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Abstract—Comprehension assessment is an essential tool in classroom learning. However, the judgment often relies on experience

of an instructor who makes observation of students’ behavior during the lessons. We argue that students should report their own

comprehension explicitly in a classroom. With students’ comprehension made available at the slide level, we apply a machine learning

technique to classify presentation slides according to comprehension levels. Our experimental result suggests that presentation-based

features are as predictive as bag-of-words feature vector which is proved successful in text classification tasks. Our analysis on

presentation-based features reveals possible causes of poor lecture comprehension.

Index Terms—Lecture analytics, lecture comprehension, learning skills, SVM.
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1 INTRODUCTION

THE success in classroom teaching is at best measured by
comprehension level. Monitoring comprehension is a

complicated task as it requires sensitive observation skills
as well as active learning environment. On one hand,
insensitive instructors may fail to monitor and interact with
students effectively. On the other hand, in-class discussion
seems ineffective for checking understanding level when
students show no response at all, a problem that arises often
in engineering education [6]. In fact, nothing is wrong with
those who learn well in a passive way.

We address the problem of comprehension monitoring
from a different angle. Rather than guessing about their
comprehension level, an instructor asks students to report
their own comprehension explicitly (in an anonymous
manner). For example, through handheld devices, students
give a rating based on how much they understand each
presentation slide. This immediate feedback offers a general
idea of what is going on in a classroom.

Tuning instructional modes to learning styles—rather
than to understanding capability—has been claimed exten-
sively as an effective strategy to enhance learning perfor-
mance (see a recent review in [12]). Learning styles focus on
an idea that different people learn information in different
ways. Centered around a concept of experience, Kolb’s
model [11] characterizes learning styles based on how
information is perceived (concrete experience versus ab-
stract conceptualization) and then processed (reflective
observation versus active experimentation) while Flaming’s
model [7] concentrates on perception modalities, resulting
in four sensory styles: visual (learning by seeing), aural

(learning by listening), read/write (learning by reading or
writing), and kinestheic (learning by doing). However,
impressive this categorization may seem, the benefit of
matching learning styles with only compatible instructional
modes, asserted by these theories, is becoming increasingly
questionable (see a comprehensive criticism in [19], [4]). As
a counter example, Massa and Mayer [14] have shown that
students who prefer visual style of learning may perform
equally well (or sometimes better) with a verbal mode of
instructions, and vice versa. That is, a learning preference
does not necessarily dictate actual capability.

Connecting students’ comprehension with instructional
materials is our departure from learning styles which relate
students’ performance with personal attributes. We apply a
machine learning technique for analyzing students’ com-
prehension gathered in a classroom. The capability to
“learn” how students comprehend in a class would shed
light on the quality of teaching. This paper offers a method
to quantify what makes good lecture materials and
presentation. The impact on presentation elements toward
students’ comprehension, being positive or negative, can be
revealed in light of explicit feedback gathered in the
classroom. The result of this impact analysis can be used
as a guideline for instructional design in future lessons.

2 ESTIMATING COMPREHENSION AS A MACHINE

LEARNING PROBLEM

Impact of lecture materials toward students’ comprehen-
sion cannot be analyzed unless student models are
available. The term “models” means ones that describe
the data; in other words, ones that are capable of estimating
students’ comprehension. This paper assumes presentation
slides to be instructional units in a classroom and, therefore,
our problem is to estimate comprehension on a slide basis.
Topics can be equally a good choice of comprehension
units, but slides allow us to associate contents with their
presentation styles, making quality analysis on lecture
materials possible.

We formulate the problem of estimating comprehension
of slides as a supervised machine learning problem. We first
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train a classifier by a machine learner. The input of a learner
is a set of m labeled slides ðxð1Þ; yð1ÞÞ; . . . ; ðxðmÞ; yðmÞÞ, where
xðiÞ is a set of n dimensional input features ðxðiÞ1 ; . . . ; xðiÞn Þ, yðiÞ
is a class of slides (e.g., understand or not understand), and the
output is a learned classifier g : xðiÞ ! yðiÞ. We use this
classifier to classify slides for a target student. Training a
separate classifier for each student emphasizes individual
differences—the only common viewpoint our approach
shares with learning-styles theories [12].

Generalizability of statistical inference depends on an
assumption that all feedback data of each student must be
drawn from the same distribution. This assumption holds
to an extent that there is no sudden change in a way that
students give rating. This limitation does not mean that the
rating given by a student must be uniform throughout a
lecture, but the ability to understand lecture materials—
especially from a viewpoint of learning skills—remains
relatively unchanged over time.

Intuitively, comprehension is affected by lecture con-
tents. To estimate comprehension level, we can use the bag-
of-words model as predictive features which have proved
successful in text classification [21]. The effectiveness is,
however, questionable in our problem setting because new
technical terms (features) are often introduced in each
lecture. That is, comprehension about the current lecture,
encoded in word features, is not always predictive for
comprehension about the next lecture. Besides, analysis of
word features offers little value for understanding the
learning process. Knowing that a particular word or topic
has a negative impact on comprehension only informs
instructors about how difficult the topic is. In fact,
instructors can extract such information directly from
students’ test scores (i.e., topic comprehension). However,
analysis of test scores hardly reveals the source of
comprehension problems.

It seems against our intuition at first to use features other
than contents to classify slides according to comprehension
levels. However, “bad” presentation also hinders students’
comprehension. Besides, an efficient way to process in-
formation differs from student to student; a visualizer may
learn well with visual aids while a verbalizer may learn well
with texts [10]. This intuition leads us to investigate to what
extent presentation-based features such as word count and
illustrations affect comprehension for each student. We
show during data analysis how to interpret features’
weights which are the by-product of training a classifier.
Some obstacles in lecture comprehension can be revealed in
light of this analysis.

Breaking students’ comprehension down into features of
slides ignores the fact that there are relevant factors outside
the teaching materials. Instructor’s explanation, for in-
stance, is an important feature that also affects comprehen-
sion level. This spoken discourse shares the underlying
representation with slides’ contents, that is, (spoken versus
written) words. Because the spoken discourse augments the
story in slides while slides themselves support the
narrative, there is typically much overlap in both sets of
spoken and written words. The redundancy allows us to
exclude spoken words from analysis, thanks to slides’
contents which can be thought of as a summary of the
discourse, and which usually contain important keywords
or phrases such as technical terms that are the main themes

in narrative. Nevertheless, whenever spoken words are
easily accessible, they can be added as extra features
without significant effort.

Despite the absence of spoken discourse, our model still
can incorporate how such discourse is delivered to students
as its compensation. For example, slide duration indicates
how long an instructor spends explaining each slide. To put
this into a broader perspective, these “instructor” features
are a part of presentation styles. With this point in mind,
more features can be discovered from nonverbal commu-
nication which also highlights the success in classroom
teaching [16]. Pointing and tracing gestures might facilitate
learning when combined with a verbal mode of instruction
[22]. This paper, however, focuses on “lecture” features
while nonverbal features are a challenge for future study.

Predicting students’ performance by machine learning
techniques is, however, not new. Page [17] claimed that text
complexity features such as essay length and word length
can predict essay writing scores that are highly correlated
with human graders. However, Larkey [13] found that
content-based features alone are as much effective as those
text complexity features. This is not surprising as the choice
of words is important for essay writing. Because presenta-
tion slides offer richer contents than essays, text complexity
features are subsumed by our presentation-based features
which also include multimedia complexity and temporal
features. More important, we are not aware of related work
that provides feature analysis similar to our study (see
Section 7).

Research questions:

1. Are presentation-based features as effective as
content-based features for slide classification?

2. Analyzing students’ comprehension feedback
against presentation styles might allow us to
measure students’ learning skills, but is it possible
to filter the effect of lecture contents from presenta-
tion styles?

3 DATA SETS

We obtained a collection of slides from a digital image
processing course taught in Japanese by the third author at
Kyoto University in 2009. The course delivered a series of
12 week lectures, 1.5 hour long each, and 206 slides in total.

Students who enrolled this course were asked to sign
agreements to make their feedback data accessible to
researchers. Feedback data were recorded in every class
manually by students who filled in questionnaires with
5-point scale corresponding to very_low, low, average, high,
and very_high. We distributed questionnaires in the begin-
ning of each class, and asked students to specify their own
comprehension for each slide as soon as the next slide was
coming. We also explained that the feedback data have no
effect on test scores and the final grade of the course.

We obtained the questionnaire data from a total of
102 students, each of which constitutes a single data set. As
it was a voluntary research program, the data sets we can
gather from most students are scarce (Fig. 1). About half of
the students provided labels for less than 50 slides.
Although lecture attendance is mandatory in principle,
most students were absent in some classes. Moreover, they
did not necessarily complete the questionnaires for every
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slide (e.g., when they did not listen to the lecture). Only
31 students provided labels for over 100 slides, but closer
inspection reveals that some of the data are subject to
insensitive judgments or noise.

Accordingly, we applied the following selection and
filtering criteria to all 102 data sets. First, we eliminated data
sets whose class distribution does not cover all five
comprehension levels. Next, we tried to manually remove
the rating data that seem insensitive or spurious; the same
rating was given for a whole class. The selection process
resulted in 17 data sets whose statistics are shown in Table 1.

From a machine learning perspective, a problem of
multiclass classification is usually more difficult than
binary classification. This is simply suggested by classifica-
tion accuracy of random guess; 20 percent for 5-level slide
classification and 50 percent for binary classification. To
increase accuracy of our prediction at the expense of

coarse-grained indicator, we duplicated additional 17 data
sets with replacement of two new labels as shown in
Table 2. The labels of high and very_high are merged into
understand while low and very_low are combined into
not_understand. All examples with the label of average are
discarded.

4 FEATURE PREPARATION

In this paper, we characterize slides based on two broad
categories of features:

4.1 Content-Based Features

Classifying slides according to comprehension level can be
viewed as a special case of automatic text categorization,
which is a task of assigning a category to a document.

Text categorization has reached a mature level and spans
a wide range of applications such as sentiment analysis for
movie reviews [18], emails classification based on intention
[2], customer satisfaction analysis [8], spam detection in
online posts [9], and stock prediction based on financial
news [20]. Machine learning techniques are the key to
solving this problem and often employ the bag-of-words
model as classificatory features. Document representation is
simplified by the assumption that the order of words is not
important for the task of document classification.

It is intuitive to use word features in our problem
context because a word (or a topic) that appears in slides
is often a “direct” indicator of comprehension. The criteria
for selection is that any technical terms or topics that
have impact on understanding are manually extracted as
features. From our slide collection, we obtain 227 unique
topics as content-based features. Each slide has an average
and a median of three unique topics. As for the feature
representation, we choose a binary model; that is, whether
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Fig. 1. Histogram of labeled slides count.

TABLE 1
The Number of Samples Distributed over

Five Classes of Comprehension Level

TABLE 2
The Number of Samples Distributed over

Two Classes of Comprehension Level



a topic appears in a slide or not while ignoring topic
frequency.

4.2 Presentation-Based Features

As how instructors present materials also affects compre-
hension, we develop a set of 11 presentation-based features:
wordCount, slideDuration, slidePosition (the distance from the
beginning slide of a lecture), minFontSize (the smallest letter
size), seatDistance (seat row number), slideSimilarity (how
similar it is to the previous slide), hasBullet, hasChart (e.g.,
histogram, bar chart, pie chart, function graph, scatter plot),
hasDiagram (e.g., tree diagram, network diagram, flowchart,
Venn diagram), hasFigure, and hasMathFormula.

All features except wordCount and slideSimilarity are
extracted manually from slides. Unlike English, Japanese
sentences have no explicit word boundary. We use ChaSen
[15], a morphological analyzer, for segmenting Japanese
words in slides. Only informative words including nouns,
verbs, and adjectives are extracted to estimate the word
count. For slideSimilarity, we apply a cosine measure with
tf.idf weighting to calculate similarity score for each pair of
two consecutive slides. In general, seatDistance can indicate
the level of students’ interest. We decide to include
seatDistance as it also augments minFontSize. That is, slide
legibility also depends on the seat location in the classroom.

It is important to emphasize that our current study is in
engineering education contexts. Lecture materials present
conceptual ideas with mathematical elements, which
govern the choice of features such as hasMathFormula and
hasDiagram. Although these features are mostly pertinent to
engineering context, our approach is general and applicable
to various disciplines. More features can be added if they
become relevant, and irrelevant features can be removed
depending on characteristics of lecture contents.

5 SUPPORT VECTOR MACHINES

A powerful statistical learner is solicited to prevent the
overfitting problem as our data sets are very small but high-
dimensional. Support vector machines (SVM) [5] is proved
effective to handle this unsatisfactory characteristic of data
(see, e.g., in [1] where SVM is used to deal with very small
gene expression data sets). Here we provide a brief
introduction to SVM.

For most learners, a prediction outcome is determined by
a decision boundary or a separating hyperplane given as
gðxðiÞÞ ¼ wTxðiÞ þ b ¼ 0 where xðiÞ is the input features
vector of a data point i, w is the weights or coefficients
vector, and b is the bias. The prediction outcome for a data
point is positive if gðxðiÞÞ > 0 and negative otherwise. The
intuition behind SVM that makes it different from other
learners is confidence level of this prediction. Intuitively,
we can make very confident prediction of positive and
negative class, respectively, when gðxðiÞÞ � 0 and gðxðiÞÞ �
0 because, in that case, a data point is very far from a
hyperplane. In contrast, a small change to hyperplane’s
direction can easily cause a different prediction of data
points lying near the hyperplane. Therefore, the key idea of
SVM is to find an optimal hyperplane with a large margin
that separates positive from negative data points. Because
data points lying far from the hyperplane have no role in

deciding hyperplane’s direction, SVM ignores them and
computes the hyperplane direction based on only those
lying near the hyperplane, which are called support vectors.

The problem of finding an optimal hyperplane is
reduced to solving the following optimization problem:

minimize
w;b

1

2
kwk2 þ C

Xm

i¼1

�i

subject to yðiÞðwTxðiÞ þ bÞ � 1� �i; i ¼ 1; . . . ;m

�i � 0; i ¼ 1; . . . ;m;

where m is the number of data points (or training
examples), C is the regularization parameter that balances
between accuracy and generalizability, and �i is a slack
variable that allows misclassification for a data point i.

Intuitively the problem becomes maximizing the margin

which is represented by the term 2
kwk2 . This objective

function, however, is equivalent to minimizing 1
2 kwk

2,

which can be solved efficiently by off-the-shelf optimization

software. The constraint term yðiÞðwTxðiÞ þ bÞ indicates

whether a data point i is correctly classified. By adding a

slack variable �i to this term, it is possible for the hyperplane

to misclassify data points (i.e., if �i >1, then yðiÞðwTxðiÞþbÞ<0,

resulting in misclassification). This regularization term gives

better control over outliers as well as helps to avoid the

overfitting problem in most cases.
Inherently, SVM can manage only the case of binary

classification. There are two common extensions for build-
ing a multiclass classifier. Let c be the number of classes.
The first strategy is to build c binary classifiers to classify
one-class versus the rest (also known as the one-versus-all
classification). The predicted class is the one that classifies a
testing data point with the greatest margin. Another
extension is to use as many as cðc� 1Þ=2 binary classifiers
to separate each class from every other class (also known as
one-versus-one classification). The prediction outcome is
the one predicted by most classifiers. Although more
classifiers are used in this case, there are usually far less
number of training data in each classifier, resulting in faster
training time.

Because we exploit the coefficients vector for analyzing
learning skills (see Section 7), any machine learners that
offer such vector (e.g., logistic regression) is applicable to
our analysis approach. However, our study is limited to
SVM as it is among the state-of-the-art learners and often
performs better than others.

6 EXPERIMENTS

We compare classification performance among three
feature categories: Content (C), Presentation (P), and Content
+ Presentation (C+P).

6.1 Experimental Setup

We use an efficient algorithm of SVM, called sequential
minimal optimization (SMO), implemented in Weka [23].
The regularization parameter C is set to 1, and the option
buildLogisticModels is set to false as probability estimates are
not used in this study. One-versus-one strategy is used for
multiclass classification.
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As our data sets are too small to perform training-test
split, leave-one-out cross validation (LOOCV) is used for
approximating generalization errors. For each data set, an
example is held out as the test set and the rest of the data set
forms the training set. The process repeats until every
example becomes a test example exactly once. Classification
accuracy is then averaged among all tests. The baseline
approach in our study is a classifier that always predicts the
majority class (ZeroR in Weka). This baseline is often used
in comparison as its classification accuracy is usually higher
than random guess.

The number of features usually sets a tradeoff between
bias and variance of classifier performance. Therefore, we
vary the number of features by applying a feature selection
technique which reduces the feature number, and a non-
linear kernel which transforms the input feature space to a
higher-dimensional feature space, thereby increasing the
number of features.

Assuming the classifier performance is estimated by
LOOCV, feature selection is performed during the training
stage where, in a training set, one example is held out for
the evaluation stage and the rest examples become available
to a feature selection algorithm. Features are selected based
on information gain, IðY ;XÞ ¼ HðY Þ �HðY jXÞ where
HðY Þ is the entropy of class attribute Y , HðY jXÞ is the
conditional entropy of Y given that we know the value of a
feature X. IðY ;XÞ measures the benefit of knowing X for
reducing uncertainty about Y . Information gain is com-
puted for each feature, and features are ranked according to
information gain scores. In our experiments, the final
number of features is varied from 10 to 200 (in step of 10).
A feature set that produces the highest accuracy on the
training set is considered optimal.

A linear classifier treats input features independently; as
a result, the number of dimensions is as many as the

number of input features. To increase the number of
dimensions, a nonlinear kernel models feature conjunctions.
The idea is that comprehension level may not be estimated
by a single feature alone, but by a combination of features
like minFontSize AND seatDistance or wordCount AND
slideDuration. In such a case, a quadratic kernel is needed.
In our experiments, we use a polynomial kernel Kðxi;xjÞ ¼
ðxi � xj þ 1Þd where the order of polynomial d is varied from
2 to 6 and only the best results are reported.

6.2 Experimental Results

Table 3 shows accuracy of multiclass classification. At a
glance, every method is statistically better than the baseline
(p < 0:001). With an average of 89 features remaining,
Content+Presentation+FeatureSelection is the best method and
is statistically better than others except Presentation+Nonli-
nearKernel ðp ¼ 0:025Þ. Content+Presentation, with 86 fea-
tures remaining on average, performs better than Content
with p < 0:001 and also better than Presentation with
p ¼ 0:003. Presentation is slightly better than Content, but
the result is statistically indistinguishable.

Table 4 shows performance comparison for binary
classification. Again, every method is significantly better
than the baseline (p < 0:003). With an average of 59 features
remaining, Content+Presentation+FeatureSelection is the best
method and is statistically better than others except
Presentation+NonlinearKernel ðp ¼ 0:182Þ: Content+ Presenta-
tion, with 49 features remaining on average, performs better
than Content and Presentation but the results are not
statistically significant (with p ¼ 0:014 and p ¼ 0:056,
respectively). Presentation is as good as Content.

Based on these empirical results, the first question we
posed earlier has been answered: Presentation is as effective
as Content for slide classification according to comprehen-
sion levels.
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TABLE 3
Comparison of 5-Class Classification Accuracy

among the Baseline (B), Content-Based Features (C),
Presentation-Based Features (P), Content-Based

Features with Feature Selection (C + FS),
Presentation-Based Features with Nonlinear Kernel
(P + NK), Combined Features (C + P), Combined

Features with Feature Selection (C + P + FS)

* marks results that differ significantly from the baseline at p < 0:01 (two-
tailed paired t-test).

TABLE 4
Comparison of Binary Classification Accuracy

among the Baseline (B), Content-Based Features (C),
Presentation-Based Features (P), Content-Based Features

with Feature Selection (C + FS), Presentation-Based
Features with Nonlinear Kernel (P + NK), Combined

Features (C + P), Combined Features with
Feature Selection (C + P + FS)

* marks results that differ significantly from the baseline at p < 0:01 (two-
tailed paired t-test).



6.3 Discussion

For multiclass classification, we observe that the gap between
training error and test error (LOOCV) is large in several data
sets for both Content and Content+Presentation. This situation
suggests an overfitting problem (high variance). Since
adding more training examples is not an option, we instead
try to apply a smaller set of features. For Presentation, the gap
between training and test error is small; however, the
training error is still very high. This suggests incapability of
features for the classification task (high bias). As the number
of presentation-based features is currently fixed, a nonlinear
classifier (polynomial kernel) is applied to map the input
feature space to a higher-dimensional feature space.

Learning to estimate multilevel comprehension is in-
herently difficult. We speculate that our data gathering in
the classroom was not efficient. First, the data gathering
process puts a lot of cognitive load on students as they had
to report their own comprehension at the same time they
tried to understand the lecture contents. Second, students
were asked to perform, in a sense, multiclass classification
manually. That is, they need to distinguish between closely
related classes such as high from very_high and low from
very_low. Without precise justification from students, the
classes get mixed and are not clearly separable. This reason
might explain, in most cases, why the gap between training
and test errors that we observed is much smaller when
these classes are merged (binary classification).

We also examine how well a classifier can generalize

across students. To this end, we build a binary classifier that

uses as the training set data from all students except a target

student. The accuracy is measured with the test set collected

from the target student. The results in Table 5 show that a

classifier trained with one’s own data outperforms a

classifier trained with others’ data (p < 0:001) even if more

training examples are available to the latter. As expected,

predicting performance of a previously unseen student

based on observation of other students’ feedback is less

reliable due to individual differences.

7 MEASURING LEARNING SKILLS

Any prediction without explanation is hard to be justified.

More important, the ultimate goal of this paper is not about

“prediction” in itself. Rather, we shall seek explanation for

poor comprehension from the prediction model.
Content+FeatureSelection and Content are not a viable

option because presentation styles are not available for

analysis. With Presentation+NonlinerKernel, we cannot inter-

pret presentation styles independently due to feature

conjunctions. Despite being the most effective method,

Content+Presentation+FeatureSelection filters out different

presentation features across students such that there is

little overlap, making it difficult to compare results with

learning preferences. Compared to Content+Presentation+

FeatureSelection, Content+Presentation trades classification

accuracy with a more robust way to interpret results. We

prefer Content+Presentation to Presentation not only because

it performs better, but it also offers the analysis that filters

the effect of lecture contents from presentation styles.

We shall analyze linear classifier models under Con-
tent+Presentation. We choose the binary model rather than
multiclass simply because it is easier to interpret the result.

7.1 Separating Effect of Contents from Presentation
Styles

The need of separating contents from their presentation
arises from a fact that comprehension level depends not
only on teaching styles but also on difficulty level of topics
themselves. The appearance of equations, for instance,
seems to lead to poor comprehension, but their complexity
varies greatly from topic to topic. The impact of presenta-
tion elements is unclear unless subtracted with topic impact.

Ranking features according to the size of coefficients is a
common approach to impact analysis. In our application
context, the impact analysis can be done at two levels:
individual and collective. Even though we emphasize in-
dividual differences by building separate classifiers, this
does not prevent us from building a classifier that combines
feedback from all students. At the collective level, SVM
tries to optimize classification accuracy by taking into
account feedback data provided by all students.

Using Presentation alone makes an independent assump-
tion that features other than presentation styles are
irrelevant to comprehension level. However, analyzing the
impact without taking contents into account has a strong
bias toward presentation styles, which can be misleading at
times. This problem can be seen clearly when Tables 6 and 7
are compared side by side. In an extreme case of ID9653, all
presentation-based features disappear from the top ranks
and are replaced completely by content-based features. That
is, the quality of presentation styles is likely to have little
impact on this student, which would otherwise remain
unobserved with the absence of content-based features. In
contrast, for ID4419, a few presentation-based features
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TABLE 5
Comparison of Binary Classification Accuracy between a
Classifier That Is Trained with One’s Own Data and One

That Is Trained with Data Obtained from All Other Students

Both binary classifiers use combined features (C þ P Þ.



remain in the top ranks, implying that he or she still relies
heavily on those presentation elements. When the feature
impact is analyzed collectively across all students, we see
that slidePosition, minFontSize, and hasBullet have the great
impact even with the presence of content-based features.

When the impact analysis is done collectively, one

should keep in mind that those dominant features may

differ from class to class, due to individual differences, and

from subject to subject, due to unique characteristics of each

discipline. Therefore, the results must be interpreted with

care. In other words, our approach is general but applies in

a class-specific and subject-specific manner.
Although content-based features are not useful for

revealing comprehension problems, incorporating them

into a classifier can “systematically” filter out the impact

of contents from presentation styles. We believe that the use

of combined features together with this empirical result

should address the second question we posed in Section 2.

7.2 Making Inference from Presentation Styles

As a classification result depends on the sign of the distance

from the separating hyperplane, coefficients in the hyper-

plane equation play the essential role in deciding the

prediction outcome. Intuitively, positive coefficients con-

tribute to the prediction of understand while negative

coefficients to not_understand. This interpretation results in

positive and negative impact of how students respond to

presentation styles (attributes) as shown in Table 8.
Take a student with ID0493 as an example. This student

learns well with visual aids such as figures, diagrams, and

charts (hasFigure, hasDiagram, and hasChart being positive).

In contrast, many words in a single slide may hurt his or her

comprehension (wordCount being negative). minFontSize

being negative is probably attributed by the fact that most

figure captions are of small size. In general, slideSimilarity

indicates how smooth is the topic transition, or to what

extent one can tolerate nonsmooth transition. The negative

impact of slideSimilarity toward some other students

surprised us at first. The more content overlapping the

consecutive slides share, the less understanding they will

gain. In this case, we speculate that the topic difficulty

arises when a topic develops more deeply. Since this

student did not change the seat row throughout the course,
the impact analysis of seatDistance is not available.

When analyzed collectively with a classifier that com-
bines all data, students tend not to understand as a lecture
proceeds (the coefficient sign of slidePosition being nega-
tive), prefer well-organized contents into topic-subtopic
(hasBullet being positive), and have a problem to under-
stand math formula (hasMathFormula being negative). Note
that the collective impact, in most cases, follow the majority
votes across students analyzed individually.

Apart from the collective analysis, the aggregate results
obtained from separate classifiers might reveal interesting
knowledge. For example, hasDiagram being positive out-
numbers hasChart being positive; diagrams are easier to
understand than charts. Some are good at processing
multichannel information at the same time (both wordCount
and hasFigure being positive). In general, we may use
association rule mining to facilitate the discovery of such
relationships. For example, the rule “seatDistance ¼
negative) slideDuration ¼ positive” can be derived with
the support of 0.35 (i.e., this pattern occurs 6

17 ¼ 35% of the
time) and the confidence of 0.86 (i.e., when seatDistance is
negative we can find 6

7 ¼ 86% of the time that slideDuration
is positive). This rule might be interpreted as follows: for
those who have poor comprehension because of sitting far
away from the front of a class, spending more time in
explanation might help them understand more.

7.3 Threshold for Understanding

After all, the sign of coefficients tells us about how students
comprehend a lecture. However, this guideline is some-
times vague. For example, while decision can be made
precisely on whether to use bullet points in slides or not, it
becomes unclear on how many words in a slide considered
harmful to students’ comprehension.

Table 9 presents thresholds for understanding derived
from SVM using only single attributes. The thresholds are
obtained by solving the separating hyperplane equation,
with single attributes, wi � xi þ b > 0 where wi and b are
SVM’s parameters, and xi is the normalized attribute value
2 ½0; 1� and i ranges over all numeric attributes. The actual
attribute values are recovered and shown in these thresh-
olds. It is worth noting that the precision of each threshold
is not measured by the current training examples but
approximated by previously unseen examples using
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TABLE 6
Presentation-Based Features (P) Ranked

by the Absolute Value of SVM Coefficients

TABLE 7
Top-10 Combined Features (C+P) Ranked
by the Absolute Value of SVM Coefficients



LOOCV. Omitted here is a measure of recall as how much
percentage of understand accounted for by the thresholds.

In several cases, a single attribute is not powerful
enough to beat the majority-class classifier; as a result, a
threshold cannot be decided based on that attribute alone,
which is marked by “n/a.” Nevertheless, we found that
increasing the number of minority examples in the training
data can address this problem. In our experiments, we use
synthetic minority oversampling technique (SMOTEn) [3] to
balance a data set where n is the percentage of “artificial”
minority examples being generated. The key idea is to
create synthetic examples such that they are surrounded, in
the feature space, by some genuine examples. Specifically,
each synthetic example is generated in the direction that
falls in between two genuine examples; one is given and
another is one of its k-nearest neighbors randomly chosen.
This process repeats until the example number reaches the
percentage specified. The nearest neighbors parameter, k,
is set to 5 in our study. It is important to emphasize that
synthetic examples are generated only during the training
stage and not used as the test examples. The results of
applying SMOTE are reasonable; as the precision
increases, the range of threshold shrinks (Table 9). When
a data set is highly imbalanced, SVM often has a bias
toward a trivial classifier that always predict the majority
class. We speculate that what accounts for the increased
precision is the lower chance to obtain the majority-class
classifier as a data set becomes more balanced.

Thresholds in Table 9 explain to what extent numeric
attributes have positive or negative impact. For example,
the threshold “> 12:5ð0:71Þ” of wordCount in ID0493 can be
interpreted as follows: a target student tends to understand
a slide, with 71 percent of the time, if it contains more than
12.5 words. The reader might notice, in this case, a
contradiction between the threshold and the negative
coefficient sign (Table 8), which is derived when all

attributes are available to the machine learner. That is, the
student is also likely to understand a slide with less than
12.5 words, but more conditions on other attributes are
necessary. Therefore, the thresholds should be interpreted
with care, and nothing can be inferred if the condition of
the threshold is not satisfied. The knowledge obtained from
data mining eventually becomes more actionable. For
example, by observing the threshold of wordCount analyzed
collectively for all students, a slide should not contain less
than 49 words. (This seems to be a large number of words,
but this number is better put in the context of our data set
statistics which have mean ¼ 31 words per slide, min ¼ 1,
max ¼ 108, and std: ¼ 23).

Note that we can easily obtain thresholds for not_under-

stand by reversing the condition in all the thresholds in

Table 8. However, the precision of those reversed thresh-

olds would be much lower than the case of understand. The

reason is that detecting rare events (not_understand) is more

difficult especially when only single attributes are available

to the machine learner.

8 CONCLUSION

This study shows a promising result toward estimating

students’ comprehension by a machine learning technique.

We are aware that a limitation of our study lies in the small

size of data sets. In retrospect, we think we could make our

data collecting more attractive to students. For example, to

facilitate slides labeling, handheld devices like iPhone

should be used instead of questionnaire sheets. As we

gained valuable experience in this pilot study and are in a

position to convince students of the benefit of providing

precise feedback that will let them understand their own

learning skills, we expect students to be more engaged in

real use of better system implementation.
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TABLE 8
Impact of Presentation Styles Derived from SVM’s Coefficients (i.e., The Sign Being Positive or Negative)

“n/a” is interpreted as no impact or unknown.



Restricting a learning environment to computer-based
instruction would also eliminate several problems in this
research. Teacher’s performance, for instance, is hard to be
controlled in this study. Although our third author is an
experienced teacher as well as an expert in the subject
being taught, a human teacher might be unreliable at

times. Similarly, seatDistance which is also unpredictable or
difficult to be controlled is no longer relevant once it
comes to computer-based lessons (i.e., everyone sits in
front of a computer screen). More important, learning
intervention becomes easier as we can focus on individual
students rather than the majority of them. That is,
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TABLE 9
Thresholds for Understanding Derived from Single-Attribute Learners (or Decision Stumps)

In parenthesis is the (approximated) precision of detecting the class of understand given by each threshold.



different instructional modes can be tailored to indivi-
duals’ learning skills.

Visualizing students’ comprehension has huge impact on
education. On one hand, our method shows how success-
fully instructors present materials, thereby allowing them to
improve pedagogical strategies. On the other hand, gather-
ing comprehension data in classrooms turn passive stu-
dents into active one. We provide instructors with an
analysis tool to measure learning skills systematically,
based on presentation styles used in lecture materials.
Understanding limited capability of students would sup-
port decision-making for adjusting presentation styles.
Nevertheless, we must remember that the most important
factor to students’ success lies not only in effective
presentation styles but also in a more genuine feature like
sympathetic observation and intense dedication to students.
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