
E-Assessment as a Service
Mario Amelung, Katrin Krieger, and Dietmar Rösner

Abstract—Assessment is an essential element in learning processes. It is therefore not unsurprising that almost all learning

management systems (LMSs) offer support for assessment, e.g., for the creation, execution, and evaluation of multiple choice tests.

We have designed and implemented generic support for assessment that is based on assignments that students submit as electronic

documents. In addition to assignments that are graded by teachers, we also support assignments that can be automatically tested and

evaluated, e.g., assignments in programming languages, or other formal notations. In this paper, we report about the design and

implementation of a service-oriented approach for automatic assessment of programming assignments. The most relevant aspects of

our “assessment as a service” solution are that on the one hand the advantages of automatic assessment can be used with a multitude

of programming languages, as well as other formal notations (as so-called backends); on the other hand, the features of these types of

assessment can be easily interfaced with different existing learning management systems (as so called frontends). We also report

about the practical use of the implemented software components at our university and other educational institutions.

Index Terms—Computer science education, programming, learning systems, learning control systems, modular computer systems,

service-oriented architecture, web services, e-learning, computer-aided assessment, e-assessment, eduComponents.

Ç

1 INTRODUCTION

1.1 Motivation

TEACHING and learning in a computer science curriculum
are demanding tasks. This is due to the intellectual and

scientific content, as well as to the institutional and organiza-
tional context. The latter may be characterized as follows:

. large numbers of students, especially in introductory
courses,

. broad diversity between students with respect to,
e.g., prior knowledge, working habits, and intellec-
tual capacities, and

. a high drop out rate and a gap between the demands
for skilled computer scientists and the number of
successful students.

Exercises and/or laboratory practice are essential for the
learning effect, since they provide opportunities for
students to solidify the knowledge acquired in lectures
and to apply their theoretical knowledge to practical
problems. In its traditional format, exercise groups are
centered around work on paper and a shared presentation
medium, e.g., in its simplest guise, a chalkboard. However,
we were dissatisfied with some aspects of this traditional
way of teaching, practicing, and assessing which may be
sketched as follows:

Before classroom sessions

. the teacher designs or chooses assignments for a
weekly exercise sheet according to the state of the
course,

. the exercise sheet may be distributed as a printed
document or made available online, e.g, as a PDF
document,

. students work through the exercise sheet at home.

During classroom sessions

. students present their solutions at the blackboard,

. tutor and peers give (spontaneous) feedback,

. peers take notes from the presentation,

. the tutor may take notes about student’s performance.

As a variation, written submissions may be demanded
for marking and grading by tutors. But there is always a
delay between the submission and the reception of
comments and/or a corrected version. For large groups of
students, manual correction is labor- and time-intensive.

The problems are especially grave for programming
assignments. Handing in programs on paper and discuss-
ing them on the blackboard is only viable for very small
programs, and practical problems (e.g., syntax errors) are
hard to detect. It is also time-consuming, so only a few
programming assignments can be handed out. This situa-
tion is also unsatisfactory for students, because their
solutions and their problems frequently could not be
discussed in detail due to time constraints.

Since we are using the web-based content management
system (CMS) Plone1 to deliver learning material (e.g., slides,
notes, or reading lists) to our students, it appeared obvious to
employ this CMS as a portal for the management of
assignments, tests, and submissions. Using a CMS as the
basis for managing students’ assignments in the form of
electronic documents is in many ways advantageous com-
pared to traditional paper-based assignments. A CMS makes
it much easier to handle, assess, store, and reuse assignments,
and it allows new learning arrangements that are hardly
possible without such a technological basis (e.g., hall of fame
for students’ submissions or student peer reviews).

162 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 4, NO. 2, APRIL-JUNE 2011

. M. Amelung is with Eudemonia Solutions AG, Sandtorstr. 23, 39106
Magdeburg, Germany. E-mail: amelung@eudemonia-solutions.de.

. K. Krieger and D. Rösner are with the Fakultät für Informatik/IWS, Otto-
von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Ger-
many. E-mail: {kkrieger, roesner}@ovgu.de.

Manuscript received 3 Mar. 2010; revised 2 June 2010; accepted 2 Aug. 2010;
published online 17 Aug. 2010.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLT-2010-03-0021.
Digital Object Identifier no. 10.1109/TLT.2010.24. 1. http://plone.org/.

1939-1382/11/$26.00 � 2011 IEEE Published by the IEEE CS & ES

The benefits for the learning processes are even more
substantial when the electronic submission of students’
assignments is coupled with automatic assessment (i.e.,
automatic testing, marking, and grading). Automatic assess-
ment allows timely, almost immediate feedback for students,
which is known to be an additional motivating factor (cf. [3]).

The decision for using a CMS as an LMS over using a
“native” LMS has historic, as well as practical reasons.
The workgroup’s website has been based on Plone before
e-learning or blended learning strategies have been used in
teaching. With increasing interest in e-learning and in the
ways in which e-learning technologies can be integrated
into existing structures and technologies (organizational, as
well as technical), the idea of enhancing Plone with
additional components, in order to convert Plone into an
LMS, arose. As we were unwilling to administer and
maintain a second native LMS, which provides a good
portion of the same functions as a CMS, we have designed,
implemented, and deployed a number of modules for
Plone which extend the CMS with specific e-learning
functionality (cf. [4] and [5]). These modules—collectively
called eduComponents2—provide specialized content types
offering the following main functions (see also [6] and [7]):

. ECLecture is a product for managing lectures,
seminars, and other courses. It also serves as
“portal” to all course-related materials and handles
registration for courses.

. ECQuiz supports the creation and delivery of
interactive multiple-choice tests. It can be used for
formative tests to quickly assess the performance of
a class without the need for extra grading work.

. ECAssignmentBox allows the creation, submission,
and grading of essay-like assignments. The assess-
ment process is semiautomated, i.e., the assessment
is done by the instructor, who is aided by the tool
during the process of grading students’ work and
giving feedback.

The eduComponents modules can be used separately, or
in combination and, since many basic functions are already
provided by the CMS, they implement much of the
standard functionality required in an e-learning environ-
ment. Deploying the eduComponents turns Plone into a
fullfledged, tailormade LMS.

However, we wished to offer our students more timely
feedback and more detailed discussion on their program-
ming assignments too. In addition to the more conceptual
aspects, programming includes practical aspects as well,
e.g., techniques of testing and debugging programs and the
use of a programming environment. Therefore, students
should be given frequent programming assignments, but
assessing a large number of such assignments is a time-
consuming and labor-intensive task.

For this reason, we have been targeting a system for
assessing assignments in computer science education which
provides automatic testing of programming assignments as
a service, and can therefore be flexibly integrated into
existing e-learning environments.

1.2 State of the Art

The term assessment is often used to summarize all activities
that teachers use to help learners learn and to quantify the
learning progress and outcomes (cf. [8]). The latter, in
particular, means that assessment measures and documents
the knowledge, skills, and attitudes of an individual learner,
a learning community (e.g., class, course, or workshop), or
an educational institution.

In computer science education—especially in introduc-
tory programming courses—a significant portion of the
coursework consists of programming assignments that need
to be assessed. Since the submitted assignments should be
executable programs with a formal structure, the obvious
thing to do would be to automatically evaluate these
programs using compilers and interpreters, or specialized
frameworks for static and/or dynamic testing. Common
advantages of automatic assessment tools for computer
programs are speed, availability, consistency, and objectiv-
ity of assessment. However, automatic tools emphasize the
need for careful pedagogical design of the assignment and
assessment settings. To effectively share assessment solu-
tions already developed, better interoperability and port-
ability of these tools is highly desirable (cf. [9]).

The first systems supporting marking and grading of
student solutions for programming exercises were devel-
oped and used as early as 1960 (cf. [10]). Since that time, the
motivation (among others, large numbers of students) and
the same topics remained relevant: Some of them are
security, plagiarism detection, and automatic assessment.

Nowadays, there is a multitude of—mostly web-based—
systems for automatic testing of programming assignments
which are used to supplement teaching in computer science.
Some of these systems are specialized in a specific program-
ming language or test method, e.g., TRAKLA2 [11] for
algorithm simulation exercises, Scheme-robo [12] for pro-
gramming assignments in Scheme, AutoGrader [13] for Java
programs, or JACK [14], as well for programs written in Java.

In addition, other systems like CodeLab3 (Java, C/C++, and
Python programs) or Addison Wesley’s portal MyCodeMate4

(Java and C/C++) support several programming languages.
And there are also systems that support any programming
language and any test method since the real testing
functionality is encapsulated in modules, e.g., CourseMarker
[15], BOSS [16], or the AT(x) framework [17].

The project Praktomat [18] from the University Passau is
devoted to better quality control of programming assign-
ments. It offers—additionally to compiling and testing of
program code—the possibility of checking assignments for
their conformity to the Java Code Conventions. Other projects
like WeBWorK [19] or Web-CAT [20] focus on learning
about test-driven software development. Systems like
DUESIE [21] even enable the computer-assisted analysis
of UML assignments.

The autotool system [22] from the University of Leipzig
accepts students’ submissions to assignments in theoretical
computer science and supports exercises on grammars,
regular expressions, automata, or graph properties.

AMELUNG ET AL.: E-ASSESSMENT AS A SERVICE 163

2. All eduComponents modules are freely available as open source
software licensed under the terms of the GNU Public License (cf. http://
wdok.cs.ovgu.de/eduComponents/).

3. http://www.turingscraft.com.
4. http://www.mycodemate.com.

Almost all of these systems have the common property
of providing (along with the actual testing of programming
assignments) functionality for managing users, courses,
assignments, and submissions. This results in a strong
coupling of testing and grading functionality with these
course management functions. Therefore, the transfer and
integration of the automatic testing into existing LMSs is not
easily realized. Thus, the usage of these systems inevitably
leads to administering two or more systems and keeping
redundant data. Furthermore, those systems are difficult to
extend and to adapt to one’s own requirements. They are
built for the purpose of testing programs in a certain
language or employ a certain test method. This results in
rather inflexible, monolithic systems, not created for
possible extension by additional functionality.

Another group of such systems are mainly LMSs that work

in a vice versa manner compared to the systems mentioned

before. LMSs like Moodle,5 Blackboard,6 or OLAT7 are mainly

designed and implemented for the management of courses,

classes, grading, and learning materials. They also offer tools

for assessment of students, including questionnaires, single/

multiple-choice tests, file uploads (e.g., PDF files or voice

files), or free text answers. Tools for automatic marking and

grading, however, are rare for those systems, especially for

automatic testing (and marking and grading, respectively) of

programming assignments.
We found two plugins that extend Moodle by function-

ality for automatic testing of programming assignments.
The project Epaile was initiated during Google’s “Summer
of Code 2007” and “has the objective to develop a plugin for
moodle, making it able to grade computer programming
assignments automatically” [23]. However, the status of this
project remains unclear, since there doesn’t seem to exist
any release of this Moodle plugin. The project OnlineJudge8

is a special assignment type for the Moodle LMS. This
plugin can automatically grade programming assignments
by deploying test cases customized by the instructor. It
supports the testing of assignments in several languages,
including C/C++, Java, Python, and others. The tests can be
run on the server machine running Moodle itself (only
applicable for C/C++ on Linux) or via ideone.com (an
external online compiler and debugging tool).

However, OnlineJudge also ties the testing functionality
of programming assignments strongly to the used LMS,
which is Moodle in this case, making it impossible to use
OnlineJudge in conjunction with other learning manage-
ment systems and, in particular, with our Plone-based
learning environment.

We could not find any such testing functionality for
Blackboard or WebCT, respectively.

In order to characterize and compare different systems for
automatic assessment in a more structured way, we work
with the following criteria that will as well be used in the
synopsis of selected assessment systems9 below (see Fig. 1):

. Which assessment types are supported: objective
assessment only (e.g., multiple choice, true/false,
matching, and completion items) or subjective
assessment (e.g., extended-response questions, es-
says, or programming assignments) as well?

. For automatic assessment: Is the system designed for
a single programming language or is it usable (in
principle) with any programming language? Is the
scope even broader and includes as well automatic
assessment of formal systems beyond traditional
programming languages?

. Is the system confined to a single test method or
does it support a variety of test methods?

. Is extensibility of the system by users explicitly
foreseen and supported?

. Is the system available as open source or is it closed
source only?

. Is the assessment system standalone only or is
integration with other systems supported, in parti-
cular, with other learning management systems?

. Is the system still supported and further developed
(i.e., is the latest release not older than two years)?

1.3 Requirements

Based on our motivation (see Section 1.1) and the actual
needs in teaching at our institution, an e-assessment system
for testing programming assignments has to satisfy the
following requirements:

. flexible integration of test and grading functional-
ities in existing learning environments without
redundant user management and data storage,

. automatic evaluation of programming assignments
in different programming languages with different
test methods,

. automatic evaluation of assignments in other formal
notations, e.g., regular expressions, XSL transforma-
tions (XSLT), and UIMA analysis engines,10

. assessment and grading of assignments that require
short text answers in natural language,

. easy extension to provide additional assignment
types, programming languages, and test methods.

164 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 4, NO. 2, APRIL-JUNE 2011

Fig. 1. Synopsis of systems for automatic assessment.

5. http://moodle.org.
6. http://www.blackboard.com/.
7. http://olat.org.
8. http://code.google.com/p/sunner-projects/wiki/OnlineJudgeAs-

signmentType.
9. We selected examples from each group of systems mentioned in the

text before. 10. http://incubator.apache.org/uima/.

From the systems mentioned in Section 1.2, none met all
of our requirements (cf. Fig. 1). Especially, the lack of
flexible integration into existing LMSs was grave, since we
were using Plone for our workgroup’s website, and since
Plone already offers a lot of functionality that is useful in
organizing teaching and learning. Thus, we decided to look
for possiblilities to integrate automatic assessment function-
ality (in particular, for programming assignments) into a
heterogeneous learning platform.

1.4 Structure of This Paper

This paper is organized as follows: First, we will introduce
a novel service-oriented approach for the development and
deployment of flexible and reusable software components
for automatic assessment. To demonstrate our approach,
we afterward go into detail explaining the necessary steps
that have to be taken in order to specify new services for
testing programming assignments. In Section 3, we elabo-
rate on the development of frontend components for user
interaction with the testing system. We will show what
specific frontends and backends have already been devel-
oped and give a short preview of additional components
we plan to implement. Finally, we report about our
experiences with the deployment of the introduced compo-
nents and reflect on the effects on teachers and students.
We will also give an outlook on future development of our
e-assessment and e-learning approach.

2 A SERVICE-ORIENTED APPROACH

2.1 Design Decisions

In contrast to the systems introduced in Section 1.2, our
approach focuses on a clear separation of all aspects
regarding the management of learners, assignments, and
submissions from the actual testing of programming
assignments.

To achieve this goal, we employ a service-oriented archi-
tecture (SOA). An SOA is a framework for the integration of
(business) processes as secure, standardized components—-
so-called services—that can be reused and combined to meet
varying requirements (cf. [24]). A service is a software
component whose functionality is offered platform indepen-
dently through an interface over the network. Service
orientation requires loose coupling of services, which
communicate with their corresponding consumers by pas-
sing data in a well-defined, shared format, or by coordinating
an activity between two or more services (cf. [25]).

The actual testing of programming assignments is highly
dependent on the kind of test method, programming
language, or other formal notation involved. For example,
programs can be evaluated by using static and/or dynamic
tests. For the latter, the output of a program can be
compared to that of a model solution, or the assignment
can be tested for properties which must be fulfilled by
correct programs. Hence, all aspects regarding the exact
testing should be encapsulated and implemented in self-
contained services—we call them backends. Backends are
functional building blocks of our SOA, which provide test
and assessment facilities over standard Internet protocols
independent of platforms and programming languages.

Teaching and learning are core business processes within
educational institutions. These processes are typically
supported by an LMS. Following the above-mentioned idea
of separating all concerns related to managing from testing
and assessment, learning management systems play the role
of service consumers in our SOA approach. In the following,
we will use the term frontend for the LMS employed.
Common functions of a frontend are, for instance, storage of
assignments and solutions, proper treatment of submission
periods and resubmissions, communication of results to
students, or statistics for individual students and whole
cohorts. For automatic testing purposes, frontends access
the functionality provided by the backends.

To enable uniform access to the backends and a
preferably loose coupling of frontends and backends
(avoiding too many point-to-point connections), we intro-
duced a third component, the so-called spooler. Similar to a
printer spooler, it manages a submission queue, as well as a
variety of backends, and provides the following functions:

. add new submissions for testing,

. get results from tests performed by a backend,

. show status information (e.g., available backends
and number of submissions in queue),

. add or remove backends,

. get required input fields for testing with a certain
backend,

. get available test method options.

In this manner, the spooler plays at first the role of a
service broker in our SOA, but it is also a service provider
for different frontends, as well as a service consumer, since
it uses varying backends (cf. Fig. 2).

Implementing the spooler and backends in a service-
based way results in a high degree of interoperability and
flexibility and also offers the option to combine a multitude
of frontends and backends. It also ensures the integration of
any backend—even in heterogeneous system environments.
The encapsulated testing functionality in the backends can
be reused and extended.

Fig. 3 shows the three key components of the service-
oriented approach and examples of their potential realiza-
tions. Having already discussed the core functionality of
the spooler, we will go into detail about the specification
and implementation of frontends and backends in the
following sections.

2.2 Frontend Specification

The basic idea is that instructors create electronic/online
assignment boxes, into which students submit their answers
or solutions. These submissions are stored as assignments

AMELUNG ET AL.: E-ASSESSMENT AS A SERVICE 165

<<Service Broker>>

Spooler

<<Service Consumer>>

Frontend

<<Service Provider>>

Backend

Fig. 2. Roles in a service-oriented architecture and its equivalents in our
approach.

inside the assignment box. Each submission, as well as all
necessary test data are sent to the spooler, which, in turn,
passes it on to the selected backend. The assessment of
student submissions starts with the submission of a
student’s answer and ends with the grading of an assign-
ment by the instructor. This process can be modeled as a
workflow, i.e., from the initial submission to the final
grading, submissions are put through a number of work-
flow states.

Besides standard attributes (e.g., title, author, and
creation date), assignment box objects have a number of
attributes to realize specific functionality:

. assignment text,

. answer template,

. submission period, and

. number of attempts.

When an instructor creates a new assignment box, it
has to be associated with a certain backend. Therefore, the
box has to communicate directly with the spooler (see
Section 2.1) which returns a list of available backends and
their input fields that are needed for testing.

Those input fields may vary according to the chosen
backend and the assignment box has to dynamically create
the user interface, i.e., for a test-case-based backend, the
instructor has then to type in test data and a model
solution, whereas he has to specify unit tests for respective
unit test backends.

Students can read the assignment text and submit their
answers. If the submission period is restricted, submissions
are only allowed until the submission period has ended.
Multiple attempts to answer assignments are allowed—up
to the maximum number of attempts specified by the
instructor. Fig. 5 shows roles and actions that must be
implemented by a frontend.

Processing a submission is shown in Fig. 4:

1. The learner types a solution (program code) into the
frontend,

2. The frontend sends the submission to the spooler
and gives information about which backend to use,

3. The spooler forwards the submission to the appro-
priate backend. The backend executes the compiler
and/or interpreter with the submitted code,

4. The backend returns status messages and possible
error descriptions to the spooler, and

5. The frontend polls the spooler for the result of the test,
fetches it, and displays it as feedback to the user.

Later on, in Section 3, we will describe two existing
frontends in more detail and show how this specification
was realized.

2.3 Backend Specification

In the following, we will illustrate which influencing
factors have to be taken into account for the development
of new backends.

2.3.1 (Programming) Language and Test Method

For the development of new backends, the first step is to
answer two essential questions:

1. What is to be tested? and
2. How should the tests be pursued?

To answer the first question, it must be determined
which programming language or other formal notation
should be supported by the backend. This decision will
affect all subsequent steps.

The answer to the question, how a submission should be
tested, is given by the decision for a certain test method (e.g.,
static versus dynamic tests; cf. [26]). This decision is,
however, dependent on the chosen programming language.
If, for example, submissions should be tested dynamically
with unit tests, this requires the availability of a unit test
framework for the chosen language. Furthermore, the
conditions that lead to an early termination of the test run
have to be determined. For instance, dynamic tests need not

166 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 4, NO. 2, APRIL-JUNE 2011

Fig. 4. Processing a student’s submission for automatic testing.

Fig. 5. Roles involved and actions provided by a frontend.

Fig. 3. Components and realizations of our service-oriented approach
for e-assessment.

be run if a syntactical test has already failed. It could also be
defined that a test run (comprising a number of tests)
should be terminated as soon as a single test has failed.

2.3.2 Input and Output

The chosen test method determines requirements for the
input data, i.e, information that has to be given by the
instructor and information that is enclosed in the actual
submission. In most cases, a student’s submission contains
the answer to an assignment in one or more text or source
code files.

The instructor has to provide information about the
constraints of the assignment. For enabling automatic
testing of the submission—in addition to the description
of the problem to solve—the learner has to have the
following information:

. name of the functions he has to implement,

. number and types of function arguments,

. type of the return value.

The instructor also has to provide the information
necessary for testing. For a comparison with a model
solution, it is necessary to have such a model solution and
also test data (input data). In this case, the instructor also
has to set whether the results of the submission should be
identical to those of the model solution or if in case of a list-
valued result, permutations are allowed as well.

In addition to input data, the output of the backend must
also be defined exactly since this value will be forwarded as
feedback to the learner. If all tests have been passed
successfully, this should result in a positive feedback. In
the case of errors, there has to be a detailed feedback about
the type of error such that the student gets hints about the
problems with his solution. Hence, messages from the
compiler or interpreter about syntactical or runtime errors
should be forwarded to the learner, as well as information
about failed tests, test data, and expected results. It must be
pointed out that the available information that could be
used as feedback for the user depends upon the chosen
programming language and test method.

2.3.3 Compiler and Interpreter

The choice of a particular compiler and/or interpreter may
yield certain preconditions and limitations. In particular,
the type and information content of return values of a
compiler or interpreter have to be analyzed with respect to
its use as feedback from the backends. Those return values
could be about successful compilations or error messages.

2.3.4 Security

During dynamic tests unknown and potentially faulty
source code will be executed. Thus, certain security aspects
have to be considered. Without precautions, a submission
can execute—with the privileges of the backend user—any
functions and programs, run denial-of-service attacks, or
spy on information about other users, the system, or
assignments (especially the model solution).

This results in security requirements that have to be
taken into consideration in later deployment of the back-
ends, depending on programming language and platform.
For instance, a restricted interpreter or a sandbox environ-
ment can be used for program execution. Other possibilities

include the deployment of additional software to limit the

access to system calls, e.g., Systrace [27].
Furthermore, it is reasonable to set a time limit for testing

the submitted programming code. If this time limit is

exceeded, the execution of the current submission is aborted

because the code is suspected of containing infinite
recursions or infinite loops.

3 FRONTEND IMPLEMENTATION

The service-oriented approach and the loose coupling of
software components, respectively, allows the use of the
spooler and its registered backends with literally a multi-
tude of frontends. In this chapter, we introduce two of our
already existing frontends—ECAutoAssessmentBox and a
lightweight Java frontend—and give an outlook on the
undergoing development of two additional backends that
will enable Moodle and OLAT to use the testing function-
ality of ECSpooler.

3.1 ECAutoAssessmentBox

As mentioned in Section 1.1, our learning environment is

based on Plone and the eduComponents. The module

ECAutoAssessmentBox from the eduComponents offers

instructors facilities to create online assignments and to

accept submissions for automatic testing with a number of

different backends. As an extension module for Plone,

ECAutoAssessmentBox is implemented in Python. To

communicate with ECSpooler and its backends, Python’s

XML-RPC client API is used. XML-RPC11 is a remote

procedure call method using HTTP as the transport
protocol and XML for encoding. It allows complex data

structures to be transmitted, processed, and returned. With

it, a client can call methods on a remote server.
Fig. 6 shows, as an example, the options and input fields

for the JUnit backend generated by ECAutoAssessment-

Box. This backend runs the student solution on a set of

unit tests.
Students submit their answers via the web interface of

ECAutoAssessmentBox. They can read the assignment text

and submit their solution either by typing it into a textbox

or via file upload. If the submission period is restricted,

information about the deadline will also be displayed.
The result of a test run will be shown to the learner

immediately and the submission will be marked either

“passed all tests” or “failed.” If a submission fails, then the

given feedback includes the test case and the expected

result (for an example, see Fig. 8).

3.2 Stand-Alone Thin Client

Besides ECAutoAssessmentBox, other arbitrary frontends

can be used in conjunction with ECSpooler and backends.

For proof of concept, we implemented a lightweight, stand-

alone client (see Fig. 7) written in Java which communicates

with a web service based on SOAP,12 which, in turn,

communicates with ECSpooler.

AMELUNG ET AL.: E-ASSESSMENT AS A SERVICE 167

11. http://www.xmlrpc.com/.
12. Simple Object Access Protocol (SOAP) is a standard for exchanging

structured information in the implementation of web services (cf. http://
www.w3.org/TR/soap/).

Thus, the Java client can be used by instructors to quickly
design and test their assignments with different backends,
without the need for a full installation of an LMS.

3.3 Moodle and OLAT

In the near future, we intend to implement frontends for
Moodle and OLAT, so that the testing functionality of
ECSpooler and the backends can be used also with these
two LMS. Developing and implementing frontends for
Moodle and OLAT means that additional content types
will be created. These content types will be based on the
LMS’s own existing assignment types (e.g., free-text
assignments), exploiting the already existing functions,
such as managing users, groups, assignments, deadlines, or
number of attempts.

4 BACKEND IMPLEMENTATION

In recent years, we have developed and deployed backends
for XML, as well as for the programming languages
Haskell, Scheme, Erlang, Prolog, Python, and Java. How-
ever, with the appropriate backends, submissions in other
formal notations can also be tested and even natural
language assignments can be analyzed.13

All backends are implemented as web services using
Python’s XML-RPC server API. A so-called input schema is

used to describe all input fields that are necessary for a
complete specification of a test run. For example, for a test-
data-based analysis, a model solution and a couple of
function calls have to be provided. Furthermore, the schema
defines at least one so-called test method option. Those test
method options allow instructors to choose between
different compilers or interpreters for a programming
language or different comparison methods (e.g., exact
match versus tolerance match for floating-point values).

Backends are derived from general backend classes.
These classes provide a number of standard functions like
starting and stopping of backends, or registering a backend
to a spooler. Thus, the development of new backends is

168 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 4, NO. 2, APRIL-JUNE 2011

Fig. 7. User interface of a frontend implemented as thin client in Java.

Fig. 6. Web interface generated by ECAutoAssessmentBox for a

programming assignment in Java (JUnit backend).

13. We have already experimented with style checking and keyword
spotting (cf. [28]). Fig. 8. Example feedback from the JUnit backend.

reduced to the definition of input and output schemas and
methods for the execution of the concrete tests.

4.1 JUnit

In this section below, we will briefly and step-by-step
demonstrate how a new backend can be specified (cf.
Section 2.3) using the example of the JUnit backend.

4.1.1 Programming Language and Test Method

The JUnit backend is one possible option when learners
implement solutions to programming assignments in the
Java programming language.

First, solutions have to be syntactically correct. The
logical correctness in the sense of proper working of the
program shall be automatically evaluated with the help of
appropriate unit tests. A unit test is “a test that exercises a
relatively small executable. In object-oriented program-
ming, an object of a class is the smallest executable unit, but
test messages must be sent to a method, so we can speak of
method scope testing. A test unit may be a class, several
related classes (a cluster), or an executable binary file.
Typically, it is a cluster of independent classes” [29].

The utilized framework is JUnit.14 A solution is con-
sidered correct when all tests have been passed without
errors. If one test fails, the complete test run will be aborted.

4.1.2 Input and Output

The instructor provides test data in the form of unit tests. In
addition, imports and helper functions can be provided.
The signature of the method (name, type of the arguments,
and return value), that is going to be called, is defined in the
assignment text. The learner submits his solution as source
code.

The feedback for the learner contains information about
the syntactical correctness and whether all unit tests have
been passed without errors. As soon as one test fails, a
negative feedback will be returned. This feedback contains
messages from the Java compiler in the case of syntactic
errors and the return value of the according JUnit test in the
case of logical flaws. In the case of such errors, the
anticipated and actually gained results will be presented
to the learner (see Fig. 8 for an example). Thus, he gets the
opportunity to recognize mistakes in his solution and revise
it accordingly.

4.1.3 Compiler and Interpreter

The Java compiler is used to analyze the syntax in order to
detect syntactic errors. If no errors are found, an executable
program file will be created which is then used to run the
dynamic test itself. The provided unit tests are executed by
the Java interpreter and applied to the compiled program.
Potential error messages will be collected and serve as
direct feedback for the learner.

4.1.4 Security

First of all, security is granted by the backend being
executed as an unprivileged user on a separate server host.
In addition, certain function calls are disabled by using
Systrace and the execution of the submission will be aborted
if a certain time limit is exceeded.

4.2 Haskell

The Haskell backend takes advantage of the fact that in pure
functional programming languages, programs are functions
whose values can be compared directly. The equality
criterion can be specified by the teacher on a per task basis:

. direct match: output of student and model solution
must be equal for the same test data,

. for lists as results: accept lists with same elements
but in different order as equal (i.e., identical modulo
permutation),

. for numerical algorithms: define a tolerance to
account for the effects of rounding.

Using the Haskell backend, teachers have to select at
least one criterion for equality and they have to specify a
model solution and test data.

If a single test case fails, the whole evaluation stops
immediatly and the backend returns the corresponding
function call, as well as the expected and actually
received result.

Another backend for Haskell uses QuickCheck [30] for
testing Haskell programs automatically. Teachers have to
define formal specifications in the form of properties which
a correct solution should satisfy. This will be tested with a
large number of randomly generated test data. Feedback is
given in the form that either all test data fulfilled all
properties or which property failed on which data.

5 PRACTICAL USE

In the following, we discuss experiences from three
applications of ECAutoAssessmentBox, ECSpooler, and
backends for automatic assessment in computer science
education, two of them at a location and within a group that
is completely independent from the developers group.

5.1 Use Case 1: University Magdeburg

In Magdeburg, we are using the eduComponents modules
as part of a blended learning strategy which consists of
lectures, electronic exercise work, and exercise groups as
regular classroom sessions.

The eduComponents have been actively used in all our
lectures for several semesters. This includes introductory
and advanced lectures in programming like “Algorithms
and data structures,” “AI programming and knowledge
representation,” or “Functional programming: advanced
topics,” as well as lectures like “Natural language systems,”
“Document processing,” or “Information extraction.” In the
latter, student assignments deal with formal systems and
formalisms beyond traditional programming, e.g., XSLT and
regular expressions.

Since October 2008,15 we have published approximately
2,700 instances of ECAutoAssessmentBox and automati-
cally evaluated about 30,000 submissions from students.

The most recent and broad scale usage in programming
was from winter semester 2008/2009 to summer semester
2010 in the lecture “Algorithm and Data Structures” with
three hours lecture and two hours exercise per week. This
course is obligatory for all computer science bachelor

AMELUNG ET AL.: E-ASSESSMENT AS A SERVICE 169

14. http://www.junit.org/. 15. In October 2008, we migrated the eduComponents to Plone version 3.

students in their first semesters. It is essential that the
students deepen their understanding by solving program-
ming tasks. This can only be achieved when exercises and
practice are very intensive.

An exercise group comprises approx. 15-20 students and

is headed by a tutor. The tutor of the exercises—this is
either an assistant or an advanced student—has prior access
to all submissions. We therefore demand that students
submit programming assignments several hours prior to
the weekly group meeting and get them prechecked by
ECAutoAssessmentBox (see Section 3.1). This facilitates
better preparation for face-to-face group meetings. The
tutor can now decide much better in advance how much

time needs to be allocated for what tasks because he can
judge the students’ performance and their potential
problems from the inspection of submitted solutions and
solution attempts. During the group session, all these
documents are available online.

5.2 Use Case 2: University Rostock

At the University of Rostock, there exists a course called

“Abstract Data Types” that is intended to introduce students
to specification and Java programming. This course was
taught for the first time in winter semester 2007/2008.
Participants come from different course programs like
computer science, business informatics, and information
technology.

The course consists of lectures, exercises, and lab classes.
Additionally, students have to perform specification and
programming tasks at home. A minimum of 50 percent of the
possible marks are necessary to get the admission to the exam.

The colleagues from Rostock have chosen to use the
eduComponents (cf. [1]) because marking is a very time-
consuming activity, and this is often the reason to reduce
the number of problems given to the students. This
contrasts with the need for significant amount of training
via larger numbers of exercises during the first year.

The eduComponents—especially ECAutoAssessment-
Box—proved to be very helpful to support this idea and
to give students enough problems to train with. As
assignments, students received algebraic specifications
and the signature of the Haskell function as an answer
template. They then had to implement the axioms as
Haskell functions.

With the help of ECAutoAssessmentBox in conjunction
with the Haskell backend, those submissions (i.e., specifi-
cations) could be tested for correctness according to a
model solution.

The experiences with the system were very positive
with both the Haskell and Java backend. Markers were
allowed to have a look at the solutions in detail and to
provide specific marks, which improved efficiency a lot.
Soon after exposure to the system, tutors decided to use
ECAutoAssessmentBox additionally for lab hours. This
demonstrates how well the system has been accepted.

5.3 Use Case 3: LMU Munich

This third use case is even more interesting in the manner
that the Institute for Computer Science at the Ludwig-
Maximilians University Munich (LMU) has developed a

backend for the programming language SML.16 This
backend is an adopted variant of the Haskell backend
(cf. Section 4.2).

The Institute for Computer Science provides its own
LMS for course management. This system, however, does
not offer automatic assessment for programming assign-
ments. Thus, an own installation of Plone with ECAutoAs-

sessmentBox and ECSpooler has been used in conjunction
with the developed SML backend for the lecture “Pro-
gramming and Modeling” in summer term 2008. This
lecture was attended by about 200 first-year bachelor
students whereas 40 students used the automatic assess-
ment system to prepare for the exercise classes.17 During
the semester, 43 assignments have been given to the
students, and the system counted 1,047 submissions with
automatic testing.

The effort for the development of the SML backend was
relatively low. It took one day to derive the new SML
backend from the Haskell backend. This illustrates that it is
very easy to integrate test functionality for assignments in
other programming languages.

6 EVALUATION

In our experience, three factors are highly interrelated when
issues of learning technology have to be discussed:

. didactical and pedagogical goals,

. issues of regulations for learning organization (“the
rules of the game” or policy),

. opportunities and possibilities enabled by learning
technology.

A lot has changed in our teaching since we started with
the enterprise that later was termed eduComponents, and
experimentation and innovation still goes on.

However, since we have no control groups that experi-
ence learning without eduComponents, a statistical compar-
ison of learning outcomes with and without the system is
not possible. We therefore use an evaluation procedure that
takes the subjective judgements of the course participants
into account.

At the end of each semester, we ask our students to
complete a questionnaire on their experience with the
eduComponents learning environment. The questions cover
three areas: The use of electronic submissions in general,
their effect on the students’ working habits, and the
usability of eduComponents. The results in all three areas
are consistently very positive.

Students especially value the reporting and statistics
features, which help them to track their learning progress,
again resulting in better motivation. Furthermore, students
find it helpful that their assignments are stored centrally,
and can quickly be accessed for discussion in the classroom
session. Students also report that they work more diligently
on their assignments because the teachers can now access
and review all submissions.

170 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 4, NO. 2, APRIL-JUNE 2011

17. Attending the excercise classes for this course were optional and not
mandatory for admission to the final exam.

16. Standard ML, a functional programming language, based on Meta
Langunage (ML).

Three questions especially deal with the effects of the
automatic evaluation of programming assignments as
implemented by ECAutoAssessmentBox, ECSpooler, and
backends:

. 4_A “The automatic evaluation of programming
assignments with immediate feedback is altogether
very helpful.”

. 4_B “The automatic evaluation motivates me to
write running and correct programs.”

. 4_C “The automatic feedback helps me to find errors
in my programs.”

As shown in Fig. 9, students gave consistently good
ratings for the automatic assessment of their programs over
the last three semesters.

Feedback from instructors at the universities Magdeburg
and Rostock was collected through informal interviews.
Instructors commented that the administration and review of
student submissions for programming assignments was
much easier with the eduComponents. They also reported
that electronic submissions helped them in the preparation of
classroom sessions and in the early detection of problems.

6.1 Effects on Students

For programming assignments with automatic testing, the
demands for students’ solutions are much more explicit and
rigid with respect to correctness and quality. Students thus
also have to ensure that their solution is working correctly.
Consequently, the intensity of work needed for the
exercises has effectively increased.

On the other hand, students can gain access to a larger
number of alternative solutions and to typical error cases.
Students also reported that they feel much more motivated,
since they get immediate feedback regarding their solu-
tions. The motivation is also due to the fact that students
know that their submissions are actually reviewed, while
previously only a small number of solutions could be
discussed. Maybe these advantages have compensated for
the higher requirements.

Student behavior during classroom sessions has also
changed: Many students no longer carry written notes to
the classroom session, since they know that their submis-
sions are available online.

A very positive development is that many more
students than before speak up in the groups and want to

show and discuss their solution if it is different from other
presented solutions.

6.2 Effects on Teachers

For teachers using automatic testing of programs, the most
significant effect is that the effort for initially designing
assignments has increased. This is an insight that other
users of automated program testing systems have also
reported (cf. [31]). Automatic testing requires problems and
tasks to be formulated much more formally and precisely.
This is necessary to enable automatic testing and in order to
avoid misunderstandings, which could result in students
trying to solve a different problem than the one the teacher
had in mind and then getting puzzled about the reactions of
the automatic testing system.

When they employ eduComponents, teachers are some-
times surprised by unexpected or unintended usage of the
system by the students. The latter may again demand for
policy decisions.

6.2.1 Unexpected Usage

ECAssignmentBox has been designed and implemented as a
lightweight solution. It was intended to support either direct
typing of (short) answers or uploading of assignments
(programs, texts) from a file; but it intentionally does not
offer any sophisticated editor functionality. Nevertheless,
there were unanticipated usages of the system. Some students
used it not only for the submission of their final solution, but
also as a kind of “ubiquitous work place” to work on essay-
like assignments: They started to work on an assignment from
one computer, used the submission feature to store an
intermediate version, and later continued to work on the
same assignment from a different computer. This resulted in a
large number of spurious superseded submissions.

6.2.2 Unintended Usage

Other students abused ECAutoAssessmentBox as a web-
based interpreter to solve programming assignments. This
was clearly unintended in our design. We therefore,
introduced a parameter for teachers to restrict the number
of possible resubmissions for automatically tested program-
ming assignments. We currently use a limit of three
attempts. Limiting the misuse of ECAutoAssessmentBox
as a trial-and-error device by setting a limit on repeated
submissions also enforces a secondary learning objective:
We expect that our students are able to use the native
programming environments and interpreters for the var-
ious programming languages and to leverage them instead
of submitting untested sketches of a solution.

6.3 Reflection

Using a CMS as the basis for managing students’ assign-
ments in the form of electronic documents is in many ways
advantageous compared to paper-only-based assignments.
This may seem to be only a minor change, but we will
illustrate how this move changes the organization of the
learning processes and what new opportunities for learning
result from this technology-enabled paradigm shift.

A CMS makes the handling, assessment, storing, and
reuse of assignments much easier and it allows for new
learning arrangements that are hardly possible without

AMELUNG ET AL.: E-ASSESSMENT AS A SERVICE 171

Fig. 9. Percentage of students that “fully agree” or “agree” with
statements 4_A, 4_B, and 4_C on effects of automatic testing on the
learning process.

such a technological basis. Thus, such a paradigm shift may
be attractive for teachers in all study subjects that work with
student assignments.

The benefits for the learning processes are even more
substantial when electronic submission of students’
assignments is coupled with automatic assessment. Auto-
matic assessment allows for timely, almost immediate
feedback for students, which is known to be an additional
motivating factor.

The automatic testing of programming assignments was
not intended to replace the testing of programs by students
with the appropriate compiler or interpreter. To the
contrary, when the number of tries is limited, students
must test their programs thoroughly before submitting
them, which also encourages them to think about design
and testing issues.

While the feedback provided by our backends (see Fig. 10)
may be considered rudimentary (this is, in part, intentional,
since they are not designed as a tutoring system), the
immediate feedback was mentioned surprisingly often as
very helpful by our students. This positive reaction to the
automatic feedback may be caused by the fact that previously
students received feedback for their programming assign-
ments only very rarely, namely when they were called up to
present their solutions. Thus, even though the automatic
feedback may not yet be perfect, it represents a notable
improvement for the students’ learning experience.

A seemingly minor change in the organization and
technical basis of exercises—i.e., introducing the constraint
that all assignments and all students’ solutions are electro-
nic documents in a CMS—resulted in significant changes in
the learning environment and changed learning processes
much more fundamentally than expected in the beginning
of the transition to the new system.

The processes within the exercise courses have changed
much more radically than initially envisaged, especially by
the use of ECAssignmentBox and ECAutoAssessmentBox.

When we started using CAA and other e-learning
components, we had the primary motivation of relieving
teachers and students from administrative burden by
automating certain processes and supporting others. Our
experience is, however, that the change in the way that
assignments are submitted has led to many other changes in
our courses because of the new possibilities offered by the
system. But the new opportunities also pose new demands
for both teachers and students.

Although the workload for students has increased, there
is a broad acceptance of the new system and students
would welcome its use in other lectures as well. We
interpret this as a positive reaction on the new opportunities
and as an indication that students accept the higher
intensity of their own engagement, because they experience
and appreciate an improved return on investment for their
learning outcomes.

The usage of ECAutoAssessmentBox in Rostock (see
Section 5.2) on a weekly basis was the first broadscale usage
of this CAA module at a site that is not the site of the
developers. As we have learned, this experiment is judged
as successful by both the teachers and the students in
Rostock. This demonstrates as well the flexibility and the
generality already realized and embodied in the architec-
ture of the whole system.

The same applies for the usage of our automatic
assessment approach at the LMU Munich, which developed
and used an own backend for SML (see Section 5.3).

Nevertheless, every successful usage—especially from
users completely independent from the original developers
—is likely to create new demands.

The experiences in Rostock and Munich will lead to
higher flexibility both in the testing and in the interaction
with the students as well. In the backends based on test
data, there is currently only one setup implemented:
Testing succeeds only when all results from the student’s
solution agree with the corresponding results from the
master solution and testing is stopped completely whenever
there is a discrepancy between a student’s result and an
expected result. This discrepancy is then reported to the
student and should help him to improve his solution.

Based on the suggestions from Munich and Rostock, the
following alternative in the course setup, as well as in the
feedback reporting will be realized and offered as alter-
native: Even when there is a discrepancy between a
student’s result and an expected result, testing will continue
with the remaining test cases and test data. Reporting will
be more informative by mentioning the ratio of successful to
unsuccessful tests as well. Such a feedback may be more
appropriate than the current one in cases where, e.g., a

172 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 4, NO. 2, APRIL-JUNE 2011

Fig. 10. Example feedback from the Haskell backend.

student has already covered the regular cases in his solution
but merely has failed to treat a single special case. We
expect that the flexibility gained will help to avoid
frustration and strengthen motivation.

7 CONCLUSION

We have reported about the development of a flexible
service-oriented system—ECSpooler and backends for
different programming languages—for automatic assess-
ment of programming assignment in CS education. We
showed how this system can enable different frontends, i.e.,
learning management systems, to automatically assess
programming assignments. We have also reported about
experiences with using such a system in computer science
education, both at our site and at other educational
institutions.

In this service-oriented architecture, all common aspects
of managing testable assignments (e.g., submission, sto-
rage, and result reporting) are encapsulated in the frontend.
Only the specifics of the testing itself (e.g., for program-
ming tasks: which programming language with which
interpreter or compiler and with which test method) are
realized as self-contained services—so-called backends. In
conjunction with the spooler, backends offer a flexible and
portable alternative to extend a learning management
system or other e-learning environments with functionality
for automatic testing of programming assignments. How-
ever, backends do not exist for programming languages
only. They have also been developed and deployed for
other formal notations that are amenable for automatic
testing like regular expressions, XSLT transformations, or
UIMA analysis engines. There have even been experiments
with automatic support for the grading of assignments in
natural language (cf. [28]), but this definitely needs more
research work.

Since 2005, we have employed the eduComponents in all
our lectures. Automatic testing is essential for all courses
that have a focus on issues of algorithms and programming.
But even with nontestable assignments, the electronic
submission—and therefore, permanent storage, availability,
and reusability as electronic documents—of students’
solutions had an enormous impact on the teaching and
learning arrangements in our courses. This has been
illustrated above.

8 OUTLOOK

In the meantime, a large collection of assignment tasks has
been assembled. Now questions of how to make best use
and reuse of these learning objects become pressing. We
have experimented with an ontology-based organization of
our repository and with respective search facilities (cf. [32]).

The submissions of students are stored together with log
data (e.g., about number of attempts or about submission
time and dates). This allows for data mining or at least data
analysis with respect to patterns in students working
behavior and for post hoc classification of the submissions.
Since we know the exam results, we can try to correlate,
e.g., the estimated average originality of a student’s
solutions or other possible indicators with the respective

outcome in the exam. Originality may be estimated by
measuring how distant or close a student’s submitted
program and documentation texts are compared to his
peers’ submissions for the same task.

We and—as the feedback shows (cf. Section 6)—our
students are content with the new possibilities that the
e-assessment based learning technology offer for teaching
and learning and no one advocates a return to a
conventional unautomated approach. But technology is
just an enabling factor, the responsibility for success still
lies with the people—educators, as well as students—
making proper use of it.

ACKNOWLEDGMENTS

The authors would like to thank their former colleague

Dr. Michael Piotrowski for inspiring discussions and his

contributions to the eduComponents, Wolfram Fenske and

Sascha Peilicke for their substantial implementation work,

and their colleagues Ilona Blümel and Dr. Manuela Kunze

for their valuable feedback from their experiences in

teaching with the eduComponents. The authors also thank

the anonymous reviewers for their constructive criticism

and their very detailed and valuable feedback. This paper is

an extended and improved version based on prior publica-

tions [1] and [2] by the authors.

REFERENCES

[1] M. Amelung, P. Forbrig, and D. Rösner, “Towards Generic and
Flexible Web Services for E-Assessment,” Proc. 13th Ann. Conf.
Innovation and Technology in Computer Science Education (ITiCSE ’08),
pp. 219-224, 2008.

[2] M. Amelung, K. Krieger, and D. Rösner, “Flexibles E-Assessment
auf Basis einer Service-orientierten Architektur,” Proc. Lernen im
Digitalen Zeitalter (DeLFI ’09): 7, E-Learning Fachtagung Informatik,
A. Schwill and N. Apostolopoulos, eds., pp. 247-258, 2009.

[3] R.J. Light, Making the Most of College: Students Speak Their Minds.
Harvard Univ., 2001.

[4] M. Amelung, M. Piotrowski, and D. Rösner, “Educomponents: A
Component-Based E-Learning Environment,” Proc. 12th Ann.
SIGCSE Conf. Innovation and Technology in Computer Science
Education (ITiCSE ’07), p. 352, 2007.

[5] M. Piotrowski, “Document-Oriented E-Learning Components,”
PhD thesis, Dept. of Computer Science, Otto von Guericke Univ.,
2009.

[6] D. Rösner, M. Piotrowski, and M. Amelung, “A Sustainable
Learning Environment Based on an Open Source Content
Management System,” Proc. German E-Science Conf. (GES ’07),
2007.

[7] M. Piotrowski, M. Amelung, and D. Rösner, “Tactical, Docu-
ment-Oriented E-Learning Components,” Proc. IADIS Int’l Conf.
E-Learning, pp. 171-177, 2007.

[8] P. Black and D. Wiliam, “Inside the Black Box: Raising Standards
through Classroom Assessment,” Phi Delta Kappan, vol. 80, no. 2,
pp. 139-148, 1998.

[9] K.M. Ala-Mutka, “A Survey of Automated Assessment Ap-
proaches for Programming Assignments,” J. Computer Science
Education, vol. 15, no. 2, pp. 83-102, June 2005.

[10] G.E. Forsythe and N. Wirth, “Automatic Grading Programs,”
Comm. ACM, vol. 8, no. 5, pp. 275-278, 1965.

[11] M. Laakso, T. Salakoski, A. Korhonen, and L. Malmi, “Automatic
Assessment of Exercises for Algorithms and Data Structures—A
Case Study with TRAKLA2,” Proc. Fourth Finnish/Baltic Sea Conf.
Computer Science Education, pp. 28-36, Oct. 2004.

[12] R. Saikkonen, L. Malmi, and A. Korhonen, “Fully Automatic
Assessment of Programming Exercises,” Proc. Sixth Ann. Conf.
Innovation and Technology in Computer Science Education (ITiCSE ’01),
pp. 133-136, 2001.

AMELUNG ET AL.: E-ASSESSMENT AS A SERVICE 173

[13] M.T. Helmick, “Interface-Based Programming Assignments and
Automatic Grading of Java Programs,” Proc. 12th Ann. SIGCSE
Conf. Innovation and Technology in Computer Science Education
(ITiCSE ’07), pp. 63-67, 2007.

[14] M. Striewe, M. Balz, and M. Goedicke, “A Flexible and Modular
Software Architecture for Computer Aided Assessments and
Automated Marking,” Proc. First Int’l Conf. Computer Supported
Education, pp. 54-61, 2009.

[15] C.A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas,
“Automated Assessment and Experiences of Teaching Program-
ming,” J. Educational Resources in Computing, vol. 5, no. 3, p. 5,
2005.

[16] M. Joy, N. Griffiths, and R. Boyatt, “The BOSS Online Submission
and Assessment System,” J. Educational Resources in Computing,
vol. 5, no. 3, p. 2, 2005.

[17] C. Beierle, M. Kula�s, and M. Widera, “Automatic Analysis of
Programming Assignments,” Proc. der 1. E-Learning Fachtagung
Informatik (DeLFI ’03), A. Bode, J. Desel, S. Ratmayer, and
M. Wessner, eds., vol. P-37, pp. 144-153, 2003.

[18] J. Krinke, M. Störzer, and A. Zeller, “Web-Basierte Programmier-
praktika Mit Praktomat,” Proc. des Workshop Neue Medien in der
Informatik-Lehre, Oct. 2002.

[19] O. Gotel, C. Scharff, and A. Wildenberg, “Teaching Software
Quality Assurance by Encouraging Student Contributions to an
Open Source Web-Based System for the Assessment of Program-
ming Assignments,” Proc. 13th Ann. Conf. Innovation and Technol-
ogy in Computer Science Education (ITiCSE ’08), pp. 214-218, 2008.

[20] S.H. Edwards and M. Peréz-Quiñones, “Web-CAT: Automatically
Grading Programming Assignments,” Proc. 13th Ann. SIGCSE
Conf. Innovation and Technology in Computer Science Education
(ITiCSE ’08), 2008.

[21] A. Hoffmann, A. Quast, and R. Wismüller, “Online-Übungssystem
für die Programmierausbildung zur Einführung in die Informa-
tik,” Proc. Die 6. E-Learning Fachtagung Informatik (DeLFI ’08), 2008.

[22] M. Rahn and J. Waldmann, “The Leipzig Autotool System for
GradingStudent Homework,” Proc. Workshop E-Learning, M. Hanus,
S. Krishnamurthi, and S. Thompson, eds., 2002.

[23] Epaile, Automatic Grading of Programs, http://docs.moodle.org/
en/Student_projects/Automated_grading_of_programs, 2010.

[24] N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and R. Shah,
Service-Oriented Architecture (SOA) Compass: Business Value, Plan-
ning, and Enterprise Roadmap. IBM, 2005.

[25] M. Bell, SOA Modeling Patterns for Service Oriented Discovery and
Analysis. Wiley, 2010.

[26] G.J. Myers, The Art of Software Testing, second ed. Wiley, 2004.
[27] N. Provos, “Improving Host Security with System Call Policies,”

Proc. 12th USENIX Security Symp., Aug. 2003.
[28] T. Feustel, “Analyse von Texteingaben in einem CAA-Werkzeug

zur Elektronischen Einreichung und Auswertung von Aufgaben,”
Master’s thesis, Dept. of Computer Science, Otto von Guericke
Univ., 2006.

[29] R. Binder, Testing Object-Oriented Systems: Models, Patterns and
Tools, J.C. Shanklin, ed. Addison-Wesley, 2000.

[30] K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs,” Proc. Fifth ACM SIGPLAN
Int’l Conf. Functional Programming (ICFP ’00), pp. 268-279, 2000.

[31] A. Zeller, “Making Students Read and Review Code,” Proc. Fifth
Ann. SIGCSE/SIGCUE ITiCSE Conf. Innovation and Technology in
Computer Science Education (ITiCSE ’00), pp. 89-92, July 2000.

[32] M. Otto, “Ontologien zur semantischen Suche in einem Bestand
von Dokumenten,” Master’s thesis, Dept. of Computer Science,
Otto von Guericke Univ., 2008.

Mario Amelung studied business informatics
from Otto-von-Guericke University (OvGU),
Magdeburg, Germany. Since 2005, he has been
working toward the PhD degree at WDOK. He is
a member of the board and senior project
manager at Eudemonia Solutions AG, where
he works on different software engineering
projects. His academic work focuses on ser-
vice-oriented architectures and e-assessment in
computer science education.

Katrin Krieger received the master’s degree in
computer science and education science from
Otto-von-Guericke University (OvGU), Magde-
burg, Germany, in 2006. She was awarded a
PhD scholarship from the Hasso-Plattner Insti-
tute and spent 18 months in Potsdam, Germany.
Since 2009, she has been a scientific assistant
in the Department of Computer Science at
OvGU and works in the Knowledge-Based
Systems and Document Processing Research

Group. Her research interests include e-learning, recommendation
engines, web technologies, and collective intelligence.

Dietmar Rösner has been a full professor in
the Department of Computer Science at Otto-
von-Guericke University, Magdeburg, Germany,
since 1995. He is the head of the Knowledge-
Based Systems and Document Processing
Research Group. His research interests include
natural language processing, XML technolo-
gies, emotions in human-machine interaction,
and e-learning.

174 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 4, NO. 2, APRIL-JUNE 2011

