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Abstract—Roman Tutor is a tutoring system that uses sophisticated domain knowledge to monitor the progress of students and

advise them while they are learning how to operate a space telerobotic system. It is intended to help train operators of the Space

Station Remote Manipulator System (SSRMS) including astronauts, operators involved in ground-based control of SSRMS and

technical support staff. Currently, there is only a single training facility for SSRMS operations and it is heavily scheduled. The training

staff time is in heavy demand for teaching students, planning training tasks, developing teaching material, and new teaching tools. For

example, all SSRMS simulation exercises are developed by hand and this process requires a lot of staff time. Once in an orbit ISS

astronauts currently have only simple web-based material for skill development and maintenance. For long duration space flights,

astronauts will require sophisticated simulation tools to maintain skills. Roman Tutor addresses these challenges by providing a

portable training tool that can be installed anywhere and anytime to provide “just in time” training. It incorporates a model of the system

operations curriculum, a kinematic simulation of the robotics equipment, and the ISS, a high performance path planner and an

automatic task demonstration generator. For each element of the curriculum that the student is supposed to master, Roman Tutor

generates example tasks for the student to accomplish within the simulation environment and then monitors its progression to provide

relevant feedback when needed. Although motivated by the SSRMS application, Roman Tutor remains applicable to any telerobotics

system application.

Index Terms—Telerobotics training, intelligent tutoring, robot manipulation, path planning, demonstration generation.
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1 INTRODUCTION

ROMAN TUTOR (RObot MANipulation Tutor) is a
simulation-based tutoring system to support astronauts

in learning how to operate the Space Station Remote
Manipulator (SSRMS), an articulated robot arm mounted
on the international space station (ISS). Once in orbit, ISS
astronauts currently have only simple web-based material
for skill development and maintenance. For long duration
space flights, astronauts will require sophisticated simula-
tion tools to maintain skills. Roman Tutor addresses these
challenges by providing a portable training tool that can be
installed anywhere and anytime to provide “just in time”
training. Fig. 1 includes a image of the SSRMS on the ISS.
Astronauts operate the SSRMS from a robotic workstation
located inside one of the ISS compartments. Fig. 1 also
shows the workstation which has an interface with three
monitors, each of which can be connected to any of the 14
cameras placed at strategic locations on the exterior of the
ISS. Roman Tutor’s user interface in Fig. 2 includes the most
important features of the robotic workstation.

The SSRMS is a key component of the ISS and is used in

the assembly, maintenance, and repair of the station, and

also for moving payloads from visiting shuttles. Operators
manipulating the SSRMS on orbit receive support from
ground operations. Part of this support consists of visualiz-
ing and validating maneuvers before they are actually
carried out on the ISS. Operators have in principle
rehearsed the maneuvers many times on the ground prior
to the mission, but unexpected changes are frequent during
the mission. In such cases, ground operators may have to
generate 3D animations for the new maneuvers and upload
them to the operator on the station. So far, the generation of
these 3D animations are done manually by computer
graphic programmers and thus are very time consuming.

SSRMS can be involved in various tasks on the ISS,
including moving a load from one place of the station to
another, inspecting the ISS structure (using a camera on the
arm’s end effector) and making repairs. These tasks must be
carried out very carefully to avoid collisions with the ISS
structure and to maintain safety-operating constraints on
the SSRMS (such as avoiding self-collisions and singula-
rities). At different phases of a given manipulation, the
astronaut must choose a setting of cameras that provides
him with the best visibility while maintaining awareness of
his progress on the task. Thus, astronauts are trained not
only to operate the arm itself, but also to recognize visual
cues on the station that are crucial in mentally reconstruct-
ing the actual working environment from the partial and
restricted views provided by the three monitors, and to
select cameras depending on the task and other parameters.

One challenge in developing a good training simulator is,

of course, to build it so that one can reason about it. This is

even more important when the simulator is built for training

purposes [1]. Until now, simulation-based tutoring is
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possible only if there is an explicit model or representation

of the problem space associated with training tasks. The

explicit representation is required in order to track student

actions, to identify if these actions are still on a path to a

solution and to generate relevant tutoring feedback [2], [3].

Knowledge and model tracing are only possible in these

conditions [4]. It is not always possible to develop an explicit

comprehensive task structure in complex domains, espe-

cially in domains where spatial knowledge is used, as there

are many possible ways to solve a given problem. The robot

manipulation that Roman Tutor focuses on is an example of

such a domain. For each robot manipulation task, there is a

combinatorial explosion of possible solutions for moving

SSRMS from one place to another in the ISS environment.

Such domains has been identified as “ill-structured” [5], [6].
Conventional tutoring approaches such as model-tra-

cing [7] or constraint-based modeling [8] are very limited
when applied on “ill-structured” domains. A model-
tracing approach consists of comparing a predefined task
model with a student’s solution. In the context of robot
manipulations, because of the infinity of solutions we have
associated with each task, designing a task model by hand
becomes practically infeasible. Applying a constraint-based
modeling approach in the context of robot manipulations
will also face the same kind of limitations. Here, identify-
ing the constraints associated with robot manipulation
tasks can be difficult and very time consuming. Since a
huge number of constraints is required to achieve an
adequate level of tutoring assistance [6], the approach
becomes impractical.

To overcome these limitations, we propose a solution to
this issue by integrating a sophisticated path planner
FADPRM [9] as a domain expert system to support spatial
reasoning within the simulator and make model tracing
tutoring possible without any explicit task structure.

Flexible Anytime Dynamic PRM path planner (FADPRM)
is an extension to the PRM planning framework [10] to
handle regions to which we assign preferences within
complex workspaces. By being flexible in this way,
FADPRM not only computes collision free paths but also
capable of taking into account the placement of cameras on
the ISS, the lighting conditions and other safety constraints
on operating the SSRMS. This allows the generation of
collision-free trajectories in which the robot stays within
regions visible through cameras and in which the manip-
ulation is, therefore, safer and easier. FADPRM also
implements a dynamic strategy to adapt efficiently to
dynamic changes in the environment and replan on the fly
by exploiting results from previous planning phases.

FADPRM also implements an anytime strategy to provide

a correct but likely suboptimal solution very quickly and

then incrementally improve the quality of this solution if

more planning time is allowed.
Roman Tutor uses the different capabilities implemented

within the FADPRM path planner to provide useful

feedback to a student operating the SSRMS simulation. To

illustrate, when a student is learning to move a payload

with the robot, Roman Tutor invokes the FADPRM path-

planner periodically to check whether there is a path from

the current configuration to the target and provides feed-

back accordingly. By using FADPRM as a robot manipula-

tion domain expert, we follow an “expert system approach”

to support the tutoring process within Roman Tutor. This

approach has proven successful and has been used within

different well-known intelligent tutoring systems such as

SOPHIE I [11] and GUIDON [12]. But in our case, we are

applying it in the context of robot manipulations, an “ill-

structured” domain.
We also developed within Roman Tutor an automatic

task demonstration generator (ATDG) [13], which gener-

ates 3D animations that demonstrate how to perform a

given task with the SSRMS. The ATDG is integrated with

the FADPRM path planner and can contribute to ground

support of SSRMS operations by generating useful task

demonstrations on the fly that help the student carry out

his tasks. ATDG includes a component based on TLPlan

[14] for camera planning and uses Linear Temporal Logic

(LTL) as the language for specifying cinematographic

principles and filming preferences. A robot trajectory is

first generated by FADPRM and TLPlan is then called to

find the best sequence of camera shots following the robot

on its path.
In the next section, we start by presenting FADPRM and

ATDG in detail. We then describe Roman Tutor’s internal

architecture and outline its basic functionalities. After

enumerating the tasks on which a student is trained within

Roman Tutor, we describe the approaches followed to

provide the tutoring assistance. In a following section, we

show how the use of FADPRM as a domain expert within

the simulator helped in providing very relevant tutoring

feedback to the student. We finally conclude with a

discussion on related work.
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Fig. 1. SSRMS on the ISS (left) and the Robotic Workstation (right).

Fig. 2. Roman tutor interface.



2 FADPRM PATH PLANNER

In its traditional form, the path planning problem is to plan

a path for a moving body (typically a robot) from a given

start configuration to a given goal configuration in a

workspace containing a set of obstacles. The basic constraint

on solution paths is to avoid collision with obstacles, which

we call hereby a hard constraint. There exist numerous

approaches for path planning under this constraint [10],

[15], [16], [17], [18]. In order to take into account the

visibility constraints we have in the SSRMS environment,

we developed a new class of flexible path planners

FADPRM [9] able to express and take into account

preferences in the navigation of the robot within very

complex environments. In addition to the obstacles the

robot must avoid, our approach takes account of desired

and undesired (or dangerous) zones. This will make it

possible to take into account the placement of cameras on

the station. Thus, our planner will try to keep the robot in

zones offering the best possible visibility of progress on the

task while trying to avoid zones with reduced visibility.
The robot free workspace is segmented into zones with

each zone having an associated degree of desirability (dd),

that is, a real number in the interval [0 1], depending on the

task, visual cue positions, camera positions, and lighting

conditions. The closer the dd is to 1, the more the zone is

desired. Safe corridors are zones with dd near to 1, whereas

unsafe corridors are those with dd in the neighborhood of 0.

A zone covering the field of view of a camera will be

assigned a high dd and will have a cone shape; whereas, a

zone with very limited lighting conditions will be con-

sidered as an nondesired zone with a dd near 0 and will

take an arbitrary polygonal shape. Fig. 3 illustrates a

trajectory of the SSRMS going through three cameras fields

of view (three cones) and avoiding a nondesired zone

(rectangular box).
For efficient path planning, we preprocess the robot

workspace into a roadmap of collision-free robot motions in

regions with highest desirability degree. More precisely, the

roadmap is a graph such that every node n in the graph is

labeled with its corresponding robot configuration n.q. and

its degree of desirability n.dd, which is the average of dd of

zones overlapping with n.q. An edge (n, n’) connecting two

nodes is also assigned a dd equal to the average of dd of

configurations in the path segment (n.q, n’.q). The dd of a

path (i.e., a sequence of nodes) is an average of dd of
its edges.

Following probabilistic roadmap methods (PRM) [19],
we build the roadmap by picking robot configurations
probabilistically, with a probability that is biased by the
density of obstacles. A path is then a sequence of collision
free edges in the roadmap, connecting the initial and goal
configuration. Following the Anytime Dynamic A� (AD�)
approach [20], to get new paths when the conditions
defining safe zones have dynamically changed, we can
quickly replan by exploiting the previous roadmap. On the
other hand, paths are computed through incremental
improvements so the planner can be stopped at anytime to
provide a collision-free path (i.e., anytime after the first such
path has been found) and the more time it is given, the more
the path is optimized to move through desirable zones.

FADPRM works as follows: The input is an initial
configuration, a goal configuration, a 3D model of obstacles
in the workspace, a 3D specification of zones with
corresponding dd, and a 3D model of the robot. Given
this input:

. To find a path connecting the initial and goal
configurations, we search backward from the goal
toward the initial (current) robot configuration.
Backward search instead of forward search is done
because the robot moves and, hence, its current
configuration is not in general the initial configura-
tion; we want to recompute a path to the same goal
when the environment changes before the goal
is reached.

. A probabilistic queue OPEN contains nodes of the
frontier of the current roadmap (i.e., nodes are
expanded because they are new or because they
have previously been expanded but are no longer up
to date w.r.t. to the desired path) and a list CLOSED
contains nonfrontier nodes (i.e., nodes already
expanded).

. Search consists of repeatedly picking a node from
OPEN, generating its predecessors and putting the
new ones or out of date ones in OPEN.

. The density of a node is the number of nodes in the
roadmap with configurations that are a short
distance away (proximity being an empirically set
parameter, taking into account the obstacles in an
application domain). The distance estimate to the
goal takes into account the node’s dd and the
euclidean distance to the goal. A node n in OPEN
is selected for expansion with probability propor-
tional to

ð1� �Þ=densityðnÞ þ ��goal� distance
� estimateðnÞ with 0 � � � 1:

This equation implements a balance between fast-
solution search and best-solution search by choosing
different values for �. With � near to 0, the choice of
a node to be expanded from OPEN depends only on
the density around it. That is, nodes with lower
density will be chosen first, which is the heuristic
used in traditional PRM approaches to guarantee the
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Fig. 3. SSRMS going through three different cameras fields of view
(cones) and avoiding a nondesired zone (rectangular box).



diffusion of nodes and to accelerate the search for a
path [19]. As � approaches 1, the choice of a node to
be expanded from OPEN will rather depend on its
estimated distance to the goal. In this case, we are
seeking optimality rather than the speed of finding a
solution.

. To increase the resolution of the roadmap, a new
predecessor is randomly generated within a small
neighborhood radius (that is, the radius is fixed
empirically based on the density of obstacles in the
workspace) and added to the list of successors in the
roadmap generated so far. The entire list of
predecessors is returned.

. Collision is delayed: detection of collisions on the
edges between the current node and its predecessors
is delayed until a candidate solution is found; if
there is a collision, we backtrack. Collisions that
have already been detected are stored in the road-
map to avoid doing them again.

. The robot may start executing the first path found.

. Concurrently, the path continues being improved by
replanning with an increased value of �.

. Changes in the environment (moving obstacles or
changes in dd for zones) cause updates of the
roadmap and replanning.

The calculation of a configuration dd and a path dd is a
straightforward extension of collision checking for config-
urations and path segments. For this, we customized the
Proximity Query Package (PQP) [21]. The 3D models for the
ISS, the SSRMS, and zones are implemented using a
customization of Silicon Graphics’ Open Inventor. The
robot is modeled using Motion Planning Kit (MPK), that
is, an implementation of Sanchez and Latombe’s PRM
planner [19].

3 THE AUTOMATIC TASK DEMONSTRATION

GENERATOR

The automatic task demonstration generator [13] takes as
input a start and a goal configuration of the SSRMS. ATDG
will generate a movie1 demonstration of the required
manipulations that bring the SSRMS from the start config-
uration to the goal configuration. The top figure in Fig. 4
shows the internal architecture of the ATDG. The bottom
one shows the different steps the data go through in order
to transform the two given configurations into a complete
movie demonstration.

First, ATDG calls the FADPRM path planner to generate
a collision free path between the two given configurations.
The path is then passed to the trajectory parser which
separates it into categorized segments. This will turn the
continuous trajectory into a succession of scenes, where
each scene can be filmed by a specific group of idioms. An
idiom is a succession of shots that represents a stereotypical
way to film a scene category. The parser looks for
uniformity in the movements of the SSRMS to detect and
recognize the category of scenes. Once the path is parsed, a

call is made to the camera planner TLPlan to find the best

shots that best convey each scene, while making sure the

whole is pleasing and comprehensive.
The use of TLPlan as a camera planner within ATDG

provides two advantages. First, Linear Temporal logic, the

language used by TLPlan is more expressive, yet with a

simpler defined semantics, than previous camera planning

languages such as DCCL [22]. For instance, we can express

arbitrary temporal conditions about the order in which

objects should be filmed, which objects should remain in the

background until some condition become true, and more

complex constraints that the LTL language can express.

Second, TLPlan is more powerful than other camera

planners presented in the literature such as [22], [23], [24],

[25] because with TLPlan, LTL shot composition rules

provide a search pruning capability. In ATDG, each shot in

the idiom is distinguished by three key attributes: shot type,

camera placement mode, camera zooming mode.

. Shot Types: five shot types are currently defined in
the ATDG System: Static, GoBy, Pan, Track, and Pov.
A Static shot is done from a static camera when the
robot is in a constant position or moving slowly. A
GoBy shot has the camera in a static position
showing the robot in movement. For a Pan shot,
the camera is in a static position but doing
incremental rotations following the movement of
the robot. A Track shot has the camera following the
robot and keeping a constant position relative to it.
Finally, the POV shot has the camera placed directly
on the SSRMS, moving with the robot.

. Camera Placements: for each shot type, the camera
can be placed in five different ways according to
some given line of interest: External, Parallel,
Internal, Apex, and External II. Currently, we take
the trajectory of the robot’s center of gravity as the
line of interest which allows filming of a number
of many typical maneuvers. For larger coverage
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Fig. 4. ATDG architecture.

1. This paper has three supplemental movie files, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TLT.2011.19.



of maneuvers, additional lines of interest will be
added later.

. Zoom modes: for each shot type and camera
placement, the zoom of the camera can be in five
different modes: Extreme Close up, Close up,
Medium View, Full View, and Long View.

Fig. 5 shows an idiom illustrating the anchoring of a new
component on the ISS. It starts with a Track shot following
the robot while moving on the truss. Then, another Track
shot follows that shows the rotation of one joint on the robot
to align with the ISS structure. And finally there is a Static
shot focusing on the anchoring operation. In TLPlan, idioms
are specified in the Planning Definition Language (PDDL
3.0). Intuitively, a PDDL operator specifies preferences
about shot types in time and in space depending on the
robot maneuver. Parsing the trajectory of the robot with the
successive scenes performed, TLPlan will try to find a
succession of shots that captures the best possible idioms.
TLPlan also takes into account cinematic principles to
ensure consistency of the resulting movie. Idioms and
cinematic principles are in fact encoded in the form of
temporal logic formulas within the planner. TLPlan uses
also an occlusion detector to make sure the SSRMS is visible
all the time. Once TLPlan is done, we are left with a list of
shots that is passed to the rendering system to create the
animation. The renderer uses both the shots given by
TLPlan and the SSRMS trajectory in order to position the
cameras in relation with the SSRMS, generating the final
task demonstration.

For each SSRMS movement type (or scene), we have
several idioms (from 6 to 10 in the current implementation)
and each idiom is defined by taking into account the
complexity of the movement, the geometry of the ISS, the
visual cues on the ISS, and the preferences of the viewer.
For example, if the SSRMS and the mobile base are moving
along the main truss of the ISS, it is important that the
camera shows not only the entire arm but also some visual
cues on the ISS so the operator can get a sense of situational
awareness for the relocation of the base of the arm.
Consequently, the idioms for this manipulation will involve
shots with a Full or Long View zoom. In contrast, move-
ments involving the end effector require a high precision, so
an Extreme Close Up zoom will be involved. Some of these
parameters can also be set directly by the user’s preferences.
The user can choose, for example, to always prefer a precise
set of cameras to use for the filming. The user can also
choose some parts of the SSRMS the film should focus on
the more possible.

4 ROMAN TUTOR ARCHITECTURE AND BASIC

FUNCTIONALITIES

4.1 Architecture and Main Components

Roman Tutor works with any robot manipulator provided a
3D model of the robot and its workspace are specified.
Roman Tutor’s architecture includes the following compo-
nents (Fig. 6): the graphic user interface, the State Reflector,
the FADPRM path planner, the automatic task demonstra-
tion generator, the Tutoring Module and the Simulator Core
with several third-party libraries: Proximity Query Package
[21], Open Inventor from Silicon Graphics, and Motion
Planning Kit [19].

As shown in Fig. 2, Roman Tutor’s user interface has
three screens (for the three monitors). The keyboard is used
to operate the robot (the SSRMS in our case). In command
mode, one controls the joints directly; in automatic mode,
one moves the end effector, small increments at a time,
relying on inverse kinematics to calculate the joint rotations.
In Fig. 2, different cameras are selected, displaying the same
robot configuration from different viewpoints. The per-
spective camera (on the left) can inspect the entire ISS 3D
model. It is used in training tasks aimed at helping a
student to develop a mental 3D model of the ISS even
though there is no such camera on the ISS. Normal training
uses small physical models of the ISS for the same purpose.

In Roman Tutor students could carry out several kinds of
training tasks that we describe more formally in the next
section. The State Reflector periodically updates the
student’s actions (i.e., keyboard inputs) and their effects
on the ISS environment (robot configuration, cameras
mapped to the monitors, their view angles, and the
operation mode). It also monitors lighting conditions.

4.2 Training Tasks

Training tasks can be classified as open, recognition,
localization, or robot manipulation. Open tasks are those
in which the student interacts with the simulator, without
any formally set goal, with minimal assistance configured
in the system’s preferences (e.g., collision warning and
avoidance). Recognition tasks train to recognize the
different elements in the workspace. An example is to
show a picture of an element of the ISS and ask the student
to name it and describe its function. Localization tasks train
to locate visual cues or ISS elements and to relate them
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Fig. 5. Idiom to film the SSRMS anchoring a new component on the ISS.

Fig. 6. Roman Tutor architecture.



spatially to other elements. An example is to show a picture
of a visual cue and ask the student to make it visible on the
screen using an appropriate selection of cameras; or we can
ask to name elements that are above another element shown
on the screen.

Robot manipulation tasks deal with moving the manip-
ulator (avoiding collision and singularities, using the
appropriate speed, switching cameras as appropriate, and
using the right operation mode at different stages),
berthing, or mating. An illustration is to move the arm
from one position to another, with or without a payload.
Another example is to inspect an indicated component of
the ISS using a camera on the end effector. These tasks
require the student to be able to define a corridor in a free
workspace for a safe operation of the robot and follow it.
The student must do this based on the task, the location of
cameras and visual cues, and the current lighting condi-
tions. Therefore localization and navigation are important
in robot operations. Robot manipulation tasks are made
more or less unpredictable by dynamically changing the
lighting conditions, thus requiring the revalidation of
safe corridors.

4.3 Tutoring Approaches in Roman Tutor

The Feedback Generator inside the Tutoring Module
(Fig. 6) periodically checks the current state to trigger
feedback to the student, using rules that are precondi-
tioned on the current state information and the current
goal. For the case of open, recognition and localization
tasks, these rules are “pure domain-dependent pedagogical
rules” related to task models designed by hand. For robot
manipulation tasks with a goal, they are generic pedago-
gical rules. Feedback rules take into account how long the
student has been trying on a subtask and how good or bad
he is progressing on it.

In the context of open, recognition, and localization
tasks, providing tutoring assistance seems straight for-
ward. The domain knowledge is well defined: what
element or cue of the ISS to recognize or to localize?
what camera to choose and when?, etc. Here, we follow a
model-tracing approach and define for each category of
tasks a well structured task model to support the tutoring
process. Task models are designed by hand starting from
recommendations provided by human experts and are
structured in the form of a graph encoding if-then rules.
The Feedback Generator uses the predefined task graphs
to validate student actions, identify gaps and provide
feedback accordingly.

As we stated previously in an early section, the domain
of robot manipulations is an “ill-structured” domain where
classical tutoring approaches start to loose efficiency and
show limitations. To overcome these limitations, we choose
to follow an “expert system approach” and use the
FADPRM path planner as a domain expert in our system
to support the tutoring process. In the context of robot
manipulation tasks, the Feedback Generator evaluates
student actions by comparing it to the optimal solutions
found by FADPRM and provides useful feedback accord-
ingly. The tutoring process that uses FADPRM as an expert
of the domain knowledge is described in more details in the
next section.

One of the very important early results in intelligent
tutoring research is the importance of the cognitive fidelity
of the domain knowledge module. That is, it is important
for the tutor to reason about the problem in the same way
that humans do [26]. Approaches for modeling a domain
expert within intelligent tutoring systems can be grouped
into three main categories: black box models, glass box
models, and cognitive models [27]. The main difference
between these models lies in the cognitive fidelity with
which each model represents the expert domain knowledge.

A black box model describes problem states differently
than the student. The classic example of such a system is
SOPHIE I [11]. SOPHIE I is a tutor for electronic trouble-
shooting that used its expert system to evaluate the
measurements students were making in troubleshooting a
circuit. The expert system made its decisions only by
solving sets of equations. A glass box model is an
intermediate model that reasons in terms of the same
domain constructs as the human expert. However, the
model reasons with a different control structure than the
human expert. A classic example of such a system is
GUIDON [12], a tutoring system for medical diagnosis. This
system was built around MYCIN, an expert system for the
treatment of bacterial infections. A cognitive approach, on
the other hand, aims to develop a cognitive model of the
domain knowledge that captures the way knowledge is
represented in the human mind in order to make the tutor
respond to problem-solving situations in a way very similar
to humans. This approach, in contrast to the other
approaches, has as an objective to support cognitively
plausible reasoning [27]. A good example for such a
tutoring system is SHERLOCK [28], another practice
environment for electronics troubleshooting. SHERLOCK
used a procedural domain knowledge representation based
on a cognitive analysis of human skill acquisition.

At different phases of a given manipulation such as
moving a payload using the SSRMS (Fig. 5), the astronaut
must choose the best setting of cameras that provides him
with the best visibility while keeping a good appreciation of
his evolution in the task. Thus, astronauts are trained not
only to manipulate the arm per se, but also to recognize the
best cameras suitable to film a given configuration of the
SSRMS within the ISS environment. Here, astronauts need
to mentally reconstruct the actual working environment
from just three monitors each giving a partial and
restricted view.

The FADPRM planner tries to keep the SSRMS in zones
offering the best possible visibility of the progress on the
task while trying to avoid zones with reduced visibility. By
taking into account the placement of cameras on the ISS,
FADPRM reasons about actions in a way very similar to
students: for each portion of the path, FADPRM tries the
enter the field of view of the best suitable camera available.
Thus, the use of FADPRM as a domain expert in Roman
Tutor results in a tutoring approach that lies in between a
glass box approach and a cognitive approach. Even if we
are applying it in the context of an “ill-structured” domain,
we believe that this will guarantee good quality of the
tutoring provided to the student, at least at the same level as
the one provided by a glass box model like GUIDON. In the
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next section, we describe and evaluate the tutoring
provided using FADPRM as an expert of the domain to a
student working on robot manipulation tasks.

5 FADPRM AS A DOMAIN EXPERT IN ROMAN TUTOR

Roman Tutor initiates a robot manipulation task and
monitors the student’s progress toward accomplishing it.
Students begin the task and can ask Roman Tutor for help
or for a recommendation about what to do next. Students
can ask Roman Tutor about how to avoid a collision with a
nearby obstacle, how to go to a desired location in the
workspace or how to go through a desired zone. In this
situation, the Feedback Generator calls the ATDG (which
calls the FADPRM planner) to compute and show a movie
illustrating how to complete the manipulation task. If the
objective is to give the operator a sense of the task as he will
be seeing it from the command and control workstation,
then virtual camera positions will be selected from the 14
cameras on the exterior of the ISS. But if the objective is to
convey some cognitive awareness of the task, then virtual
cameras are selected around the robot while moving on its
trajectory to best help the operator gain a maximal cognitive
awareness. The objective is set manually by the learner
through Roman Tutor’s interface to one of the following
values “Use Cameras on ISS” or “Use Virtual Cameras.”

Using the real time dynamic capability of the FADPRM
path planner, the Feedback Generator monitors the stu-
dent’s activity in the State Reflector to validate incremen-
tally student’s action or sequence of actions, give
information about the next relevant action or sequence of
actions. The Feedback Generator regularly evaluates
whether the task can be completed from the current
configuration of the manipulator and whether it can be
completed efficiently. At the point at which it discovers that
the student would have to backtrack from the current
position or that achieving the task takes more than the time
planned for it, the Feedback Generator will intervene and
begin to show the student a more efficient trajectory. Once a
better initial trajectory has been demonstrated, the student
can take control and resume the task. This error-prompted
turn taking repeats until the task is completed (Fig. 7). We
see here the importance of having FADPRM as a planner in
our system to guide the operations by the student. By taking
into account the placement of the cameras on the station, we

are assured that the plan shown to the student passes
through zones that are visible from cameras placed in the
ISS environment and can then be followed by the student.

To evaluate the tutoring mechanics we implemented to
support a student working on robot manipulation tasks, we
compare the types of feedback we provide in our applica-
tion to those provided by a classic intelligent tutoring
system SHERLOCK [28] that is known to be efficient.
SHERLOCK is a practice environment for electronics
troubleshooting and provides advice on problem solving
steps upon student request. Four types of feedback are
available [26]:

1. advice on what test action to carry out and how,
2. advice on how to read the outcome of the test,
3. advice on what conclusion can be drawn from the

test, and
4. advice on what option to pursue next.

As described earlier, our “FADPRM as a domain expert”
tutoring approach provides feedback not only upon request
but also intervenes automatically when it detects errors or
difficulties experienced by the student. Different types of
feedback are also available:

1. advice on what current action (or manipulation) to
execute and how by showing a valid path to the
current goal or by showing a movie computed
with ATDG;

2. advice on how to avoid errors while progressing on
a task by showing paths that avoid a nearby
obstacle or by showing movies recorded from the
most useful cameras.

3. advice on what conclusion can be drawn from the
errors made by detecting incorrect choices made by
the student and by proposing the right path to
follow, and

4. advice on what future action or sequence of actions
to pursue next in order to reach the goal.

For the feedback of types 2 and 3, the current trace of
actions (robot manipulations and camera selections) made
by the learner in order to reach the current configuration is
saved. A call is then made to FADPRM and ATDG to
evaluate the current trace, to diagnosis and identify errors
and propose improvements: better manipulations to do,
better cameras to select, etc. The list of these improvements
is then displayed to the learner with a video illustrating
them. The call to this diagnosis loop is made if requested by
the learner after accessing the “Ask Menu” within the
simulator interface or every time the system detects a
nearing collision or a dangerous manipulation with the
SSRMS too close to an obstacle on the ISS. In the current
implementation of Roman Tutor, immediate feedback is
provided to the learner every time he attempts to execute a
dangerous path. Also, the Feedback provided always
consists in showing the correct solution to the learner based
on the diagnosis made. Hence, the tutoring behavior inside
Roman Tutor remains limited. This issue will be addressed
in future versions of Roman Tutor in order to investigate
the use of different levels of intervention. Depending on the
user’s skills, his preferences and on the task being executed,
an appropriate level of intervention should be applied.
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In summary, the types of feedback provided by Roman
Tutor are quite similar to those provided by SHERLOCK.
The main difference is in the level of detail of the feedback
provided. Since we are working in an ill-defined domain,
the feedback provided by FADPRM remains less expressive
and not as precise as the feedback provided by SHERLOCK.
This issue can be addressed if the problem space generated
by FADPRM can be manually edited to add, where needed,
more information that can be used to enhance the quality
and the precision of the Tutoring. Conversely, one of the
main advantages of Roman Tutor is that, it operates in a
domain where a cognitive approach like the one used
within SHERLOCK cannot work due to the ill definess of
the domain. In this perspective, by using FADPRM as
expert of the domain, we succeeded in achieving a good
level of quality for the tutoring.

6 CONCLUSION

In this paper, we presented a real-time flexible approach for
robot path planning called FADPRM and showed how it
can be used efficiently to provide very helpful feedback to a
student on a robot manipulation training simulator.
FADPRM supports spatial reasoning and makes model
tracing tutoring possible without any explicit task structure.
By using FADPRM as a domain expert within the simulator,
we showed how to achieve a high-quality level for the
tutoring assistance without planning in advance what
feedback to give to the student and without creating a
complex task graph to support the tutoring process.

We also detailed the architecture of the intelligent
training simulator Roman Tutor in which FADPRM is
integrated. Among other components, Roman Tutor con-
tains an automatic task demonstration generator used for
the on the fly generation of useful task demonstrations
that help the student carry on his manipulation tasks on
the simulator.

Roman Tutor’s benefits to future training strategies are
1) the simulation of complex tasks at a low cost (e.g., using
inexpensive simulation equipment and with no risk of
injuries or equipment damage) and 2) the installation
anywhere and anytime to provide “just in time” training.
Crew members would be able to use it onboard the ISS, for
example, to study complex maintenance or repair opera-
tions. For very long missions, they would be able to use it to
train regularly in order to maintain their skills. In particular
Roman Tutor is able to generate as many training examples
as the student wants. This capacity provides important
learning challenges and opportunities that are not possible
with the current system based on a fixed set of manually
generated examples. Although motivated by the SSRMS
application, Roman Tutor with its innovative components
(FADPRM and ATDG) remains applicable to any other
telerobotics system application.

Although Roman Tutor brings some interesting solutions
for training in highly complex environments, a number of
enhancements and extensions are still possible. First of all,
its pedagogical value has to be evaluated. We are negotiat-
ing an evaluation of the system in collaboration with the
Canadian Space Agency. Second, the diagnosis process can
be improved by explicitly connected declarative knowledge

of the domain to the paths provided by FADPRM. This will
allow a deep knowledge tracing, thus a fine grained
cognitive diagnosis.
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