maximizes either the test information function [7], [28] or the
average discrimination degree [12], [13]. Although they are
different, the discrimination degree is easier to calibrate and
thus preferred in practice by researchers than the informa-
tion function. However, it is not important because the STG
problems can be solved in either way using our proposed
approach. Second, heuristic techniques are ineffective for
large-scale STG, as they generally do not have guarantee for
high-quality solutions. Third, although the current LP-based
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ILP approach [15], [16] has quality guarantee for STG, the
popular optimization software such as CPLEX and GUROBI
are unable to solve large-scale 0-1 ILP problems efficiently
[33]. In this paper, we propose an efficient integer program-
ming approach for solving large-scale 0-1 ILP of the STG
problem by exploiting the sparse matrix property.

3 PROBLEM SPECIFICATION

3.1 Question Data Set

Let Q ¼ fq1; q2; . . . ; qng be a data set consisting of n
questions, C ¼ fc1; c2; . . . ; cmg be a set of m different topics,
and Y ¼ fy1; y2; . . . ; ykg be a set of k different question
types. Each question qi 2 Q, where i 2 f1; 2; . . . ; ng, has
eight attributes A ¼ fqid; o; a; e; t; d; c; yg defined as follows:

. Question qid. It is used to store the question identity.

. Content o. It is used to store the content of a question.

. Answer a. It is used to store the answer of a question.

. Discrimination degree e. It is used to indicate how
good the question is in order to distinguish user
proficiency. It is an integer ranging from 1 to 7.

. Question time t. It is used to indicate the average time
needed to answer a question. It is measured in
minutes.

. Difficulty degree d. It is used to indicate how difficult
the question is to be answered correctly. It is an
integer ranging from 1 to 10.

. Related topic c. It is used to store a set of related topics
of a question.

. Question type y. It is used to indicate the type of a
question. There are mainly three question types,
namely fill-in-the-blank, multiple choice, and long
question.

Note that the discrimination degree and difficulty degree
attributes here refer to the classical IRT definitions. Table 1
shows a sample Math question data set.

There are two possible ways to construct large-scale
question data sets for web-based testing. It can be
constructed by gathering questions from past tests and
examinations on subjects such as TOEFL and GRE6

accumulatively. Moreover, it can also be constructed by
gathering freely available questions from online educa-
tional websites such as Khan Academy or Question
Answering (Q&A) websites such as The Art of Problem
Solving Portal.7

The large pool of questions has posed a great challenge
on labeling all question attributes accurately and automat-
ically. In this paper, we assume that question attributes are
correctly calibrated. However, with the advancement in
educational data mining techniques [33], it might be feasible
to automatically label all the attributes of each question
with little human effort in the future. Automatic text
categorization techniques such as support vector machine
can be used for automatic topic classification of questions
[34]. However, human labeling on topics for training
questions is still needed in the training phase. To calibrate
the other attributes, we can use the historical correct/
incorrect response information from students. These re-
sponse information as well as other important information
such as question time can be gathered automatically
through the students’ question answering activities [35]
over a period of time. However, it is more difficult to
calibrate the discrimination degree and difficulty degree
attributes due to missing user responses on certain
questions. To overcome this, it is possible to apply the
collaborative filtering technique to predict missing user
responses and use the IRT model to calibrate the two
attributes automatically [36]. Moreover, in [36], it has also
proposed an effective method to calibrate new questions,
which do not have any student response information. As
such, automatic labeling of question attributes for large-
scale question data sets can be achieved.

3.2 Static Test Specification

A static test specification S ¼ hN;T;D;C; Y i is a tuple of five
attributes which are defined based on the attributes of the
selected questions as follows:

. Number of questions N . It is an input representing the
number of questions specified for the paper.

. Total time T . It is the total time specified for the paper.

. Average difficulty degree D. It specifies the average
difficulty degree of all questions in the paper.

. Topic distribution C. It specifies the proportion of
topics. The user can enter either the proportion or
the number of questions for each topic. If the
number of questions is entered, then the number
will be converted into the corresponding proportion.

. Question type distribution Y . It specifies the propor-
tion of question types. The user can enter either the
proportion or the number of questions for each
question type. Similarly, if the number of questions
is entered, then the number will be converted into
the corresponding proportion.

3.3 Optimal STG

Given a static test specification S ¼ hN;T;D;C; Y i, where
N is the number of questions, T is the total time, D is the
average difficulty degree, C ¼ fðc1; pc1Þ; ðc2; pc2Þ; . . . ; ðcM;
pcMÞg is the topic distribution, and Y ¼ fðy1; py1Þ; ðy2;
py2Þ; . . . ; ððyK; pyKÞg is the question type distribution. The
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STG process aims to find a subset of questions from a
question data set Q ¼ fq1; q2; . . . ; qng to form a test paper P
with specification SP that maximizes the average discrimi-
nation degree and satisfies the static test specification such
that SP ¼ S.

Based on the user test specification S and the question
attributes, the STG problem can be formulated as a 0-1
fractional ILP problem [11] as shown in Fig. 2. In Fig. 2,
constraint (1) is the constraint on the number of questions,
where xi 2 f0; 1g is a binary variable associated with
question qi; i ¼ 1::n, in the data set. Constraint (2) is the total
time constraint. Constraint (3) is the average difficulty
degree constraint. Constraint (4) is the topic distribution
constraint. The relationship of a question qi; i ¼ 1::n, and a
topic cl; l ¼ 1::M, is represented as ril such that ril ¼ 1 if
question qi relates to topic cl and ril ¼ 0 otherwise.
Constraint (5) is the question type distribution constraint.
The relationship of a question qi; i ¼ 1::n, and a question type
yj; j ¼ 1::K, is represented as sij such that sij ¼ 1 if question
qi is related to question type yj and sij ¼ 0 if otherwise.

4 PROPOSED BAC-STG APPROACH

In this section, we propose an efficient 0-1 ILP approach
for high-quality STG, called BAC-STG. When the STG
problem is formulated in 0-1 ILP, we observe that it has the
sparse matrix property. By exploiting the sparse matrix
property and domain-specific property of the STG pro-
blem, the proposed approach combines the branch-and-
bound method with the lifted cover cutting method to
efficiently solve the large-sized 0-1 ILP of the STG problem.
The proposed BAC-STG approach has the following
important characteristics:

. When the 0-1 ILP problem has the sparse matrix
property, the proposed approach is able to approx-
imate the binary optimal solution of the 0-1 ILP
problem with the fractional optimal solution.

. The proposed approach uses the primal-dual interior
point (PDIP) [37] which is the most efficient
algorithm for solving the LP relaxation problem. In
addition, the simplex method [11] is also used for
solving the LP relaxation problem efficiently in
subsequent steps of the approach when new cutting
planes are added.

. An effective branching strategy is proposed for
reducing the size of the branch-and-bound search tree.

. An efficient approach is proposed for finding
effective lifted cover cutting planes.

4.1 0-1 ILP Formulation

In the proposed BAC-STG approach, we first reformulate
the 0-1 fractional ILP of the STG problem into a standard 0-1
ILP, which is given in Fig. 3. Note that as the number of
questions N is a constant, the denominator of the
maximizing cost function can be eliminated from the
fractional ILP during re-formulation. In addition, as each
question has only a few related topics and a question type,
most of the coefficients in the topic constraint and question
type constraint are zeros. Thus, for large-sized STG
problems, the matrix A of the 0-1 ILP is very sparse.

4.2 Branch and Bound

The branch-and-bound method is based on the DAC
strategy, which iteratively partitions the original ILP
problem into a series of subproblems. Each subproblem is
then solved by LP relaxation to obtain an upper bound on
its objective value. The key idea of the branch-and-bound
method is that if the upper bound for the objective value of
a given subproblem is less than the objective value of a
known integer feasible solution, then the given subproblem
does not contain the optimal solution of the original ILP
problem. Hence, the upper bounds of subproblems are used
to construct a proof of optimality without exhaustive
search. Fig. 4 shows the main steps of the branch-and-
bound method in the BAC-STG approach.

In BAC-STG, the subproblems are organized as an
enumeration tree that is constructed iteratively in a top-
down manner with new nodes created by branching on an
existing node in which the optimal solution of the LP
relaxation is fractional. The problem at the root node of the
tree is the original 0-1 ILP. When a new node Ni is created,
it contains the corresponding 0-1 ILP subproblem and is
stored in the list L ¼ fN1; . . . ; Nng, i 2 f1::ng, of all
unevaluated or leaf nodes. Let Fi be the formulation of
the feasible region of the problem at node Ni. Let ziub be the
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local upper bound at each node Ni and zlb be the current
global lower bound of the 0-1 ILP solution.

4.2.1 Finding Initial Fractional Optimal Solution

In this step, we find the fractional optimal solution x� of the
original 0-1 ILP problem. This is done by relaxing the
constraints on binary value of variables. The 0-1 ILP
formulation of the STG problem shown in Fig. 3 is
transformed into a standard LP as follows:

maximize cx
subject to Ax ¼ b; 0 � x � 1

or equivalently: maximize fcxjx 2 Fg, where F ¼ fx 2
f0; 1g : Ax � bg denotes the constraint set of feasible regions
of the original ILP problem.

The LP problem can then be solved by using the most
efficient PDIP algorithm [37]. PDIP solves the LP problem
by resolving the following logarithmic barrier optimization
problem:

maximize cx� 1

t

Xn

i¼1

ðlogxi þ logð1� xiÞÞ

subject to Ax ¼ b;

where t is a barrier parameter.
The optimal solution x� of PDIP will be used to construct

the corresponding tableau of the simplex method [11]. It
consists of two steps: initial tableau construction and
simplex tableau construction.

In the initial tableau construction, the simplex algorithm
works on inequalities of the form

P
aijxj � bi and the 0-1

ILP of the STG problem needs to satisfy the equality
constraints given in (7)-(12) of the form

P
aijxj ¼ bi. Thus,

we replace each constraint of the form
P
ai;jxj ¼ bi by the

following two constraints:
P
aijxj � bi and�

P
aijxj � �bi.

So far, all the replaced constraints given in (7)-(12) are now
in the form

P
aijxj � bi. By introducing new slack vari-

ables, we have the following initial tableau: fmaximize cx j
Axþ s ¼ bg, where s is the vector of slack variables.

In the simplex tableau construction, we perform pivoting
operations on the initial tableau such that all variables xj
with x�j > 0 are basic variables, whereas others are nonbasic
variables. As a result, the optimal solution x� and its
corresponding simplex tableau T of the form xi þP
ai;jxj ¼ bi are obtained.

4.2.2 Root Node Initialization

It first creates the root node N1 of the enumeration tree
that contains the original 0-1 ILP problem with its
fractional optimal solution x� and simplex tableau T .
Next, it initializes the local upper bound at N1 as
z1
ub ¼ maximizefcx� : x� 2 F 1g, the global lower bound
zlb ¼ �1 and the current best 0-1 solution xbest ¼ ;. Then,
the root node is stored in the list L for further processing.

4.2.3 Unevaluated Node Selection

This step selects an unevaluated node in the list L for
processing and solving. If there is no unevaluated node, the
algorithm will terminate. Otherwise, a node in the list Lwill
be selected. Here, we use a greedy strategy, namely best
bound, to choose the most promising node Ni in L with the
largest local upper bound value ziub:

Ni ¼ argmax
Ni2L

ziub:

4.2.4 LP Relaxation

It iteratively solves the subproblem of the selected uneval-
uated node Ni based on the optimal solution and simplex
tableau of its parent node’s problem (except the root node).
At the kth iteration of processing a node Ni, it solves the
following LP problem: zi;kub ¼ maximizefcx : x 2 Fi;kg. If the
returned result is infeasible (i.e., when Fi;k ¼ ;), it ignores
this node and continues processing another node in the list
L. Otherwise, it goes to the next step on lifted cover cutting
for adding cutting planes. Note that for efficiency, it adds
the new constraints into the simplex tableau of its parent
node and continue reoptimizing this tableau. After solving
the LP Relaxation at node Ni, the fractional optimal solution
x� and its corresponding simplex tableau are obtained.

4.2.5 Lifted Cover Cutting

The main purpose of the lifted cover cutting is to add extra
constraints, called cutting planes, to reduce the feasible
region and approximate the binary optimal solution, which
is nearest to x�. Based on the current fractional optimal
solution x� and its corresponding simplex tableau, this step
helps LP relaxation to gradually approximate more closely
to the binary optimal solution xbest of the subproblem. It
adds extra constraints or cutting planes into the current
subproblem. To achieve this, it adds some lifted cover
inequalities to the current formulation Fi;k such that a new
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formulation Fi;kþ1 is formed. Then, this new formulation
will go back to the LP Relaxation step for optimization. For
efficiency, at most three cuts are added at each iteration
according to an empirical study in [31]. It repeats until no
more cutting plane is found. The lifted cover cutting will be
discussed later in Section 4.3.

4.2.6 Pruning and Bounding

After processing a node Ni, it will consider whether this
node should be pruned. To determine this, it checks the
obtained local upper bound of the LP Relaxation at node
Ni (after the kth iteration) and the global lower bound of
the 0-1 ILP solution of the original 0-1 ILP:

. If zi;kub � zlb, it prunes the node Ni.

. If zi;kub � zlb and the current fractional optimal
solution xi;k is a binary solution, it updates the
new global lower bound zlb ¼ zi;kub and the current
best 0-1 ILP solution xbest ¼ xi;k. Then, it prunes this
node and all unevaluated nodes in the list L whose
upper bound ziub is less than the new global lower
bound zlb, and processes another node in L. If zi;kub �
zlb and xi;k is fractional, it goes to the branching step.

4.2.7 Branching

If the solution of the LP relaxation in node Ni is fractional,
the branching step creates two child nodes of Ni. First, it
chooses the fractional variable x�j in the current fractional
optimal solution xi;k of the LP relaxation and performs the
branching. We use a common choice, namely most
fractional variable [11], to select the variable x�j : j ¼
argmaxj2C min½fj; 1� fj�, where fj ¼ x�j � bx�jc. Then, the
two child nodes are placed into the list L for further
processing:

. Niþ1 ¼ maxfcx : x 2 Fkþ1 ¼ fFk
T
ðxj ¼ 0Þgg.

. Niþ2 ¼ maxfcx : x 2 Fkþ2 ¼ fFk
T
ðxj ¼ 1Þgg.

The size of the search tree may grow exponentially if
branching is not controlled properly. To effectively reduce
the size of the tree, we use a heuristic based on the number
of specified questions N in the generated test paper.
Consider a path from the root to a given unevaluated node
of the tree, if the number of branching variables xj with
value 1 along the path is larger than or equal to N , we stop
branching at that node. The reason is that we only need
N questions in the generated test paper.

4.2.8 Termination

It returns the current best solution xbest of the 0-1 ILP.

4.2.9 An Example

Suppose that we need to generate a test paper P from the
Math data set given in Table 1 based on the specification

S ¼ h2; 15; 6; fðc1; 0:5Þ; ðc2; 0:5Þg; fðy1; 0:5Þ; ðy2; 0:5Þgi. We as-
sociate each question with a binary variable xi, i ¼ 1::8.
However, we eliminate inappropriate variables x6; x7, and

x8 because they cannot satisfy the specification S. Here, we
formulate the problem as a 0-1 fractional ILP with five
binary variables, which is shown in Fig. 5a. The 0-1

fractional ILP problem is then transformed into a standard
0-1 ILP, which is shown in Fig. 5b.

Fig. 6 shows an example on the construction of the

enumeration tree of subproblems during the BAC-STG
process. Initially, the LP relaxation of this problem is solved
by the PDIP algorithm to obtain the fractional optimal

solution x� ¼ ðx1; x2; x3; x4; x5Þ ¼ ð0:50; 0:70; 0:79; 0:00; 0:00Þ.
Next, the fractional optimal solution is updated when new
lifted cover cutting planes are added to obtain the new

fractional optimal solution x�. Then, the local upper bound
value at N1 is set as z1

ub ¼ 12:23; the global lower bound is

set as zlb ¼ �1; and the current best 0-1 solution is set as
xbest ¼ ;.

After that, the root node N1 is branched on the variable
x1 to create two child nodes N2 and N3 during branching.

Then, the unevaluated node N2 is selected for processing, as
it has the largest local upper bound. After processing and
branching at N2, two child nodes N4 and N5 are created in

which N4 ¼ ð1:00; 1:00; 0:00; 0:00; 0:00Þ is a feasible binary
solution with its objective value z4

ub ¼ 11. Then, the global

local bound and best solution are updated as zlb ¼ 11 and
xbest ¼ ð1:00; 1:00; 0:00; 0:00; 0:00Þ, respectively. The node N5

is then pruned because its local upper bound is less than the

current global lower bound. Subsequently, branching at
node N3 will create N6 and N7. Similar to N5, N7 will then
be pruned. Branching at node N6 will create N8 and N9,

which are then pruned similarly to N5.
Finally, the best solution xbest ¼ ð1:0; 1:0; 0:0; 0:0; 0:0Þ is

obtained. It corresponds to the test paper P ¼ fq1; q2g for

the specification S. The generated test paper has the average
discrimination degree E ¼ 5:5 and specification SP ¼
h2; 15; 6; fðc1; 0:5Þ, ðc2; 0:5Þg; fðy1; 0:5Þ; ðy2; 0:5Þgi.

52 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 5. The ILP formulation example.



4.3 Lifted Cover Cutting

This step aims to generate the lifted cover cutting planes
from the fractional optimal solution x� and simplex tableau
T for the LP relaxation step. Before discussing this step in
detail, we need to define some basic terminologies.
Consider the set X ¼ fx 2 f0; 1gn :

Pn
j¼1 ajxj � bg, which

represents a row of the simplex tableau T .

Definition 1 (Dominance). If a1x � b1 and a2x � b2 are two
valid inequalities for X ¼ fx 2 Rn

þ : Ax � bg, a1x � b1

dominates a2x � b2 if fx 2 Rn
þ : a1x � b1g � fx 2 Rn

þ :
a2x � b2g.

If there exists any nonnegative coefficient aj in X, the
variable xj can be replaced by its complementary variable
x0j ¼ 1� xj, so that X contains only coefficients aj > 0.
As all coefficients in the LHS of X are now nonnegative,
we may assume that the RHS b > 0. Let N ¼ f1; 2 . . . ; ng in
the following definitions.

Definition 2 (Cover). Let C � N be a set such thatP
j2C aj > b, then C is a cover. A cover is minimal if

C n fjg is not a cover for any j 2 C.

The following two propositions are derived directly from
the cover definition:

Proposition 1 (Cover inequality). Let C � N be a cover for
X, the cover inequality

P
j2C xj � jCj � 1 is valid for X,

where jCj is the cardinality of C.

Proposition 2 (Extended cover inequality). Let C � N be a
cover for X, the extended cover inequality:

P
j2EðCÞ xj �

jCj � 1 is valid for X, where EðCÞ ¼ C [ fj : aj � ai;
8i 2 Cg.

Definition 3 (Lifted cover inequality (LCI)). LCI is an
extended cover inequality which is not dominated by any other
extended cover inequalities.

In general, the problem of finding LCI is equivalent to
the finding of the best possible values for �j for j 2 N n fCg
such that the inequality:

X

j2NnfCg
�jxj þ

X

j2C
xj � jCj � 1

is valid for X, where C is a cover inequality.

When the matrix A in the 0-1 ILP is sparse, the lifted
cover cutting plane defined by LCI is an effective cutting
plane for the pruning step in the BAC method. However,
the problem on finding LCI has been shown to be NP-hard
[32]. In this research, we propose to generate LCIs
efficiently as follows:

First, we find a minimal cover inequality based on the N
most significant basic variables in the fractional optimal
solution x� of the LP relaxation, where N is the number of
questions given in the test paper specification. Specifically,
consider a row of the form

P
aijxj ¼ bi in the tableau, the

basic variables x�j > 0 of the fractional optimal solution are
then sorted in nonincreasing order. Let U be a list of the first
N largest coefficients, and V be the list of the remains of the
sorted list. If k is the minimal number such that the sum of
the coefficients aij w.r.t. the first basic variables of the list V
exceeds bi, i.e.,

Pk
j¼1 aij > bi, then the set C ¼ fj1; . . . ; jkg is

a minimal cover.
Next, we generate extended cover inequalities from the

minimal cover C as follows:

XN

t¼1

�jtxjt þ
X

j2C
xj � jCj � 1:

To generate LCIs from the extended cover inequalities, we
need to calculate the largest lifting value �jt 2 U; t ¼ 1 . . .N ,
for each variable xjt . This can be done by using an
incremental algorithm to calculate �j1

, then �j2
until �jN

in step by step manner. Specifically, the algorithm starts
from calculating �j1

, the result of �j1 will then be used to
calculate �j2 and so on. To obtain �jt , t ¼ 1::N , we need to
solve the following 0-1 KP (0-1 KP):

maximize
Xt�1

m¼1

�jmxjm þ
X

j2C
xj

subject to
Xt�1

m¼1

ajmxjm þ
X

j2C
ajxj � bi � ajt

x 2 f0; 1gjCjþt�1:

The largest lifting value �jt is then calculated as �jt ¼ jCj �
1� �t, where �t, t ¼ 1::N , is the objective function value
according to the optimal solution obtained from the 0-1 KP.
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It can be seen that �t computes the maximum weight
corresponding to the set fj1; j2; . . . ; jt�1g

S
C in the LCI

when xjt ¼ 1.
Gu et al. [31] solved the 0-1 KP by using a dynamic

algorithm that requires high computational complexity of
Oðn4Þ. The experimental results have shown that the
runtime performance is poor when handling test cases
with a few thousand variables. This is not acceptable in
STG in which the 0-1 ILP may have tens of thousands of
variables that need to be solved efficiently. In this
research, we apply an approximation algorithm from
Martello and Toth [38] to efficiently solve the 0-1 KP that
only requires Oðn lognÞ.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
BAC-STG approach for STG. The experiments are con-
ducted on a Windows XP environment, using an Intel Core
2 Quad 2.66 GHz CPU with 3.37 GB of memory. The BAC-
STG approach is implemented in Java with the CPLEX API
package, version 11.0 [17]. From the CPLEX package, we
use the PDIP and simplex methods. The performance of
BAC-STG is measured and compared with other techniques
including GA [39], PSO [21], DE [14], ACO [12], TS [9], DAC
[23], and the conventional BAC method [31]. These
techniques are reimplemented based on the published
articles. We compare the BAC-STG approach with the
conventional BAC technique, which has been shown to be
more effective for large-scale 0-1 ILP with the sparse matrix
property than the commercial software [31].

5.1 Experiments

We have conducted two sets of experiments. In the first set
of experiments, we analyze the quality and runtime
efficiency of our BAC-STG approach based on four large-
scale data sets by using different specifications. In the
second set of experiments, we evaluate the effectiveness of
our proposed approach by conducting a user evaluation for
the quality of test papers generated from different specifica-
tions based on the G.C.E A-Level math and the under-
graduate engineering math data sets.

In the experiments, the test paper generation process is
repeated until one of the following two termination
conditions is reached:

. Quality satisfaction. The algorithm will terminate if a
high-quality test paper is generated.

. Maximum number of evaluated nodes in which no better
solution is found. This parameter is experimentally set
to 300 nodes for BAC and BAC-STG. Similarly, for
other heuristic techniques, this parameter is set to
the maximum number of iterations in which no
better solution is found. It is generally set to
200 iterations.

5.2 Quality Measures

The performance of the proposed BAC-STG approach is
evaluated based on paper quality and runtime. To evaluate
the quality, we define mean discrimination degree and
mean constraint violation (CV).

Definition 4 (Mean discrimination degree). Let P1; P2; . . . ;
Pk be the generated test papers on a question data set D w.r.t.
different test paper specifications Si, i ¼ 1::k. The mean
discrimination degree MD

d is defined as

MD
d ¼

Pk
i¼1 EPi

k
;

where EPi is the average discrimination degree of Pi.

CV indicates the differences between the test paper
specification and generated test paper. Let S ¼ hN ,
T;D;C; Y i be a test paper specification and SP ¼
hN;TP ;DP ; CP ; YP i be a generated test paper specification.
CVs can be measured according to total time, average
difficulty degree, topic distribution and question type
distribution between the test paper specification (S) and
the generated test paper specification (SP ) as follows:

. Total time CV:4T ðSP ;SÞ ¼ jTP�T jT .

. Average difficulty degree CV:4DðSP ;SÞ ¼ jDP�Dj
D .

. Topic distribution CV:

4 CðSP ;SÞ ¼ DKLðpcpkpcÞ ¼
XM

i¼1

pcpðiÞ log
pcpðiÞ
pcðiÞ :

. Question type distribution CV:

4 Y ðSP ;SÞ ¼ DKLðpypkpyÞ ¼
XK

j¼1

pypðjÞ log
pypðjÞ
pyðjÞ ;

where DKL is the Kullback-Leibler divergence [40], which is
used to measure the statistical differences of the topic and
question type distributions between SP and S; and � ¼ 100
is a constant used to scale the value between 0 and 100.

The CV of a generated test paper P w.r.t. the test paper
specification S can then be calculated as the average of the
four violations:

CV ðP;SÞ ¼ � � 4T þ � � 4Dþ log4C þ log4Y
4

:

Definition 5 (Mean CV). The mean CVMD
c of k generated test

papers P1; P2; . . . ; Pk on a question data set D w.r.t. k test
paper specifications Si, i ¼ 1::k, is defined as

MD
c ¼

Pk
i¼1 CV ðPi;SiÞ

k
;

where CV ðPi;SiÞ is the CV of Pi w.r.t. Si.

A high-quality test paper P should maximize the average
discrimination degree and minimize CVs. In other words, it
should have a high value on EP and a low value on the
constraint violation CV ðP;SÞ. Hence, the overall quality of a
generated test paper depends on user’s preference between
these two aspects. According to a pedagogical perspective,
users often pay more attention to constraint satisfaction of
test papers. To determine the quality of a generated test
paper, CVs could be defined in a certain range. Here, we set
the following four thresholds for a high-quality test paper:
4T ðSP ;SÞ � 0:15;4DðSP ;SÞ � 0:15, log4CðSP ;SÞ � 5 and
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log4Y ðSP ;SÞ � 5. The threshold values are obtained
experimentally (as shown in Section 6.4). Based on these
thresholds, we set MD

c � 10 for high-quality test papers,
10 <MD

c � 30 for medium-quality test papers and MD
c >

30 for low-quality test papers.

5.3 Performance on Quality and Runtime

Data sets. As there is no benchmark data set available, we
generate four large-sized synthetic data sets, namely
D1; D2; D3, and D4, for performance evaluation. Specifically,
these four data sets D1; D2; D3, and D4 have number of
questions of 20,000, 30,000, 40,000, and 50,000, respectively.
There are mainly three question types in each data set,
namely fill-in-the-blank, multiple choice, and long question.
In the two data sets, D1 and D3, the value of each attribute is
generated according to a uniform distribution. However, in
the other two data sets, D2 and D4, the value of each
attribute is generated according to a normal distribution.
Our purpose is to measure the effectiveness and efficacy of
the test paper generation process of each algorithm for both
balanced data sets D1 and D3, and imbalanced data sets D2

and D4. Intuitively, it is more difficult to generate good
quality test papers for the data sets D2 and D4 than the data
sets D1 and D3. Table 2 summaries the four data sets.

Experimental procedures. To evaluate the performance of
the BAC-STG approach, we have designed 12 test specifica-
tions in the experiments. We vary the parameters in order to
have different test criteria in the test specifications. The
number of topics is specified between 2 and 40. The total
time is set between 20 and 240 minutes, and it is set
proportional to the number of selected topics for each
specification. The average difficulty degree is specified
randomly between 3 and 9. We perform the experiments
according to the 12 test specifications for each of the
following eight algorithms: GA, PSO, DE, ACO, TS, BAC,

DAC, and BAC-STG. We measure the runtime and quality
of the generated test papers for each experiment.

Performance on quality. Fig. 7 shows the quality perfor-
mance results of the eight techniques based on the mean
discrimination degree MD

d and mean CV MD
c . As can be

seen from Fig. 7a, BAC-STG has consistently achieved
higher mean discrimination degree MD

d than the conven-
tional BAC and other heuristic techniques for the generated
test papers. Particularly, BAC-STG can generate test papers
with quality close to the maximal achievable value of
MD

d 	 7. In addition, we also observe that BAC-STG has
consistently outperformed the other techniques on mean
CV MD

c based on the four data sets. The average CVs of
BAC-STG tend to decrease whereas the average CVs of the
other techniques increase quite fast when the data set size
or the number of specified constraints gets larger. In
particular, BAC-STG can generate high-quality test papers
with MD

c � 6 for all data sets. Also, BAC-STG is able to
generate higher quality test papers on larger data sets while
the other techniques generally degrade the quality of the
generated test papers when the data set size gets larger.

Performance on runtime. Fig. 8 compares the runtime
performance of the eight techniques based on the four data
sets. Here, the 12 specifications are sorted increasingly
according to the number of topics in the constraints. The
results have clearly shown that the proposed BAC-STG
approach outperforms the conventional BAC and other
heuristic techniques, except DAC, in runtime for the
different data sets. BAC-STG generally requires less than
2 minutes to complete the paper generation process.
Moreover, the proposed BAC-STG approach is quite
scalable in runtime on different data set sizes and
distributions. In contrast, the other techniques (except
DAC) are not efficient to generate high-quality test papers.
Particularly, the runtime performance of these techniques
degrades quite badly as the data set size or the number of
specified constraints gets larger, especially for imbalanced
data sets D2 and D4.

Discussion. The good performance of BAC-STG is due to
three main reasons. First, as BAC-STG is based on LP
relaxation, it can maximize the average discrimination
degree effectively and efficiently while satisfying the
multiple constraints without using weighting parameters.
As such, BAC-STG can achieve better paper quality and
runtime efficiency as compared with other heuristic-based
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techniques. Second, BAC-STG has a more effective branch-
ing strategy than that of conventional BAC, thereby pruning
the search space more effectively. This helps BAC-STG
improve runtime and search on promising unvisited
subproblem nodes of the search tree for paper quality
enhancement. Third, BAC-STG uses an efficient algorithm
to generate the lifted cover inequalities. Thus, BAC-STG can
also improve its computational efficiency on large-scale
data sets as compared with the conventional BAC tech-
nique. Moreover, as there are more questions with different
attribute values on larger data sets and LP relaxation is
effective for global optimization, BAC-STG is able to
generate higher-quality test papers. Therefore, the BAC-
STG approach is effective for STG in terms of paper quality
and runtime efficiency.

Comparison between BAC-STG and DAC. DAC [23] is an
efficient STG approach for online test paper generation.
Table 3 gives the performance comparison between BAC-
STG and DAC. The performance results are obtained based
on the average results of the 12 test specifications for each

data set. In Fig. 7, the quality performance of BAC-STG is
consistently better than DAC for the four data sets.
However, the runtime performance of BAC-STG and DAC
depends on the user specifications and data set distribu-
tions, as shown in Table 3 and Fig. 8.

For the balanced uniform distribution data sets D1 and
D3, DAC outperforms BAC-STG in runtime. DAC is in fact
very fast, as it is designed for achieving online runtime
requirement. As there may have enough relevant questions
on D1 and D3 for DAC to optimize its solution without
getting stuck on local optimal, the runtime performance of
DAC outperforms BAC-STG in this situation because it is a
heuristic-based technique, whereas BAC-STG is a global
optimization method. For imbalanced normal distribution
data sets D2 and D4, BAC-STG achieves better runtime
performance if the specified test papers contain many topics
or have high total time. Otherwise, DAC achieves better
runtime performance. The main reason is that the sparse
matrix property of 0-1 ILP formulation of BAC-STG is
satisfied in this situation, which makes lifted cover cuttings
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become more effective for 0-1 ILP optimization. Further-
more, as DAC focuses only on optimizing the constraint
satisfaction of a unique initial solution, and it could easily
lead to a local optimal. It is especially the case for
imbalanced data sets, where there may not have enough
relevant questions for DAC to optimize the unique initial
solution. As shown in Fig. 7, the quality performance of
DAC degrades quite badly on both D2 and D4.

In short, the quality performance of BAC-STG consis-
tently outperforms DAC, while its runtime performance is
comparable to that of DAC.

5.4 Expert Calibration of Test Quality Measures

Data sets. To gain further insight into the paper quality
generated by the proposed BAC-STG approach, we have
conducted a user evaluation. Here, we use two math data
sets, namely A-Math and U-Math, which are constructed
from G.C.E. A-Level Math and Undergraduate Math,
respectively. For experimental purposes, the question type
and topic attributes of question are calibrated automatically,
whereas the difficulty degree attribute is calibrated by
10 tutors who are tutors of the first year undergraduate
mathematics subject CZ1800 Engineering Mathematics in
the School of Computer Engineering, Nanyang Technolog-
ical University. These tutors have good knowledge of the
math contents contained in the two math data sets. In the
tutor calibration, we adopt a rating method [41] for
the tutors to rate the difficulty degree of each question
from 1 to 7 corresponding to the following seven discretized
difficulty levels of IRT: extremely easy, very easy, easy,
medium, hard, very hard, and extremely hard. In addition,
according to the IRT Normal Ogive model [24], an initial
value for the discrimination degree of a question can be
computed based on its relation formula with a fixed user’s
proficiency value and the difficulty degree. Table 5
summarizes the two data sets.

Experimental procedures. In the experiments, we have
designed 12 new specifications for the A-Math data set and
12 new specifications for the U-Math data set with different
parameter values. Then, we generate the test papers based
on the test specifications using the eight techniques. As a
result, a total of 96 papers are generated for each data set.
To conduct the user evaluation, the same 10 tutors are
participated. In the experiments, the tutors are asked to
evaluate the test paper quality by comparing its attributes

with its original specification. The tutors compare each
corresponding attribute of the generated test with its
specification by their own intuition without knowing our
defined measures. Based on the similarities, they are asked
to evaluate the overall quality of the generated test and
classify it into one of the following three categories: high,
medium, and low. As a result, a total of 960 test paper
evaluations are conducted for each data set.

Expert calibration on quality results. Fig. 9 shows the user
evaluation results on the generated test paper qualities from
the eight techniques. As can be seen, BAC-STG has achieved
better performance on quality than the other techniques. For
the A-Math data set, BAC-STG has achieved promising
results with 81 percent (97 papers), 12 percent (14 papers),
and 7 percent (9 papers) for high-, medium-, and low-quality
generated papers, respectively, from a total of 120 papers
evaluated. Similarly, for the U-Math data set, BAC-STG has
achieved promising results with 91 percent (109 papers),
6 percent (7 papers) and 3 percent (4 papers) for high-,
medium-, and low-quality generated papers, respectively.
On average, BAC-STG has achieved 86, 9, and 5 percent for
high-, medium-, and low-quality generated papers, respec-
tively. In addition, it can also be observed that the proposed
BAC-STG approach is able to improve the quality of the
generated papers with a larger data set. It has performed
better with the U-Math data set than the A-Math data set.

Moreover, we have further analyzed the quality of the
generated papers based on the user evaluation results. After
all the generated papers are classified into high, medium,
and low quality, we have analyzed the CVs on topic,
question type, difficulty degree, and total time based on
each of the two data sets. Table 4 gives the analysis results in
terms of mean and standard deviation of the corresponding
CVs. For the A-Math data set, we have obtained the mean
CVs of 10
 2:2, 21
 2:8, and 30
 1:9 for high-, medium-,
and low-quality generated papers, respectively. Similarly,
for the U-Math data set, we have obtained the mean CVs of
9
 1:4, 19
 1:4, and 29
 1:2 for high-, medium-, and low-
quality generated papers respectively. On average, we have
obtained 9:5
 1:3, 20
 1:6, and 29:5
 1:1 CVs for high-,
medium-, and low-quality generated papers. In fact, we
have used these values as the thresholds when we
determine high, medium, or low quality for the generated
papers during performance evaluation on test paper quality.
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6 WEB-BASED TESTING FRAMEWORK

In this research, we have investigated a web-based testing
system for e-learning in mathematics. Fig. 10 shows the
proposed system framework, which consists of the follow-
ing components: webserver, math question database server
using MySQL, STG, automatic solution checking, and
automatic question calibration. The STG component is
implemented based on the proposed BAC-STG approach.
The automatic solution checking component is implemen-
ted based on the mathematical equivalence checking
algorithm [42]. The automatic question calibration compo-
nent is currently under development based on the educa-
tional data mining techniques mentioned earlier in
Section 3.1. These components are implemented in Java.
The system can be accessed through a web browser.

As equivalent mathematical expressions can be ex-
pressed in different forms (e.g., xþ 1

x and x2þ1
x ), the

automatic solution checking component automatically
checks the equivalence of the students’ answers with
the standard solutions to evaluate the correctness of the
students’ answers. Currently, it focuses on automatic
answer checking for mathematical expressions that are the
most common form of required answers in most math
questions. To check mathematical answers, a randomized
algorithm is proposed based on the probabilistic numerical
testing method [42]. The proposed algorithm has shown
promising performance on different types of mathematical
expressions such as multivariate polynomials, trigono-
metric functions, and so on. As compared with other
web-based testing systems, which are only able to support

multiple choice answer checking, our proposed system has
an additional advantage on supporting advanced mathe-
matical expression answer checking.

7 CONCLUSION

In this paper, we have proposed an efficient ILP approach
called BAC-STG for high-quality STG from large-scale
question data sets. The proposed BAC-STG approach is
based on the branch-and-bound and lifted cover cutting
methods to find the near-optimal solution by exploiting the
sparse matrix property of 0-1 ILP. The performance results
on various data sets and a user evaluation on generated test
paper quality have shown that the BAC-STG approach has
achieved test paper generation with not only high quality,
but also runtime efficiency when compared with other STG
techniques. As such, the proposed BAC-STG approach is
particularly useful for web-based testing and assessment for
online learning environment.

From a pedagogical perspective on generating high-
quality test papers, the current web-based testing approach
and system can be extended in the following four ways.
First, automatic calibration of question attributes should be
supported to generate large-scale data sets. Currently, we
are investigating different data mining techniques to
achieve this purpose. Second, the current approach could
be extended to support the generation of multiple test
papers simultaneously based on the same test paper
specification. The quality of these generated test papers
should be comparable. Therefore, to evaluate students in an
online class, different test papers of equivalent or similar
properties and quality can be used. Third, in the expert
calibration, it would also be very useful to consider a more
general quality definition based on the capability of a test to
make a valid cognitive assessment of a user over set of
skills. Finally, the current system does not allow further
changes on individual questions of a generated test paper
after the test paper generation process. This could be
enhanced by allowing users to edit, modify, and update
individual questions of a generated test paper. As such,
the web-based testing system will be more flexible in
creating high-quality test papers.
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and A. Rı́os, “SIETTE: A Web-Based Tool for Adaptive Testing,”
Int’l J. Artificial Intelligence in Education, vol. 14, no. 1, pp. 29-61,
2004.

[4] F.G. Martin, “Will Massive Open Online Courses Change How
We Teach?” Comm. ACM, vol. 55, no. 8, pp. 26-28, http://
doi.acm.org/10.1145/2240236.2240246, Aug. 2012.

[5] K. Hopkins, Educational and Psychological Measurement and Evalua-
tion. ERIC, 1998.

[6] D. Thissen, B. Reeve, J. Bjorner, and C. Chang, “Methodological
Issues for Building Item Banks and Computerized Adaptive
Scales,” Quality of Life Research, vol. 16, pp. 109-119, 2007.

[7] T. Theunissen, “Binary Programming and Test Design,” Psycho-
metrika, vol. 50, no. 4, pp. 411-420, 1985.

[8] G. Hwang, B.M. Lin, and T. Lin, “An Effective Approach for Test-
Sheet Composition with Large-Scale Item Banks,” Computers &
Education, vol. 46, no. 2, pp. 122-139, 2006.

[9] G.J. Hwang, P.Y. Yin, and S.H. Yeh, “A Tabu Search Approach to
Generating Test Sheets for Multiple Assessment Criteria,” IEEE
Trans. Education, vol. 49, no. 1, pp. 88-97, Sept. 2006.

[10] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons, 1986.

[11] D. Bertsimas and R. Weismantel, Optimization over Integers.
Dynamic Ideas, 2005.

[12] X.M. Hu, J. Zhang, H.S.H. Chung, O. Liu, and J. Xiao, “An
Intelligent Testing System Embedded with an Ant-Colony-
Optimization-Based Test Composition Method,” IEEE Trans.
Systems, Man, and Cybernetics, vol. 39, no. 6, pp. 659-669, Nov. 2009.

[13] G.J. Hwang, B. Lin, H.H. Tseng, and T.L. Lin, “On the
Development of a Computer-Assisted Testing System with
Genetic Test Sheet-Generating Approach,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 35, no. 4, pp. 590-594, Nov. 2005.

[14] W.F. Rui, W.W. Hong, P.Q. Ke, Z.F. Chao, and J.J. Liang, “A Novel
Online Test-Sheet Composition Approach for Web-Based Test-
ing,” Proc. Symp IT in Medicine Education, pp. 700-705, 2009.

[15] J. Adema and W. Vander Linden, “Algorithms for Computerized
Test Construction Using Classical Item Parameters,” J. Educational
and Behavioral Statistics, vol. 14, no. 3, pp. 279-290, 1989.

[16] J. Adema, E. Boekkooi-Timminga, and W. van der Linden,
“Achievement Test Construction Using 0-1 Linear Programming,”
European J. Operational Research, vol. 55, no. 1, pp. 103-111, 1991.

[17] IBM, “CPLEX Optimizer (11.0),” http://www-01.ibm.com/
software/integration/optimization/cplex-optimizer/, 2012.

[18] GUROBI, “Gurobi Optimizer (Version 5.0),” http://www.gurobi.
com/, 2011.

[19] J.E. Mitchell, “Integer Programming: Branch-and-Cut Algo-
rithms,” Encyclopedia of Optimization, vol. 2, pp. 519-525, Kluwer
Press, 2001.

[20] C.L. Lee, C.H. Huang, and C.J. Li, “Test-Sheet Composition Using
Immune Algorithm for E-Learning Application,” New Trends in
Applied Artificial Intelligence, vol. 4570, pp. 823-833, 2007.

[21] T.F. Ho, P.Y. Yin, G.J. Hwang, S.J. Shyu, and Y.N. Yean, “Multi-
Objective Parallel Test-Sheet Composition Using Enhanced
Particle Swarm Optimization,” J. Educational Technology Soc.,
vol. 12, no. 4, pp. 193-206, 2008.

[22] K.H. Tsai, T.I. Wang, T.C. Hsieh, T.K. Chiu, and M.C. Lee,
“Dynamic Computerized Testlet-Based Test Generation System
by Discrete PSO with Partial Course Ontology,” Expert Systems
with Applications, vol. 37, no. 1, pp. 774-786, 2009.

[23] M.L. Nguyen, S.C. Hui, and A.C.M. Fong, “An Efficient Multi-
Objective Optimization Approach for Online Test Paper Genera-
tion,” Proc. IEEE Symp. Computational Intelligence in Multicriteria
Decision-Making (MDCM), pp. 182-189, 2011.

[24] F.B. Baker and S.H. Kim, Item Response Theory. Marcel Dekker,
1992.

[25] P. Songmuang and M. Ueno, “Bees Algorithm for Construction of
Multiple Test Forms in E-Testing,” IEEE Trans. Learning Technol-
ogies, vol. 4, no. 3, pp. 209-221, July-Sept. 2011.

[26] E. Boekkoi-Timminga, Simultaneous Test Construction by Zero-One
Programming. Dept. of Education, Univ. of Twente, 1986.

[27] E. Boekkooi-Timminga, “The Construction of Parallel Tests from
IRT-Based Item Banks,” J. Educational and Behavioral Statistics,
vol. 15, no. 2, pp. 129-145, 1990.

[28] R. Fletcher, “A Review of Linear Programming and Its Applica-
tion to the Assessment Tools for Teaching and Learning (as TTle)
Projects,” technical report, Massey Univ., 2000.

[29] T. Theunissen, “Some Applications of Optimization Algorithms in
Test Design and Adaptive Testing,” Applied Psychological Measure-
ment, vol. 10, no. 4, pp. 381-389, 1986.

[30] R. Luecht, “Computer-Assisted Test Assembly Using Optimiza-
tion Heuristics,” Applied Psychological Measurement, vol. 22, no. 3,
pp. 224-236, 1998.

[31] G.J. Hwang, “A Test-Sheet-Generating Algorithm for Multiple
Assessment Requirements,” IEEE Trans. Education, vol. 46, no. 3,
pp. 329-337, 2003.

[32] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh, “Lifted Cover
Inequalities for 0-1 Integer Programs: Complexity,” INFORMS
J. Computing, vol. 11, pp. 117-123, 1999.

[33] E. Johnson, G. Nemhauser, and M. Savelsbergh, “Progress in
Linear Programming-Based Algorithms for Integer Programming:
An Exposition,” INFORMS J. Computing, vol. 12, no. 1, pp. 2-23,
2000.

[34] R. Baker and K. Yacef, “The State of Educational Data Mining in
2009: A Review and Future Visions,” J. Educational Data Mining,
vol. 1, no. 1, pp. 3-17, 2009.

[35] S. Cetintas, L. Si, Y. Xin, D. Zhang, and J. Park, “Automatic Text
Categorization of Mathematical Word Problems,” Proc. 22nd Int’l
FLAIRS Conf., pp. 27-32, 2009.

[36] K. Koedinger, R. Baker, K. Cunningham, A. Skogsholm, B. Leber,
and J. Stamper, A Data Repository for the EDM Community: The
PSLC DataShop. CRC Press, 2010.

[37] M.L. Nguyen, S.C. Hui, and A.C.M. Fong, “Content-Based
Collaborative Filtering for Question Difficulty Calibration,” Proc.
Pacific Rim Int’l Conf. Trends in Artificial Intelligence, pp. 359-371,
2012.

[38] M. Kojima, N. Megiddo, and S. Mizuno, “A Primal-Dual
Infeasible-Interior-Point Algorithm for Linear Programming,”
Math. Programming, vol. 61, no. 1, pp. 263-280, 1993.

[39] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. Wiley, 1990.

[40] S. Kullback, Information Theory and Statistics. Dover, 1997.
[41] K. Wauters, P. Desmet, and W. van den Noortgate, “Acquiring

Item Difficulty Estimates: A Collaborative Effort of Data and
Judgment,” Proc. Int’l Conf. Education Data Mining, 2011.

[42] M.L. Nguyen, S.C. Hui, and A.C.M. Fong, “Web-Based Mathe-
matics Testing with Automatic Assessment,” Proc. Pacific Rim Int’l
Conf. Trends in Artificial Intelligence, pp. 347-358, 2012.

Minh Luan Nguyen is currently working toward
the PhD degree at the School of Computer
Engineering, Nanyang Technological University,
Singapore. He is a member of the IEEE.

Siu Cheung Hui received the BSc degree in
mathematics in 1983 and the DPhil degree in
computer science in 1987 from the University of
Sussex, United Kingdom. He is an associate
professor at the School of Computer Engineer-
ing, Nanyang Technological University, Singa-
pore. He was with IBM China/Hong Kong
Corporation as a system engineer from 1987 to
1990. His current research interests include data
mining, web mining, Semantic Web, intelligent

systems, information retrieval, intelligent tutoring systems, timetabling,
and scheduling.

Alvis C.M. Fong is a professor at the Auckland
University of Technology, New Zealand. Pre-
viously, he was an associate professor with
Nanyang Technological University, Singapore.
His research interests include information pro-
cessing and management, multimedia, and
communications. He is a senior member of
the IEEE.

LUAN NGUYEN ET AL.: LARGE-SCALE MULTIOBJECTIVE STATIC TEST GENERATION FOR WEB-BASED TESTING WITH INTEGER... 59



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


