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Bees Algorithm for Construction of
Multiple Test Forms in E-Testing

Pokpong Songmuang and Maomi Ueno, Member, IEEE

Abstract—The purpose of this research is to automatically construct multiple equivalent test forms that have equivalent qualities
indicated by test information functions based on item response theory. There has been a trade-off in previous studies between the
computational costs and the equivalent qualities of test forms. To alleviate this problem, we propose an automated system of test
construction based on the Bees Algorithm in parallel computing. We demonstrate the effectiveness of the proposed system through

various experiments.

Index Terms—E-testing, multiple test forms, test construction, Bees algorithm, parallel computing.

1 INTRODUCTION

DUCATIONAL assessments occasionally need “multiple

test forms” in which each form consists of a different set
of items but still has qualities that are equivalent (e.g.,
equivalent amounts of test information based on item
response theory (IRT)) to the others. For example, multiple
test forms are needed when a testing organization admin-
isters a test in different time slots. To achieve this, multiple
test forms are constructed in which all forms have equivalent
qualities so that examinees, who have taken different test
forms, can be objectively evaluated on the same scale.

In order to construct multiple test forms, e-testing, which
accomplishes automated test construction, has recently
become popular in research areas involving educational
measurement [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
(12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32]. The methods in
previous studies have been used to construct all forms of a
test to satisfy the same test constraints (e.g., the number of
test items and the amount of test information) to ensure that
all forms have equivalent qualities. Van der Linden and
Boekkooi-Timminga [6] proposed a sequential method of
constructing test forms using linear programming to mini-
mize the fitting errors to the test constraints. The items that
had been used for constructing the test were removed from
the item bank and then the next test forms were constructed
from the remaining items. This method was called “sequen-
tial construction.” However, there was a serious problem in
that the fitting errors in these methods increased as the
number of constructed test forms increased.
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To solve this problem, Boekkooi-Timminga [16] and
Armstrong et al. [14] proposed methods that simulta-
neously constructed all test forms to minimize the differ-
ences in the fitting errors on the test forms. The former used
linear programming and the latter used network-flow
programming. Although the differences in the fitting errors
on the test forms were minimized, the computational costs
of these methods exponentially increased as the size of the
item bank or the number of test constraints increased.

To reduce the computational costs, van der Linden [19]
proposed a big-shadow-test (BST) method that sequentially
constructed test forms by minimizing the difference in
fitting errors between a current constructed test form and
the remaining set of items in the item bank. BST mitigated
the problem with computational costs, it did not funda-
mentally solve the problem.

Another problem with these methods is that they did not
take into consideration the maximum number of possible
test forms from an item bank. Namely, none of them
guaranteed the maximum number of test forms from an
item bank. To solve this, Belov and Armstrong [30]
formalized the test constructions to maximize the number
of test forms with nonoverlapping (i.e., neither of two test
forms had a common item; otherwise, it was called an
overlapping item) constraints as maximum set-packing
problems. However, nonoverlapping conditions interrupt
the generation of a sufficiently large number of test forms
from an item bank. That is, nonoverlapping conditions
interrupt the effective use of an item bank. To solve this
problem, Ishii et al. [20] applied a maximum clique
technique to the construction of multiple test forms. This
method guaranteed the maximum number of test forms
with overlapping items. However, the computational costs
also exponentially increased as the item bank increased in
size. This meant that it was difficult to apply the method in
practice. Thus, although BST cannot guarantee the max-
imum number of test forms, it is still practically the most
useful method. However, it is difficult to use BST with
overlapping constraints. That is, the item bank cannot
effectively be used by BST.

The proposed method in this paper approximates the
optimum search approaches such as [20] and [30] using
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random search algorithm. Namely, the method cannot
guarantee the maximum number of test forms, but
asymptotically or approximately guarantees it. In addition,
this method can be utilized for overlapping constraints.

On the other hand, the approximation method still
remains the trade-off between the differences in fitting
errors and computational costs. Therefore, the proposed
method mitigates the trade-off by applying a parallel-
computing technique that distributes the computational
costs to multiple processors without increasing the differ-
ences in fitting errors.

Several studies have used random search algorithms in
parallel-computing environments to solve optimization
problems. For example, He et al. [33] and Borovska [34]
used Genetic Algorithm (GA) and Pirim et al. [35] used a
tabu search. Moreover, some studies [36], [37], [38] have
compared the efficiencies of random search algorithms
using various optimization problems such as engineering
optimization problems, a traveling salesman problem, and
complex combination problems. The results of these studies
revealed that Bees Algorithm (BA) provided the best
accuracies for optimal solutions regardless of the lowest
computational time compared with simulated annealing
(SIM), GA, and Ant Colony algorithm (ANT). Conse-
quently, BA has a strong possibility to alleviate the trade-
off in constructing multiple test forms since the problems
employed in [36], [37], [38], and the constructing multiple
test forms are all combinatorial optimization problems and
classified as NP-hard problems.

Therefore, we propose a method of constructing multiple
test forms based on BA in parallel computing. The proposed
approach provides two main advantages:

1. It alleviates the trade-off between computational
costs and differences in fitting errors.

2. It approximately maximizes the number of test
forms with overlapping constraints.

Moreover, various experiments were carried out to
evaluate how well the new method performed. The results
demonstrated the proposed approach could be used to
construct multiple test forms with lower differences in fitting
errors in less computational time than that with established
methods. Another experiment also revealed that the number
of test forms constructed with the proposed approach
increased as the number of overlapping items increased.

We developed an automated system of test construction
and installed it in an actual e-testing system using the new
approach.

2 ITEM RESPONSE THEORY

Most previous studies on the construction of multiple test
forms have employed item response theory to measure the
quality of test forms [6], [13], [14], [16], [19], [30].

IRT is a modern test theory that describes the relation-
ship between item characteristics and examinee abilities.
IRT measures the abilities of examinees on a fixed scale
instead of a fixed test for a fixed population. Therefore, we
can measure examinee abilities on the same scale although
they have taken test forms with different sets of items.

For IRT, u;; indicates the response of examinee j(1,...,n)
on item i(1,...,m) as

Examinee j answers item 4 correctly,
Other cases.

1:
Uiy = 0:

The probability of a correct answer to item 4 by
examinee j with ability 6; € (—oo, 00) is assumed to follow
the three-parameter logistic model as

1
1+ exp[—1.7a;(6; —

pui;=10;) = c; + (1 — ) (1)

b))’
where q; € [0, 00) is the ith item’s discrimination parameter,
b; € (—00,00) is the ith item’s difficulty parameter, and ¢; €
[0,1] is the ith item’s guessing probability parameter. The
two-parameter logistic model and the Rasch model are
obtained from (1) by subsequently setting ¢; = 0 and a; = 1.

The item information is a measure of how much
discrimination an item provides at different ability levels.
The Fisher information function based on the two-para-
meter logistic model is defined as

I(0;) = a:i”pi(0;)[1 — pi(65)], (2)

where I; is the information on item i and p; is the
probability of a correct answer to item ¢ with ability ¢;.

To construct a test, a test author monitors the informa-
tion functions of all items in the test using a test information
function, which is the sum of the information functions of
the test items. The test information function of a test
including ¢ items is defined as

9
1(0;) = > Ii(0;). (3)

i=1
The traditional methods of constructing multiple test
forms, which are described in the next section, construct all
test forms so that they have equal qualities by minimizing
the fitting errors indicated by the differences between the test
information functions of the constructed test forms and the
target values of the expected test information function at a
set of the examinee’s ability levels, © = {6;,...,0,...,0k}.
The values of the information function of item ¢ at ability
level ¢y, are denoted as I;(6;), (: =1,...,m), and the target
values are denoted as T(;). We must note that the
construction methods of multiple test forms were supposed
to be implemented after each item’s IRT parameters have

been collected in the item bank.

3 TRADITIONAL METHODS OF CONSTRUCTING
MuLTIPLE TEST FORMS
3.1 Sequential Method of Constructing Test Forms

Van der Linden and Boekkooi-Timminga [6] proposed a
method that sequentially constructs test forms using linear
programming to minimize the following fitting errors:

K

minimize g

k=1

m

> Li(0k)zi — T(6r)

i=1

; (4)

if item 7 is selected into the test form,
otherwise.
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Items that have been employed once are removed from
the item bank. Therefore, the fitting errors increase as the
number of constructed test forms rises.

3.2 Simultaneous Method of Constructing Test
Forms

To reduce the differences in fitting errors between test forms,

Boekkooi-Timminga [16] proposed a method using linear

programming that simultaneously constructed multiple test

forms and minimized the differences in fitting errors.

Let f,(f=1,...,F) be the fth test form. The problem
can be formalized as
minimize y (5)
subject to
K | m
k=1|i=1

where

1, if item ¢ is selected into the test form f,
0, otherwise.

However, it is known that the computational costs of this
method exponentially increase as the data size increases.

3.3 Big-Shadow-Test Method

To mitigate the problem with computational costs in the
simultaneous methods of constructing test forms, van der
Linden [19] proposed a big-shadow-test method using
linear programming that sequentially constructs test forms
by minimizing the differences in fitting errors between a
currently constructed test form and the set of items
remaining in the item bank. They called their “shadow test
form” the remaining items set.

The model for currently constructed test form and
shadow test form is

minimize y (7)

subject to

K | m

S D LBe)x - T(6)| < v, (8)

k=1]i=1

K | m

DD L0z — Tu(6)| <, 9)

k=1]|i=1
where

1, if item 7 is selected into the test form,

b
b

Z; =
0,

and T, denotes the target value for the shadow test form.
The combination of (7-9) minimizes the differences in fitting
errors between the currently constructed test form and the
items remaining in the item bank.

This method eases the computational costs and reduces
the differences in fitting errors between the test forms.
However, this does not fundamentally solve the problem

otherwise,
if item 1 is selected into the shadow test form,

otherwise,

with computational costs, which remains when large data
sizes are used.

On the other hand, another problem with these methods
is that they have not taken into consideration a maximum
number of possible test forms from an item bank. This
means that none of them can guarantee the maximum
number of test forms.

3.4 Methods of Maximizing Number of Test Forms

Belov and Armstrong [30] proposed a method that
formalizes the construction of multiple test forms to
maximize the number of test forms from an item bank as
maximum set-packing problems. Although this method
guaranteed the maximum number of test forms from an
item bank, no items were allowed to overlap in the test
forms. This interrupted the generation of a sufficiently large
of number of test forms from the item bank. Consequently,
nonoverlapping conditions interrupted the item bank from
being effectively used.

To solve this problem, Ishii et al. [20] applied the
maximum clique technique to the construction of multiple
test forms. Nevertheless, the computational costs exponen-
tially increased as the data size increased. Namely, this
method is difficult to implement in practice.

Therefore, although BST cannot guarantee the maximum
number of test forms, it is still practically the most useful
method. However, it is difficult to use BST with over-
lapping constraints.

3.5 Problems with Traditional Methods

The two main problems with traditional methods of
constructing multiple test forms can be summarized below:

1. In order to construct equivalent test forms, the
traditional methods enable test forms to be con-
structed that minimize the differences in fitting
errors between all forms. However, the differences
in fitting errors decrease as the computational costs
increase. That is, there is a trade-off between the
differences in fitting errors between the test forms
and the computational costs.

2. A maximum number of test forms from an item bank
that cannot be guaranteed and overlapping con-
straints are difficult to be implemented. That is, the
item bank cannot effectively be used in practice.

The main purpose of the research discussed in this paper is
to solve these two problems.

4 METHODS OF CONSTRUCTING MULTIPLE TEST
FoRrms BASED ON BEES ALGORITHM IN
PARALLEL COMPUTING

Algorithm for Constructing Multiple Test Forms
in Parallel Computing

In this paper, we propose a method which approximates the
optimum search approaches such as [20] and [30] using
random search algorithm. Namely, the proposed method
cannot guarantee the maximum number of test forms, but
asymptotically or approximately guarantees it. In addition,
the proposed method can be utilized for overlapping
constraints.

4.1
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On the other hand, the approximation method still
remains the trade-off between the differences in fitting
errors and computational costs. Therefore, the proposed
method mitigates the trade-off by applying a parallel-
computing technique that distributes the computational
costs to multiple processors without increasing the differ-
ences in fitting errors.

Several studies have used random search algorithms in
parallel-computing environments to solve optimization
problems. For example, He et al. [33] and Borovska [34]
used GA and Pirim et al. [35] used a tabu search.

Moreover, some studies have compared the efficiencies
of random search algorithms using various optimization
problems. For example, Yang [36] compared GA and BA
using engineering optimization problems. Wong et al. [37]
compared ANT, GA, and BA using a traveling salesman
problem. While Pham et al. [38] used complex combination
problems to compare ANT, SIM, GA, and BA. The results of
these studies revealed that BA provided the best accuracies
for optimal solutions with the lowest computational time.
Accordingly, BA has a strong possibility to alleviate the
trade-off in constructing multiple test forms since the
problems employed in [36], [37], [38], and the construction
of multiple test forms are all combinatorial optimization
problems and classified as NP-hard problems.

Consequently, we employ BA to construct the multiple
test forms discussed in this paper.

4.2 Bees Algorithm

BA is an optimization algorithm inspired by the natural
foraging behavior of honey bees to find the optimal solution
[39]. Honey bees live in a hive where they store honey that
they have foraged. Honey bees can communicate the
locations of food sources to their hive mates by performing
a so-called “waggle dance.” The durations of this dance are
proportional to the quantities of food at the sources. By
engaging in this behavior, large groups of bees are recruited
to forage sources that contain large quantities of food. This
reduces the individual time required to forage for food.

To introduce the main idea behind BA, we will briefly
describe the study by Wong et al. [37], which proposed BA
for solving the traveling salesman problem.

The well-known traveling salesman problem is defined as
follows: given n cities, find the shortest route that starts in a
specific city, visitall other cities once, and finish in the starting
node. This problem is the well-known NP-hard problem.

There is an outline of BA [37] for solving the traveling
salesman problem in Fig. 1. First, artificial bees generate the
initial population of routes (solutions) using a random
search technique [40] to find cities they will visit next. Then,
the initial population is evaluated to measure the total
length of each route (fitness value). Second, the artificial
bees iteratively improve the initial population. That is, the
routes from the initial population are selected according to
selection probabilities that are inversely proportional to the
total lengths of the routes. After that, artificial bees are
recruited to improve the selected routes. This method of
recruiting is applied by observing the waggle dance of
honey bees. The numbers of recruited artificial bees are
inversely proportional to the total lengths of the selected
routes. Then, the artificial bees generate a new population

Initialize a population of solutions with a random
search
while The stopping criterion is not met do
Evaluate the fitness of the population
Select the solutions to a neighborhood search
Recruit artificial bees to improve the selected solu-
tions
Generate a new population of solutions
end while

Fig. 1. Outline of Bees algorithm.

using a neighborhood-search technique [41] in which the
artificial bees find shorter routes being influenced by the
selected routes. Namely, the artificial bees select cities using
selection probabilities that are inversely proportional to the
distances between cities and the selection probabilities of
cities that are included in the selected routes are higher than
that of the other cities. The process in the second step is
iterated until the stopping criterion is met.

4.3 Bees Algorithm for Constructing Multiple Test
Forms

In this section, we propose a method of constructing test
forms based on BA that constructs multiple equivalent test
forms by minimizing the difference in fitting errors between
test forms and maximizing the number of test forms. This
construction has an approximate time complexity of
O(c-m!- 27), where ¢ is the number of test constraints, m
is the number of items in an item bank, and f is the number
of constructed test forms that satisfy all test constraints.
Therefore, the construction of multiple test forms is
classified as an NP-hard problem. To reduce the computa-
tional time, we divided the construction of test forms into
two steps (two-step test construction):

Step A (Satisfying Test Constraints). Construct test forms
only to minimize the fitting errors of each form to test
constraints without taking into consideration the equiva-
lence of test forms. Therefore, the approximate time
complexity of this step is O(c-m!). Here, the constructed
test forms are still not equivalent.

Step B (Equating Test Forms with Maximizing the
Number of Them). Extract the most equivalent set of test
forms from the constructed test forms in Step A that
minimizes the difference in fitting errors among test forms
and maximizes the number of test forms. The approximate
time complexity in this step is O(2f).

The time complexity for constructing test forms is reduced
from O(c-m! - 2/) to O(c - m! + 2/). The BA in the proposed
method is applied as a search algorithm to both steps.

Test constraints can be divided into the following two
types: 1) test constraints about each test form (e.g., the
number of total test items and the number of items from
each subject) and 2) test constraints about the relationships
among test forms (e.g., the number of overlapping items).

The details on both steps are described as follows:

Step A. The BA for Step A is outlined in Fig. 2. In this
step, each artificial bee constructs one test form by
sequentially selecting items that satisfy test constraints
and minimize fitting errors until the construction of the test
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Initialize test forms with a random search

while The stopping criterion is not met do
Evaluate the fitting errors of the test forms
Select the test forms for a neighborhood search
Recruit artificial bees to improve the selected test
forms
Construct new test forms

end while

Fig. 2. Outline of Bees algorithm for construction of multiple test forms:
Step A.

form is completed. As mentioned above, the test constraints
in this step are only constraints about each test form. The
first group of artificial bees constructs test forms using a
random search and the later groups of artificial bees
improve the constructed test forms using a neighborhood
search. For more details, Step A is divided into the
following five steps:

In Step A-1, the first group of artificial bees is generated
and it constructs test forms. The artificial bees select the first
items according to the uniform distributions of “item-
selection probabilities.” Next, the artificial bees iteratively
update the item-selection probability distributions accord-
ing to two rules:

1. The item-selection probability of each remaining
item is inversely proportional to the fitting error of
the constructed test form if this form includes the
remaining item.

2. The item-selection probability of each remaining
item becomes zero if no test constraints are satisfied.

The item-selection probability, p, for item ¢ after ¢ items are
selected is extended from Luecht’s [22] method as

o (did/gin)
DPit ZiEAt (di,f,/qm) ) (10)
NN (TO) = S Ti(Bk)a
qi“t—k; ( b g*til h 7177(914))" (11)

where ¢;; is an item-selection coefficient and d;; is a binary
variable that equals zero if item ¢ does not satisfy any test
constraints or is one otherwise. Here, A; is the set of indexes
of remaining items, g is the number of total items for the
test, and m is the total of items in the item bank. The
expression in (11),

T(0r) — >0 Li(O)i
g—t+1

I

means the fitting error at 6, after ¢ items have been selected.
The artificial bees iteratively select the next items according
to the updated item-selection probability distributions until
the test-form constructions are completed. After all artificial
bees in the first group have completed the test-form
constructions, all constructed test forms are stored in a
system memory.

Next, the test forms in the system memory are selected so
that they can be improved by the next group of artificial
bees using a neighborhood search.

In Step A-2, the fitting errors for the test forms in the
system memory are evaluated and the form-selection
probability distribution is calculated. The selection prob-
ability, p, of test form f can be calculated as

- Yea 12

S e 12
K m

er =Y > LiO)zir — T(6:)], (13)
k=1]|i=1

where e; denotes the fitting errors of the test form, and N
denotes the number of total test forms in the system
memory. According to (12-13), the selection probabilities of
test forms are inversely proportional to the fitting errors.

In Step A-3, the test forms in the system memory, which
will be improved by the next group of artificial bees, are
selected according to the form-selection probability dis-
tribution in Step A-2.

In Step A-4, artificial bees in the second group are
generated and recruited to improve the selected test forms
from Step A-3 according to the probability distribution
calculated using (12-13) but here, e; denotes the fitting
errors of selected test forms and N denotes the number of
total selected test forms. The number of recruited artificial
bees, Ny, for selected test form f can be calculated as

Niee,f = Nallbees * Df (14)

where Najnees 1S the number of total artificial bees in the
second group.

In Step A-5, the artificial bees construct new test forms
using a neighborhood search in which the artificial bees
sequentially select items to minimize the fitting errors being
influenced by the selected test forms in Step A-3. For more
details, the artificial bees iteratively update the item-
selection probability distributions according to two rules:

1. The rules in Step A-1.

2. If each remaining item is included in the selected test
form, the selection probability of this item is higher
than the selection probabilities of the other items.

In these steps, the item-selection probability, p;s, in (10) is
combined with BA [37] as

(pi,t)o' (di,t/Qi,t)ﬂ
DicA, (pis) . (diz/aiz) ’

where p;; is the selection fitness of the item that increases
the item-selection probability if item ¢ is included in a
selected test form or otherwise, it decreases the item-
selection probability. Here, « is a binary variable that turns
the influence of selection fitness on and off and € [0, c0)
controls the significance level for adjusting the proportion
between the selection fitness p;; and the term (d;;/p;+) that
refers to fitting errors of the currently constructed test form.
That is, if 3 is small, bees select next items to follow the
selected test forms. If § is large, bees select next items to
minimize the fitting errors and ignore the selected test
forms. If « is zero, (15) becomes (10).

To describe selection fitness, p;;, F; denotes the set of
indexes of items in the selected test form after ¢ items have
been selected. The fitness parameter is

Dit = (15)
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Initialize sets of test forms

while The stopping criterion is not met do
Evaluate the differences in fitting errors between test
forms in each set
Select the sets of test forms for a neighborhood
search
Recruit artificial bees to improve the selected sets of
test forms
Select test forms for new sets

end while

Fig. 3. Outline of Bees algorithm for construction of multiple test forms:
Step B.

ﬁv (S E7 ‘At| >1
pit = ﬁ, i € F, |A]>1
1, ‘AT‘ = 1

Vie A,0< A <1,

where X is a fitness value. If A equals 1, the next item is
selected according to the set of indexes of items F;, else the
next item is selected from items that are not included in F;.
|F;| and |A;| are the numbers of elements in sets F; and A;,
respectively.

After all artificial bees in the second group have
completed the test-form constructions, all constructed test
forms are evaluated and stored in the system memory if the
test forms satisfy two conditions:

1. The fitting errors of the test forms are smaller than
the smallest fitting error in the system memory.

2. The test forms are not the same as the stored test
forms in the system memory.

If the stopping criterion is not met, the process returns to
Step A-2; otherwise, it goes to Step B.

A collection of test forms with small fitting errors is
created in this step. However, at this stage, the constructed
test forms are still not equivalent because the test constraints
describing the relations between test forms are not satisfied.

Step B. The BA for Step B is outlined in Fig. 3. In Step B,
the largest and most equivalent set of test forms, which
minimizes the difference in fitting errors between test forms
and maximizes the number of test forms, is extracted from
the collection of test forms from Step A. The difference in
fitting errors between test forms is indicated by a standard
deviation, o, of fitting errors. The test constraints satisfied in
this step concern the relationships among test forms. Each
artificial bee in the first group extracts a set of test forms by
sequentially selecting them to minimize the standard
deviation of fitting errors using a random search until this
artificial bee cannot find any more available test forms. The
later groups of artificial bees improve the extracted sets of
test forms using a neighborhood search. To provide more
detail, Step B is divided into additional five steps.

In Step B-1, the artificial bees in the first group are
generated and they load the collection of test forms from the
system memory. They select the first test forms according to
the uniform distributions of “form-selection probabilities.”

Next, the artificial bees iteratively calculate the form-
selection probability distributions according to the rule that
the selection probability of each remaining test form is
inversely proportional to the standard deviation of fitting
errors of the currently extracted set of test forms if this set
includes the remaining test form. The form-selection
probability, p, for the test form, f, after | test forms are
selected is defined as

(dri/ora)
pp ==t (16)
Y seadrifog)
1 2
Ofl= H—lr;/;[(er - “Vf.l) ) (17)
1
i = H—lezv; er, (18)

where oy, is the standard deviation and d;; is a binary
variable that equals zero if form f does not satisfy any test
constraints and is one otherwise. Here, A; is the set of
indexes of remaining test forms, V}; is the set of indexes of
selected test forms including the remaining test form, f, e, is
the fitting error of test form r defined in (13), and py;, is the
average of fitting errors of test forms in V;;. To maximize
the number of test forms, the artificial bees iteratively select
the next test forms according to the calculated form-
selection probability distributions until all available test
forms have been selected. After all artificial bees finish
extracting the test forms, all sets of test forms are stored in
the system memory.

Next, the sets of test forms in the system memory are
selected so that they can be improved by the next group of
artificial bees using a neighborhood search.

In Step B-2, the standard deviations of fitting errors of
the sets of test forms in the system memory are evaluated
and the selection-probability distribution of the sets of test
forms is calculated. The selection probability, p, of the set of
test forms s can be calculated as

7= 73— ), (20)
reVs
=7 e (1)

where o, denotes the standard deviation of the set of test
forms, M denotes the number of total sets of test forms in
the system memory, V; is a set of indexes of selected test
forms in the set of test forms, and py, is the average of
fitting errors of test forms in V;. According to (19-21), the
selection probabilities of test forms are inversely propor-
tional to the standard deviations.

In Step B-3, the sets of test forms in the system memory,
which will be improved by the next group of artificial bees,
are selected according to the generated selection-probability
distribution in Step B-2.

In Step B-4, artificial bees in the second group are
generated and recruited to improve the selected sets of test
forms in Step B-3 according to the probability distribution
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calculated using (19-21), but here, o, denotes the standard
deviation of a selected set of test forms s and M denotes the
number of total selected sets of test forms. The number of
recruited artificial bees, Ny, for the selected set of test
forms s can be calculated as

]Vbees = NAH bees * Ps» (22)

where Nannees is the number of total bees in the second
group.

In Step B-5, the artificial bees sequentially select the test
forms using a neighborhood search to minimize the
difference in fitting errors being influenced by the selected
sets of test forms in Step B-3. To provide more detail, the
artificial bees iteratively calculate the form-selection prob-
ability distributions according to two rules:

1. The rule in Step B-1.
If each remaining test form is included in the
selected set of test forms, the form-selection prob-
ability of this form is higher than the form-selection
probabilities of the other forms.
In these steps, the form-selection probability, ps;, in (16) is
combined with BA [37] as

pr = (ps0)"(dsa/os0)" N
C Seeaond) " (drifor))”
where p;; is the selection fitness of the test form that
increases the selection probability if test form f is included
in a selected set of test forms or otherwise, it decreases the
selection probability. Here, o is a binary variable that turns
the influence of selection fitness on and off and g € [0, c0)
controls the significance level for adjusting the proportion
between the selection fitness py; and the term (ds;/oy,) that
refers to fitting errors of the currently extracted set of test
forms. That is, if 3 is small, bees select next test forms to
follow the selected set of test forms. If 3 is large, bees select
next test forms to minimize the difference in fitting errors
and ignore the selected set of test forms. If « is zero, (23)
becomes (16). The artificial bees iteratively select the next
test forms according to the calculated form-selection
probability distributions until all available test forms have
been selected to maximize the number of test forms.
To describe selection fitness, ps;, F; denotes the set of
indexes of test forms in the selected set that is expected to be
improved. The selection fitness is

(23)

AL feR, |Al>1
pri=9 g fE€ER |Al>1
1, 1A =1

Ve A,0< A<,

where ) is a fitness value. If A equals 1, the next test form is
selected according to the set of indexes of test forms £, else
the next test form is selected from the test forms that are not
included in F. |F}| and |4;| are the numbers of elements in
sets F; and A;, respectively.

After all artificial bees have finished extracting the test
forms, the sets of test forms are evaluated and stored in the
system memory if these sets have standard deviations of
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Fig. 4. Structure of parallel-computing environment.

fitting errors that are smaller than the smallest standard
deviation in the system memory.

If the stopping criterion is not satisfied, the process
returns to Step B-2; otherwise, this method selects the set of
test forms that has the smallest standard deviation of fitting
errors, as the final result.

However, there is a trade-off between the differences in
fitting errors between test forms and the computational
time. Therefore, in the next section, we explain the
application of a parallel-computing technique to the
construction of multiple test forms based on BA to
minimize the trade-off.

4.4 Parallel Computing

The proposed construction of multiple test forms based on
BA is implemented in a parallel-computing environment
that includes one server and several workers as shown in
Fig. 4. The server has an item bank, a test database, and a
system memory. The server and workers are connected via
a network.

According to Fig. 1, the processes that can be divided and
distributed to be performed by the workers are: 1) initialize
the population of solutions and 2) generate a new population
of solutions. These divisible processes in the proposed
approach are Steps A-1, A-5, B-1, and B-5. Using a parallel-
computing technique, the computational cost of constructing
the test forms for each processor core is calculated by
dividing the computational cost by the number of processor
cores. Therefore, we can decrease the computational time by
increasing the number of total processor cores of workers. As
a result, we can relax the trade-off by using the proposed
method and the parallel-computing technique.

The new method was developed using Java as the
development tool and implemented in a parallel-computing
environment, which is the Java Parallel Processing Frame-
work [42]. The system had six units of computer nodes
including one server and five workers and each unit was
equipped with a 2.5-GHz Quad-Core Intel processor. The
workers have a total of 20 processor cores.

Since the five workers had the same performance, the
divisible processes in the proposed approach were divided
into five equal parts before they were distributed to the
workers.

5 EXPERIMENTS AND RESULTS

We carried out four experiments to evaluate the proposed
method for constructing multiple test forms. We used
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TABLE 1
Distributions of ltem Parameters

P " Attribute Simulated Item Bank Actual Item Bank
Arameter | pnformation | 7=5000 | I=10000 T=20000 T=517 1=2385
Range 0.1~0.9 | 0.1~0.9 0.1~0.9 0.3~1.167 0.3~1.424
a Mean 0.503 0.498 0.501 0.540 0.541
SD 0.285 0.289 0.289 0.160 0.177
Range -3.0~3.0 | -3.0~3.0 -3.0~3.0 -3.233~1.307 -4.202~1.300
b Mean -0.270 -0.298 -0.297 -1.116 -1.208
SD 1.237 1.219 1.219 0.686 0.703
TABLE 2
Details on Test Constraints
Simulated Item Bank Actual Item Bank
Consiraing I € {5000, 10000, 20000} 1=517 1=2385
Number of Number of Number of
A Value . Value ; Value
constraints constraints constraints
Maximum average rate of 1 65 1 70 1 70
correct answers
Minimum average rate of 1 40 1 50 1 50
correct answers
Number of items from each subject 2 20~32 1 20 2 20~32
Maximum number of .1tems 53 13 14 12 53 13
from each area of subject
Minimum number of items 53 02 14 0l 53 02
from each area of subject
Number of total items 1 80 1 20 1 80

simulated item banks in the first experiment and actual item
banks from the Japan Information Technology Engineers’
Examination [43] in the remaining experiments.

5.1 Accuracy and Speed of Construction of Multiple

Test Forms

We compared the proposed method (BA) with BA in a
parallel-computing environment, the big-shadows-test
method [19], the GA for constructing multiple test forms
proposed by Sun et al. [32] (GAg), and a GA based on a two-
step test construction (GA;) to demonstrate its accuracy and
speed in constructing multiple test forms. GAg simulta-
neously constructed multiple test forms to minimize the
fitting errors and the difference in the fitting errors. Although
some experiments in [32] proved that GAg could construct
multiple equivalent test forms quite well, the implemented
test constraints and the implemented item banks were too
simple for actual application. Here, we compared GA g with
the proposed method in this experiment. Moreover, we
developed GA; based on the two-step test construction
described in Section 4.3 in which BA is replaced by GA to
compare the performances of BA and general GA under the
same conditions. BA, BST, GAg, and GA, were used to
construct multiple test forms to minimize the fitting errors
indicated by the sum of the absolute differences (SADs)
between the expected test information function and the test
information functions of the constructed test forms at five
levels of ability, © = {—2,-1,0,1,2}, and to minimize the
difference in fitting errors indicated by the standard
deviation of SADs in the constructed test forms. The test
information function described in this paper is based on the
two-parameter logistic model of IRT.

We used three simulated item banks that had a total
number of items I of 5,000, 10,000, and 20,000. Each item in
the item banks belonged to one area of a subject and each

area belonged to one subject. The distributions of item
parameters a and b in the item bank are given in Table 1.
The set of test constraints for all the item banks was the
same. The details on the test constraints are listed in Table 2.
Each construction method was used to construct five test
forms without overlapping the items between the test
forms. The target values of the expected test information
function, T'(8;), at each ability level of © were assigned as
follows: {1,5,12,15,2}.

We defined the stopping criteria of BA and GA; as follows:

For Step A:

The fitting errors of constructed test forms are not lower
than the smallest fitting error of the stored test forms in the
system memory.

For Step B:

1. The differences in fitting errors of extracted sets of
test forms are not lower than the smallest difference
of fitting errors of stored set of test forms in the
system memory.

2. The fitting errors of extracted sets of test forms are
not lower than the smallest fitting error of stored set
of test forms in the system memory.

The (3 parameters in Steps A and B of BA for item banks

I =5,000,10,000, and 20,000 were 10, 15, and 20, respec-
tively. The other BA parameters are defined as follows: o =
1 and A = 0.95 for Steps A and B.

The stopping criterion for GAg was when the average
and standard deviations of the fitting errors of the set of
constructed test forms (a new generation) were not lower
than that of the set of previously constructed test forms
(parent).

BST, GAg, and GA; were developed using Java as the
development tool. The linear programming problems in
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TABLE 3
Results for Accuracy and Speed of Constructing Multiple Test Forms

Number Size of Average of SADs SD of SADs Computational
Method of Processor of Test Information of Test Information Time
Item Bank . . ;
Cores Functions Functions (minutes)
5000 1.856 0.728 547
BST 1 10000 1.821 0.618 1158
20000 1.530 0.827 2685
5000 0.924 0.814 1358
GAg 1 10000 1.511 0.952 1787
20000 1.345 0.891 2984
5000 1.452 0.954 2874
GA2 1 10000 1.984 0.687 3507
20000 1.775 0.721 5810
5000 0.132 0.017 484
BA 1 10000 0.107 0.021 950
20000 0.099 0.015 1760
5000 0.123 0.014 32
BA 32 10000 0.097 0.016 55
20000 0.106 0.010 104
TABLE 4
Results for Parameter Tuning for Accuracy of Constructing Multiple Test Forms
Average of SADs SD of SADs Computational
Method | §in Step A | 3 in Step B of Test Information of Test Information Time
Functions Functions (minutes)
1 1 0.0389 0.00604 40
1 10 0.0377 0.00135 412
1 100 0.0370 0.00134 489
10 1 0.0071 0.01307 363
BA 10 10 0.0021 0.00091 1063
10 100 0.0023 0.00095 1240
100 1 0.0092 0.00252 43
100 10 0.0064 0.00162 320
100 100 0.0066 0.00160 448

BST were solved by using CPLEX [44]. The implemented
parallel-computing environment for BST consisted of nine
units of computer nodes including one server and eight
workers. Each unit was equipped with a 2.5-GHz Quad-
core Intel processor. The workers have a total of 32
processor cores.

Table 3 lists the method, the number of processor cores,
the size of item bank, average and standard deviation for the
SADs of the constructed test forms, and computational time.

The averages and standard deviations for the SADs of
the constructed test forms using BA are smaller for item
banks I = 5,000, 10,000, and 20,000 with a single processor
core than the results from BST, GA,, and GAg.

According to the results, BA can be used to construct test
forms with fitting errors and with differences in these errors
that are smaller than the results from the traditional methods.
However, BA required a higher computational time.

When the parallel-computing technique is used, the
averages and standard deviations of the test forms con-
structed using BA in the parallel-computing environment
are equivalent to the results of BA using a single processor,
but BA in the parallel-computing environment required a
lower computational time than the other methods using a
single processor.

The results obtained from this experiment indicated that
the proposed method improves the traditional construction
of multiple test forms.

In the next three experiments, the actual item banks were
implemented to show the effectiveness of the proposed
method in the context of actual situations.

5.2 Parameter Tuning for Accuracy of Constructing
Multiple Test Forms

In this experiment, we changed the 3 parameters in (15) and
(23) for Steps A and B to show how BA controls the fitting
errors and the difference in the fitting errors. We used the
actual item bank I = 519 with 32 constraints. The distribu-
tions of item parameters a and b in the item bank are given
in Table 1. Each item in the item bank belongs to one area of
a subject and each area belongs to one subject. The details of
the test constraints are listed in Table 2. The expected
number of constructed test forms was four and no
overlapping items between the test forms were allowed.
Before constructing the test forms, we defined the target
values of the expected test information function, T'(6y), at
each O ability level as follows: {1.1, 1.3, 1.1, 0.5, 0.25}. The
proposed method was implemented in the parallel-comput-
ing environment described in Section 4.4.

Table 4 lists the method, the value of 3 in Steps A and B,
the average and standard deviation for the SADs of the
constructed test forms, and the computational time. Here,
the BA subscriptions, respectively, indicate the values of 3
in Steps A and B and z indicates any value of 3 where
B € {1,10,100}. The results show that the average and
standard deviations for the SADs of the constructed test
forms using BAjo;o are the lowest. We can see that,
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TABLE 5
Results for Processor Cores Related Performance
Average of SADs SD of SADs Computational
Method Number of Number of Test gIm’orma’cion of Test Information 'I;ime
Processor Cores of Test Forms . . .
Functions Functions (minutes)
4 9 0.0912 0.0103 50
8 9 0.0893 0.0089 45
BA 12 9 0.0902 0.0074 38
16 9 0.0898 0.0084 31
20 9 0.0915 0.0075 27

although BA,, or BA,, requires low computational time,
the averages and standard deviations for the SADs of the
constructed test forms using them are large.

When the [ parameters in Step A are changed, the
averages of the fitting errors for the SADs of the constructed
test forms using BAjo, and BA;y, are lower than those
when using BA;,. However, the averages and standard
deviations of the fitting errors for the SADs of the
constructed test forms using BAjy, are not lower than
those when using BAjj,. For more details, in Step A, the
numbers of constructed test forms using BA g, are smaller
than those when using BA,,, since BAjq, satisfies the
stopping criterion faster than BA,,. Therefore, the possi-
bility of finding equivalent test forms in Step B when the
parameters in Step A are equal to 100 becomes lower than
when the § parameters in Step A are equal to 10.

When the (3 parameters in Step B are changed, the
averages and standard deviations for the SADs of the
constructed test forms using BA, o are close to that of
the constructed test forms when using BA, 19, but BA, 1o
requires a higher computational time. This shows the
difference in computational time between a BA with a high
[ parameter in Step B that ignores the selected set of test
forms as described in Section 4.3 and a BA with an
appropriate 3 parameter in Step B.

5.3 Number of Processor Cores Related
Performance

This experiment was used to demonstrate the computational
time for the proposed method when the number of
processor cores in the parallel-computing environment
increased. We employed the actual item bank I of 2,385
with 112 test constraints. The distributions of item para-
meters ¢ and b in the item bank and the details of the test
constraints are given in Tables 1 and 2. The target values of
the expected test information function, 7'(6;), at each ability
level of © were {2, 5, 4, 2, 1}. To find the differences in the
computational time, we changed the number of processor
cores (4, 8, 12, 16, and 20) and overlapping items between
test forms were not allowed. The proposed method was
used to construct multiple test forms to minimize the fitting
errors that were described in Section 5.1.

We defined the stopping criteria as described in
Section 5.1. The parameters of BA are defined as follows:
a=1,=1,X=0.95 for Steps A and B.

Table 5 lists the number of constructed test forms,
average and standard deviation of the SADs for the
constructed test forms, and computational time. The results
indicate that there are no significant differences among
SADs due to the different numbers of processor cores. The

computational time, on the other hand, decreases when the
number of processor cores increases.

Fig. 5 plots the relation between the computational time
and the number of processor cores. The horizontal axis
indicates the number of processor cores and the vertical axis
indicates the computational time. This figure shows that the
computational time decreases in inverse proportion to the
number of processor cores.

This means that the computational time for the test
constructions using the proposed method can be decreased
while keeping the fitting errors approximately constant.
Namely, the proposed method relaxes the trade-off between
the fitting errors and the computational time.

5.4 Overlapping Construction of Test Forms

The proposed method allows the overlapping items; there-
fore, it is expected to increase the number of constructed test
forms. This experiment revealed how the number of
constructed test forms increased when the number of
overlapping items increased. The proposed method was
used to construct multiple test forms not only to minimize
the fitting errors that were described in Section 5.1 but also to
maximize the number of test forms from an item bank. We
used the smallest item bank, I = 517, and 32 test constraints.
The number of total test items was 20. To find the different
numbers of constructed test forms when the number of
overlapping items increased, we changed the number of
overlapping items (0, 1, 2, 3, and 4). The proposed method
was implemented in the parallel-computing environment
described in Section 4.4.

We defined the stopping criteria as described in Section 5.1
and added one more criterion that stops the calculation of
Step B when the sizes of extracted sets of test forms are not
larger than the largest size of stored set of test forms in the
system memory. The parameters of BA are defined as
follows: o = 1, 8 = 1, A = 0.95 for Steps A and B.

Time Required (minutes)

Fig. 5. Computational time related to number of processor cores.
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TABLE 6
Results for Overlapping Test Construction
Number of Number Average of SADs SD of SADs Computational
Method Overlaps of Test Information of Test Information Time
of Test Forms . . :
Items Functions Functions (minutes)

0 8.00 0.0415 0.0152 9
1 18.67 0.0423 0.0177 12
BA 2 54.00 0.0437 0.0194 19
3 192.00 0.0440 0.0185 44

4 733.00 0.0442 0.0198 1148

As mentioned before, Ishii et al. [20] proposed a method
which guarantees the maximum number of possible
constructed test forms with allowing the overlapping items.
However, the computational time of the method increases
exponentially as the size of the item bank increases. In this
experiment, the method cannot provide the guaranteed
maximum number of test forms from the item bank in
reasonable time. On the other hand, BST requires a huge
computational time when overlapping constraints are
permitted. Therefore, we performed this experiment using
only the proposed method.

Table 6 lists the number of overlapping items, the
number of constructed test forms, the average and standard
deviation of SADs for the constructed test forms, and the
computational time.

The number of constructed test forms exponentially
increases with the rise in the number of overlapping items.
Although the number of test forms increases, the standard
deviation for SADs does not tend to increase. This means
that the differences in fitting errors in the constructed test
forms are constant for the numbers of test forms.

However, the computational time with the proposed
method increased in proportion to the number of over-
lapping items. This problem might be solved by increasing
the number of processor cores in the system.

6 AUTOMATED TEST CONSTRUCTION SYSTEM
(ATCS)

Using the proposed method of constructing multiple test
forms, we developed an automated test construction system
and installed it into an e-testing system [45].

The e-testing system was developed to support test
authors in creating items, analyzing test data, and in
constructing and delivering large-scale assessments, such
as for university entrance examinations, the Japan Informa-
tion Technology Engineers’” Examination, or for Tests of
English as a Foreign Language. Since the proposed method
can construct multiple equivalent test forms using large
item banks without a trade-off between the difference in
fitting errors and the computational time, it appropriates for
an e-testing system.

Although ATCS using the proposed method was devel-
oped for constructing high-stake tests from large item
banks, this system also supports the construction of low-
stake tests from small item banks such as online assess-
ments in classes and self-assessments in e-learning.

When a test author constructs multiple test forms using
ATCS, he/she first defines the test constraints for the
expected multiple test forms through an interface, as

shown in Fig. 6. For more details, the maximum and
minimum numbers of items from each knowledge domain
are entered into the right table of the interface. The
interface in Fig. 6 shows the details of constraints for
constructing tests from the item bank of Japanese Lan-
guage Proficiency Test. The target values for the expected
test information function, the maximum and minimum
rates for correct answers, the maximum and minimum
response times, and the number of overlapping items are
entered into the left table of this interface. After the test
author has clicked onto the “Start construction” button,
ATCS automatically receives the defined test constraints
from the interface, and constructs test forms using the
defined test constraints and the items from the item bank.
After ATCS has finished constructing the multiple test
forms, it stores the constructed test forms in the test
database. ATCS is implemented in the parallel-computing
environment described in Section 4.4.

7 CONCLUSIONS

We proposed a method of constructing multiple test forms
based on the Bees Algorithm in parallel computing. The
proposed method distributes the computational costs over
multiple processors to mitigate the trade-off between
computational costs and the differences in fitting errors
on the test forms. We compared the proposed method and
traditional methods of constructing multiple test forms
using actual item banks and test constraints. The results
revealed that the proposed method required lower compu-
tational time than the traditional methods while the
differences in fitting errors for the constructed test forms
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were lower or close to that of the traditional methods. These
results confirm that the trade-off was mitigated using the
new method.

Moreover, the proposed method approximately guaran-
tees the maximum number of test forms from an item bank
with overlapping constraints. We demonstrated the con-
struction of multiple test forms with overlapping con-
straints using the proposed methods. The results indicated
that the number of constructed test forms exponentially
increased with the rise in the number of overlapping items.
That is, the item bank could be used more effectively by
permitting overlapping constraints. Moreover, only the new
approach could construct the multiple test forms in reason-
able time. This meant that the method we propose requires
less computational time than the traditional methods and it
is possible to implement it in practice.

In addition, we developed an automated test construc-
tion system using the proposed method and installed it in
an actual e-testing system.

To be exact, we should have determined that all the
constructed test forms would satisfy the expected con-
straints to prove the effectiveness of the proposed method.
However, it is impossible to provide a huge number of
actual test forms to examinees. It should be noted that this
paper implicitly assumes that the constructed test forms
ideally satisfy the expected test constraints. Moreover, some
limitations from the experiments still remain, such as each
item provides evidence of only one area or only a few types
of test constraints were used. To obtain more generalized
results, there should be more types of constraints (e.g.,
avoiding a related item in the same test form, the number of
words in the items, the response times, the sequence of
items order, and the distribution of the item-selection
frequencies) and more types of item banks (e.g., item banks
that have different distributions of the item parameters, an
item belongs to one or more areas).
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