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Abstract—The design and implementation of remote laboratories present different levels of complexity according to the nature of the

equipments operated by the remote laboratory, the requirements imposed on the accessing computers, the network linking the user to

the laboratory, and the type of experiments the laboratory supports. This paper addresses the design and implementation of remote

laboratories employing web technologies, both at the client and the server side. These types of remote laboratories are called

WebLabs, and can be deployed over different networks such as the public internet, campuswide networks, or high-speed private

networks. Although most published works on WebLabs focus on their functional and operational aspects, nonfunctional requirements

related to security, quality of service, and federated operation of WebLabs have received little attention. This paper addresses how

these requirements can be incorporated into WebLab design, and discusses the most appropriate web technologies to fulfill such

requirements.

Index Terms—Remote laboratories, WebLabs, federated WebLabs, mobile robotics.
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1 INTRODUCTION

MOST web-based laboratory (WebLab) implementations
focus on the interaction facilities for manipulating

WebLab resources over the network. Such facilities try to
reproduce on the user’s computer the same interaction
mechanisms employed in the in situ operation of the
resources. For example, a WebLab experiment that employs
a spectrum analyzer can offer an interface that displays to
perfection the equipment’s console with its screens, push
buttons, knobs, switches, and lights. Through this interface,
a remote user can operate the equipment in much the same
way as if he/she were physically present in the lab.

Although interaction is a key issue in WebLab design, it is
not the only one. As Internet connection speed grows
steadily and high-speed academic networks reach more
and more students and researchers, WebLabs are expected to
become valuable tools for practical experimentation in
learning and research activities. In this scenario, institutions
may also take an interest in sharing WebLabs in order to
increase the spectrum of laboratorial facilities offered to their
students and researchers. Issues such as security, quality of
service, and operation across organizational borders become
crucial for the success of future WebLab projects.

This paper details the topics of security, quality of
service, and federated operation in WebLab design and
deployment. A domain-independent platform for WebLabs

addressing these topics is presented. A WebLab in the field
of mobile robotics built above this platform is presented as
well. The contributions of this paper to the field of remote
labs are: 1) to propose a reference model with which remote
labs can be designed and compared; 2) to discuss subjects
rarely found in the remote lab literature: quality of service,
security, and federated operation, as well as to propose
technical solutions for incorporating these subjects into the
development of remote labs; 3) to identify a set of domain-
independent services for building software platforms to
support secure remote labs.

The paper is organized as follows: Section 2 presents a
reference model for WebLabs that helps to identify and
classify the components required by the the federated
operation of WebLabs. Section 3 discusses how security can
be incorporated into WebLab design in order to protect the
resources accessible through the network. Section 4 ad-
dresses quality of service in WebLabs. Section 5 discusses
federated operation of WebLabs, i.e., the sharing of
WebLabs among multiple organizations. Section 6 presents
REALabs, a platform for WebLabs, and REALabs-BOT, a
WebLab in mobile robotics. Section 7 presents the usage of
REALabs-BOT in a graduate course on mobile robotics.
Section 8 evaluates some related works, and Section 9
concludes the paper.

2 A REFERENCE MODEL FOR WEBLABS

Fig. 1 shows a reference model for WebLabs in a Unified
Modeling Language (UML) simplified class diagram. This
model is an extension of a reference model proposed by the
authors in [1]. The purpose of such a model is to identify the
major functions that a modern remote lab adopting a service-
oriented architecture must support. The model is neutral in
terms of implementation technology and application domain.
The central entity of the model is the WebLab itself. This
component operates a set of resources, both physical
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(equipments, devices, machines, etc.) and logical (software
systems). Resources are remotely manipulated by services
offered by the WebLab. Services hide the particular char-
acteristics of a resource, for instance, the programming
language and communication protocol employed to handle
it. The mapping between services and resources is arbitrary.
Services may aggregate multiple resources into a single
manipulation unit (e.g., a camera and a microphone as a
communication resource), and multiple services can manip-
ulate a single resource (e.g., each service offering a different
mode of operation for the resource). Services can execute in
the resources’ embedded processors (as in network cameras
and robots) or in external processors connected to the
resource, known as lab servers. However, no matter how
services and resources are mapped or where the services run,
the model requires that the manipulation of resources be done
solely through well-defined services.

Experiments offered by a WebLab are performed
through a composition of services. This composition can
be supplied by the WebLab or by the user. For instance, a
WebLab in mobile robotics can offer services to manipulate
a mobile robot, such as a locomotion service to drive the
robot, a perception service to acquire data from the robot’s
sensing devices, and an action service to configure pre-
programmed actions on the robot. More specialized services
such as localization, mapping, and autonomous navigation
can be offered as well. In this context, a teleoperation
experiment can be prepared by composing a locomotion
and a perception services in order to allow the user to drive
the robot with the aid of an on-board camera and a sonar or
laser map updated as the robot moves.

WebLabs are maintained by organizations for the benefit
of their members (registered users). Organizations can form
federations in order to share among their members the
WebLabs they maintain. This sharing is regulated by
contracts or service-level agreements (SLA). SLAs state the
conditions governing the use of a WebLab by members of
other organizations. For example, through an SLA, an
organization can offer a WebLab it maintains to members of
another organization, subject to restrictions and privileges
such as maximum reservation time, maximum number of
accesses per day, and quality of service. SLAs are described

by a set of usage policies expressed as a number of
condition/action statements (rules) that establish how
experiments and services behave according to the restric-
tions and privileges stated in the SLAs.

Organizations issue credentials to their registered users
after the user is authenticated. Credentials are assertions
(facts) about the user such as his/her identity, authentica-
tion method, and credential expiring date. Credentials are
usually digitally signed by the issuing organization in order
to assure its origin and integrity. In a federation, credentials
must be understood by all the federated organizations.

In order to access an experiment or service maintained
by a WebLab, the user must establish an access session with
the WebLab. This process checks whether the credentials
presented by the user suffice for granting him/her access to
the experiment or service. An access session holds state
about the user accessing the WebLab, and lasts until the
user explicitly terminates the access, or until some termina-
tion condition holds (e.g., the amount of time reserved for
the access has expired).

Once an access session is successfully established, the
user can initiate interactive sessions with the WebLab. An
interactive session holds state about the usage of the
resources, and must assure that the resources assigned to
the session are in consistent state before the session begins
and after the session ends. Examples of interactive sessions
include manipulation of multimedia devices, scientific
instruments, and software systems such as simulators and
emulators. Interactive sessions require authorization.
Authorization consists in checking whether the access
complies with the policies enforced by the organization
for that WebLab (e.g., the user is accessing an experiment or
service anticipated in an SLA established between the user’s
and WebLab’s organizations).

A group of users can access a WebLab simultaneously. In
this case, all group members are allowed to establish access
and interactive sessions at the same time. For this usage
model, the WebLab must allow reservations to be shared
among group members. The WebLab must also supply
concurrency control mechanisms that prevent misoperation
of the resources under concurrent access.

3 WEBLAB SECURITY

Security is of prime importance for WebLabs, indepen-
dently if they are accessible through the public Internet or a
private network. Security consists basically of authentica-
tion and authorization.

Usually, authentication consists of a challenge presented
to the user. In its simpler form, the challenge is a request of
a password. More elaborated schemes may demand the
user to present a certificate issued by the organization to
which he or she belongs. A certificate is a text identifying
the user and signed with the organization’s private key.
Once the user is authenticated, the organization issues a set
of credentials with assertions about the user. Credentials are
also signed with the organization’s private key and
inspected on subsequent interactions with the WebLab.
Once the user is successfully authenticated, it is said that
the user has established a valid access session with the
WebLab.
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In web-based applications such as WebLabs, if the
authentication is mediated by an application server, the
server maintains a Hypertext Transfer Protocol (HTTP)
session for a period of time. As long as the HTTP session is
valid, the user is considered authenticated by the server.
Fig. 2 shows a web-based scheme of authentication and
authorization for WebLabs in a UML deployment diagram.

An HTTP session object maintains state about the
session, including the user’s credentials. A web-based
authentication service can employ a database for storing
the registered users and HTTP session objects holding
information about the authenticated users. The access
session of our WebLab model can be implemented as an
HTTP session object maintained by the application server.

Authorization is the process of checking whether an
authenticated user is allowed to establish an interactive
session with the WebLab. This is usually based on access
policies. An access policy condition checks many access
parameters such as user’s identity, credentials, location,
resource being accessed, etc. An access policy action allows
or denies the access to the resource. As an example, an
access policy can state that administrative services may only
be invoked by users holding administrative credentials.
Another example is an access policy stating that adminis-
trative services may only be invoked from machines inside
the organization.

On web-based applications, authorization can be im-
plemented by an HTTP filter. HTTP filters are extra code
incorporated into the application server. This code is able to
inspect the HTTP request before it is processed by the
server’s core, and has the power to stop the request
processing and return an error to the client. Authorization
filters extract some parameters from the HTTP request and
from other sources (e.g., HTTP session objects), and submit
these parameters to the policies. In policy terminology, the
authorization filter becomes a policy enforcement point.
The entity that holds and processes the policies is called a
policy decision point. This entity can be colocated with the
authorization filter, or it can be a separate entity (e.g., a rule-
based engine). The authorization filter may install a state
related to the interactive sessions in order to prevent policy
checking at each HTTP operation.

Authorization must also prevent a malicious user from
bypassing this process and interacting directly with a

service or resource. Resources and services are unaware of
the need of establishing access and interactive sessions in
order to interact with them. For example, if the user is
interacting with a service supplied by a network camera
and discovers the camera’s Internet Protocol (IP) address,
e.g., by sniffing the HTTP traffic, he/she can directly
operate the camera through this address even after the
interactive session has ended. In order to prevent such
vulnerability, resources such as robots and cameras that are
directly operated through the network must be placed on a
private network. By assigning private addresses to re-
sources, their direct operation by the user becomes
impossible. In this case, services manipulating resources
must be accessible solely from proxies reached after the
request has passed through the authorization process.
Another benefit of proxies is to help applications meet the
“same origin” security policy imposed by Java and
Asynchronous Javascript and XML (AJAX) technologies.

4 QUALITY OF SERVICE IN WEBLABS

Quality of service (QoS) consists of a set of control and
management functions allowing the network to guarantee
some end-to-end metrics such as delay and jitter for the
traffic flows generated by the applications. A traffic flow is
identified by network packets generated at the same origin
and targeted to the same destination. Origin and destination
can be defined in terms of applications, machines, net-
works, or even domains. In order to assure end-to-end
metrics, the control and management functions must be
performed on each router along the flow path. This
requirement is rarely fulfilled due to network operation
practices, mainly when the flows cross multiple adminis-
trative domains. However, QoS techniques can be applied
in more restricted scenarios, contributing to avoid perfor-
mance degradation of the distributed applications when
network resources are limited. Two QoS techniques can
improve the performance of WebLabs: flow management
and experiment adaptation.

Flow management consists in establishing relative
priorities among the flows and limiting the network
resources (bandwidth) consumed by the flows. Flow
management requires routers able to identify packets
belonging to a given flow, mark the packets according to
the priority assigned to the flow, and forward the packets
based on their marks. A WebLab can prioritize and
constrain the flows it produces or consumes. For example,
flows related to equipment control must have higher
priority than those related to user interaction (e.g., video
from panoramic cameras). Although such management
actions are circumscribed to the WebLab domain, they
avoid the degradation of experiments as perceived by the
user on low-bandwidth Internet connections.

As an example of the benefits of flow management,
consider Figs. 3 and 4. These figures show a laser-based
navigation experiment where the robot detours an obstacle
in its path using an autonomous navigation algorithm
based on potential fields. The experiment manipulates two
flows, one produced by the robot’s laser scanner, and
another by the robot’s on-board camera. The trajectory in
Fig. 3 was obtained without flow prioritization, with video
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flow consuming nearly 1 Mbit/s. In Fig. 4, the telemetry

flow was given higher priority than the video flow. In

addition, video flow was limited to 200 Kbit/s. Visually, by

looking at the stability (smoothness) of the trajectories, it is

easy to notice the impact of flow management on WebLab

experiment results. In [2], [3], we detail the use of flow

management in WebLab experiments.
Experiment adaptation adjusts the experiment behavior

according to the available network resources. Indirectly,

adaptation acts on the flows, reducing or increasing them

according to the actual network capacity. The adaptation

process requires a controller that acts on the experiment

according to a control strategy. As an example of adapta-

tion, consider a WebLab experiment in mobile robotics

where the robot must follow a colored stripe on the floor

using its on-board camera. The vision-based navigation

algorithm runs on the user’s computer and performs the
following cycle:

1. Acquire an image from the robot’s on-board camera.
2. Using image filtering and segmentation, identify the

stripe in the image.
3. Compute the angle necessary to orient the robot in

order to center the stripe in the image.
4. Turn the robot through the angle computed in step 3

and go to step 1.

The problem with this procedure is to set a proper robot
speed. If the speed is set too high, the robot looses the stripe
on angled trajectory segments. If the speed is set too low,
the robot takes a long time to complete the trajectory. This
speed is a function of the trajectory’s smoothness and the
rate of cycles the algorithm performs.

For this experiment, we employed an adaptation module
(controller) based on fuzzy logic. The controller receives
two input parameters and computes an appropriate robot
speed. The parameters are the number of actuations per
second and the angle of the last actuation. The first
parameter, control rate, reflects the network delay and the
power of the user’s computer. The second parameter,
trajectory angle, reflects how difficult (angled) the trajectory
is in the vicinity of the robot. Input and output parameters
are expressed in terms of fuzzy sets shown in Fig. 5. For
each control variable (X-axis), fuzzy sets (small, high, etc.)
are defined in terms of membership functions that specify
in the Y-axis the degree of membership (from 0 to 1) of the
variable in the set. The controller employs fuzzy rules such
as “if ControlRate is small and TrajectoryAngle is difficult then
RobotSpeed is slow.”

Table 1 shows the average robot speed as a function of
the accessing network. Note that depending on the
accessing network, average robot speed changes seven
times from a slow to a high-speed network.

Other control strategies can be employed for adaptation.
For example, Saltzmann et al. [4] describe an adaptation
scheme for remote experimentation based on an integral
controller.
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Fig. 4. Autonomous navigation with high telemetry priorities.

Fig. 5. Fuzzy sets for control cycle rate, angle of the trajectory, and
robot’s speed.



5 FEDERATED OPERATION OF WEBLABS

A federation of WebLabs allows WebLabs to share experi-
ments and resources. Users subscribed at one organization
can use WebLabs offered by their own organization and by
other federated organizations. Federated WebLabs must
offer a set of management functions for the model elements
of Fig. 1 such as those listed below:

. management of users,

. management of resources,

. management of SLA, policies, and QoS,

. management of access.

The management of users allows an organization to
subscribe/unsubscribe users and group of users, and to
assign attributes to users such as identities, credentials, and
profiles (preferences).

The management of resources allows an organization to
present to other organizations the resources it maintains,
the policies assigned to its resources and experiments, and
the resource reservation schedule. The management of
resources must offer a service for resource reservation
subjected to the local policies.

The management of SLAs allows an organization to
model the contracts it has established with other organiza-
tions of the federation. Usually, contracts are expressed by
electronically signed documents (e.g., in XML format)
stating, for instance, the parties to the agreement, the
services covered by the contract, QoS parameters, responsi-
bilities, roles, and pre/postconditions for service invocation.

The management of policies allows an organization to
establish and enforce access and usage policies for the
WebLabs it maintains, both for its own subscribed users
and for those subscribed at other federated organizations.
Policies can be modeled by business rules that reflect the
SLAs established by the organization.

The management of QoS can employ flow management
and experiment adaptation as described in Section 4. For
each experiment, an SLA can state the relative priorities and
maximum bandwidth for each flow produced or consumed
by the resources assigned to the experiment.

The management of access comprises federated authen-
tication and authorization. Federated authentication, usual-
ly known as Single Sign On [5], allows users to be
authenticated only once and by their respective organiza-
tions in order to access resources of any federated
organization. Single Sign On assures that the information
about the user is stored only in his/her home organization.
Federated authorization is a process by which the identity
and credentials of a user are recognized by all federated
organizations when the user tries to access any WebLab in
the federation.

Federated access requires standards for the secure
exchanging of authentication and authorization data among
the organizations, as well as a common semantics (ontol-
ogy) for describing and negotiating SLAs.

6 THE REALABS PLATFORM

REALabs is a domain-independent service-oriented plat-
form for WebLab implementations. It follows the WebLab
reference model of Fig. 1, and implements the management
services listed in Section 5. In addition, the platform offers a
set of web-based utilities relevant for WebLab development,
deployment, and operation. The services follow the
Representational State Transfer (REST) [6] interaction style,
and are invoked by HTTP operations (GET or POST)
carrying, when applicable, XML documents as payloads.

The REALabs platform is implemented with the J2EE
technology, mainly servlets and Java Server Pages as
offered by the Apache Tomcat application server. Manage-
ment of users and resources are classical database-centered
applications and will not be further detailed.

The SLA model element (Fig. 1) supported by REALabs
is very simple: users with the same credentials have the
same privileges, no matter to which organization they
belong. QoS management is implemented for all experi-
ments via traffic prioritization and bandwidth limitation.
Once the resources have their flows characterized, the
platform generates a shell script for installing packet filters
and traffic control queues on the routers and servers
serving the WebLab. The script calls tc, a traffic controller
facility available in Linux.

Fig. 6 shows the platform in an UML deployment
diagram. The management of access comprises a reserva-
tion service, a Single Sign On service, and a session
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Maximum Speeds for Different Accessing Networks

Fig. 6. Main components of the REALabs platform.



management service. The reservation service allows users
to reserve a time slot to perform an experiment. Reservation
is possible only during the periods when the experiment is
open for reservation, and requires user authentication and
authorization.

The Single Sign On service is fundamental for federated
access. This service relies on OpenSAML, an open system
for creating, signing, and validating Security Assertion
Markup Language (SAML) documents. SAML is an XML-
based standard for exchanging authentication and author-
ization data between organizations. The Single Sign On
service is entirely implemented in Java with servlets and
HTTP filters. This service supports access sessions accord-
ing to the model of Fig. 1.

The session management service is part of the authoriza-
tion process offered by the platform. Once the user is
authenticated, the experiment logic must call this service to
initiate and maintain interactive sessions. The service
installs a cookie in the user’s web browser that is carried
in all subsequent HTTP interactions. This cookie is checked
during the authorization process. Interactive sessions are
soft state, meaning that they are terminated if the experi-
ment does not maintain them by calling this service
periodically. This behavior is obtained by issuing cookies
with a short lifetime. Once a cookie expires, the web
browser stops sending it, causing a failure in the authoriza-
tion process. Soft state will close all inactive interactive
sessions such as those left open when the user ceases
interaction with the WebLab.

The authorization process is complemented by an HTTP
filter for the Apache HTTP server. The filter inspects
whether the HTTP request carries a valid cookie installed
by the interactive session management service. Authoriza-
tion filters need to be extended for policy checking. The
only policy (Policy element in Fig. 1) currently enforced by
the REALabs is “usage upon reservation”: in order to
establish an interactive section, the user must have
previously established an access session that, in turn,
requires a reservation for the experiment. A more flexible
policy management system is under development.

In the REALabs platform, HTTP proxying is performed
by the Apache HTTP server. In this server, HTTP proxying
is available by configuration. This platform was employed
in the development of two WebLabs in mobile robotics. The
first implementation is reported in [1], and the latest
implementation is described in the sequence.

6.1 The REALabs-BOT WebLab

REALabs-BOT is a WebLab for mobile robotics experiments
built above the REALabs platform [7]. It was designed to
run over high-speed networks, although it can operate over
the public Internet and campuswide networks as well. In
REALabs-BOT, experiments run at the user’s computer
(although the REALabs platform does not require this).
Although many WebLabs allow the uploading and execu-
tion of user-developed experiments on the WebLab’s
servers, we favor the execution of such experiments on
the user’s own computer for the following reasons related
to convenience and security:

. Users can employ their favorite Integrated Develop-
ment Environment (IDE) and programming language

to code, debug, and run the experiments they
developed.

. Execution of user-developed code on the WebLab
servers is insecure, except if the code runs inside a
sandbox. However, sandboxes restrict the code in
terms of access to the file system, invocation of
system calls, and consumption of processor re-
sources such as CPU and memory. Moreover, user
and WebLab must share exactly the same version of
compilers, libraries, and operating systems.

. The WebLab need not offer a workspace for storing
user’s programs and output files. The workspace is
the user’s own computer.

. The penalty in performance decreases as the user’s
computer and Internet connection capacities increase.

Returning to the model of Fig. 1, REALabs-BOT offers a
set of interactive services in the mobile robotics domain.
The remaining model elements are provided by the
REALabs platform. Currently, four classes of interactive
services are implemented:

1. Locomotion service: allows operations for moving
the mobile robots and its accessories such as
grippers and arms.

2. Action service: allows the installation of prepro-
grammed actions on the mobile robots. Examples of
such actions are obstacle avoidance, collision recov-
ery, and stall recovery.

3. Telemetry service: allows the acquisition of sensory
data from the mobile robots.

4. Vision service: allows the positioning and image
capturing from both panoramic and on-board
cameras.

REALabs-BOT offers both physical and logical resources.
Physical resources consist of Pioneer P3-DX mobile robots
from MobileRobots Inc., with different configurations, and
pan-tilt-zoom network cameras from Axis Communica-
tions. Logical resources are Java/Javascript-based software
components that can be added to experiments. An example
of logical resource is SmartCam, a component that allows a
panoramic camera to follow a moving robot.

In REALabs-BOT, interactive services are entirely based
on HTTP and XML, and follow the REST interaction style.
Every operation over a resource consists of an HTTP
operation that may return an XML document. Operation
name and parameters are identified in the Uniform
Resource Locator (URL). For example, by issuing an HTTP
GET operation to the URL /move?dist=1000, the robot moves
1,000 mm synchronously. The operation returns the HTTP
200 OK code when the move has been completed. Another
example: an HTTP GET operation over the URL /telemetry?
sensor=laser&range=-30:30:3 returns the HTTP 200 OK code
with an XML document containing the data read from the
laser scanner in the range of �30 to þ30 degrees from the
robot’s longitudinal axis in steps of 3 degrees. Although
XML over HTTP is not efficient in terms of bandwidth
consumption, some advantages justify its use:

. HTTP is not blocked by firewalls,

. XML is neutral in terms of programming languages
and platforms,
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. Requests can be easily intercepted for authentication
and authorization purposes,

. Both HTTP and XML can be handled inside a web
browser through Javascript.

The usage model in REALabs-BOT consists in offering
users robots and panoramic cameras with different config-
urations, plus a set of “utilities” that simplifies the task of
developing their own mobile robotics experiments. These
utilities include:

. web-based interfaces for login, experiment reserva-
tion, and interactive session establishment,

. web-based interfaces for direct manipulation of the
resources via their respective interactive services, as
shown in the left-hand side of Fig. 11,

. application programming interfaces (APIs) for in-
voking the interactive services in a programmatic
way,

. a set of preprogrammed mobile robotics algorithms
(e.g., autonomous navigation and environment
mapping), and

. a set of software components to enhance the
experiments.

The aim is to let the user develop or configure a mobile
robot algorithm using the provided APIs (Java, C++,
Python, Matlab, and HTTP-based). The development can
be from scratch, from a base code, or from a fully
operational code, depending on the complexity level
desired for the experiment. The algorithm is first tested
on a simulated environment and, after debugging and
calibration, the simulated resources are replaced by
physical resources for execution in the real environment.

6.2 Quantitative Evaluation of REALabs-BOT
WebLab

In order to evaluate the performance of REALabs-BOT, we
instrumented experiments performing operations on sensor
reading, image gathering, and robot control. The sensor
reading operation (Op1) requests high-resolution range
data from the robot’s laser scanner. A 60 Kbytes XML
document is returned with 180 readings in the robot and
ground coordinates. The image gathering operation (Op2)
requests a 320� 240 JPEG picture from the on-board
camera. The picture returned in reply averages 20 Kbytes
in size. The robot control operation (Op3) simply sets a
linear speed on the robot. A small 60-byte XML document
with an acknowledgement is returned by this operation.
These operations were conducted in three scenarios, each
exhibiting certain overheads. The overheads were estimated
by comparing the time necessary to complete the operation
and the time necessary to act on the robot. The robot’s
embedded HTTP microserver employs the ARIA robotic

framework to acquire data and act on the robot, and
OpenCV for capturing images from the internal frame-
grabber. One hundred measurements for each operation
were taken in each scenario. Mean, standard deviation (SD),
and a confidence interval (CI) of 90 percent were deter-
mined. All results are presented in milliseconds.

6.2.1 Evaluation Scenarios

In a centralized scenario, the test code performing the
three operations runs on the robot’s on-board processor, an
Intel Pentium M. The protocol overhead (due to HTTP and
XML processing) is estimated in this scenario. Table 2
displays the results. Operations 1 and 2 show that protocol
overheads range from 0.2 to 2 milliseconds according to
the size of XML data returned. Operation 3 shows that
HTTP processing overheads are negligible when the HTTP
payload is large and needs no XML parsing (such as
binary images).

In a distributed scenario, network overheads can be
estimated by accessing the robot on a private network
through the HTTP proxy agent. A high-speed network was
employed in the tests with the results shown in Table 3. Note
that network and HTTP proxy overheads add up to about
5-6 milliseconds. Image transferring generates a negligible
overhead as the major overhead is on image capture.

We compared the overhead obtained in the distributed
scenario with the Microsoft Robotics Studio (MSRS) [8]
performing the same sensor readings operation. We set a
.NET DSS (Decentralized Software Service) service acquir-
ing the sonar readings using the MSRS facilities and an
HTTP GET Service Handling for returning an XML
document with the range data. The server side runs on a
Dell 510 notebook with Windows XP. The client program
was the same used in our tests. We obtained an average of
7.33 milliseconds with standard deviation and confidence
interval of 0.73 and 0.14, respectively. The similarity
between the REALabs and MSRS protocol overheads
indicates that the cost of distribution employing open
protocols is limited to a few milliseconds. Also, the 6
milliseconds is one order of magnitude lower than the 70
milliseconds of round-trip time from a cable modem
residential Internet access used in the QoS experiment
reported in Section 4.

Finally, in a distributed and secure scenario, it is possible
to estimate the security overheads by performing the
operations via HTTP Secure (HTTPS) protocol. Table 3
shows these results, with the observed overheads of about
30 milliseconds imposed by HTTPS. Again, overheads
imposed on image transferring are proportionally lower
than those imposed on XML documents. Due to the high
overhead imposed by HTTPS, this protocol should be
employed only in situations where end-to-end security is a
strong requirement.

GUIMAR~AES ET AL.: DESIGN AND IMPLEMENTATION ISSUES FOR MODERN REMOTE LABORATORIES 155

TABLE 2
Results for the Centralized Scenario (Milliseconds)

TABLE 3
Result for the Distributed and Secure Scenarios



7 USAGE SCENARIO

An introductory graduate course in mobile robotics is being

taught by the first two authors at the School of Electrical

and Computer Engineering (FEEC), University of Campi-

nas. The main reference book adopted is by Roland

Siegwart and Illah Nourbakhsh, Introduction to Autonomous

Mobile Robots [9]. It covers four major topics:

1. kinematics,
2. perception,
3. localization and mapping, and
4. path planning and navigation.

We proposed four practical experiments addressing these

topics as described in the sequence.

7.1 Proposed Experiments

The practical activities are initially conducted on a simulated

environment and then on the real robots through the

REALabs-BOT WebLab. Students are asked to compare the

results from simulated and real environments, and to

propose improvements on the mobile robotic algorithms

they implemented. For performing the experiments, REA-

Labs-BOT provides the user with a virtual machine for the

VirtualBox virtualizer. The virtual machine contains:

. the latest version of Ubuntu (a Linux release),

. a set of developing tools (gcc C++ compiler, Java
platform, Firefox web browser, etc.),

. low-level mobile robot APIs (ARIA and Player),

. mobile robot simulators (MobileSim and Stage),

. HttpIpthru, an HTTP microserver that drives both
real and simulated mobile robots,

. C++, Java, Python, and Matlab APIs for interacting
with HttpIpthru from these programming languages,

. a set of sampling code.

7.1.1 Experiment on Kinematics

In the first experiment, students implement a proportional

control algorithm that drives the robot from an initial point

to a goal point. The algorithm employs a kinematic model

presented in the textbook. Students are asked to employ a

mobile robot API and a simulator. ARIA and MobileSim are,

respectively, an open source C++ API and a simulator from

the robot manufacturer. Player and Stage are, respectively,

an open source C++ API and a simulator that support a wide

range of mobile robots. ARIA/MobileSim and Player/Stage

are suggested for this first experiment. The experiment must

be coded in C++ as required by ARIA or Player.
Fig. 7 shows the trajectories toward a goal point from

different robot positions obtained by a student in the

simulated environment employing ARIA and MobileSim.
For the three remaining activities, students are instructed

to employ the APIs offered by the REALabs-BOT WebLab.

Students are free to use any of the four supported

programming languages: Java, C++, Python, and Matlab.

7.1.2 Experiment on Perception

The experiment on perception aims to estimate the

characteristics of the sonar and laser rangefinders installed

on the mobile robot. The experiment is conducted with the

robot at rest. A series of measurements is acquired from the

robot and stored in the student’s computer. The measure-

ments are analyzed with tools such as Gnuplot, Excel, and

Matlab in order to extract statistical parameters about the

sensors. The main parameters are sensor variance, sensor

resolution, and sensor precision.
The measurements are also used for feature extraction.

Fig. 8 shows the plotting of 180 laser readings obtained

through the REALabs-BOT WebLab. By constructing an

angle histogram from these points (Fig. 9), walls and other

straight-lined obstacles are detected. In the histogram, peaks

(Y-axis) correspond to line length, and angles (X-axis)

correspond to line orientation.
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Fig. 7. Trajectories toward a goal point from different robot positions.

Fig. 8. Laser reading from the robot environment.

Fig. 9. Angle histogram for feature extraction.



7.1.3 Experiment on Localization and Mapping

The experiment on localization and mapping aims to derive

a map of the robot environment employing a simplified

occupancy grid algorithm. The robot wanders around the

environment acquiring sonar data and building a map of

the environment by marking the obstacles in a bidimen-

sional array. Fig. 10 shows an occupancy grid map plotted

with Gnuplot. Peaks represent the number of sonar hits on

the respective grid cell. The higher the peak, the higher the

likelihood of an obstacle being located at that cell.

7.1.4 Experiment on Planning and Navigation

In the planning and navigation experiment, students can

choose one of two activities. In the first activity, a potential

field algorithm is proposed. Fig. 11 shows a typical

trajectory with a navigation based on potential fields, where

the robot is attracted to the goal and repelled from

obstacles. In this figure, the screen on the left is a web

utility for robot monitoring supplied by REALabs-BOT, and
the screen on the right is a Java-based interface for
configuring the navigation algorithm as developed by a
student. In the second activity, the student implements the
A� search algorithm to compute an optimal trajectory
between an initial and a goal point, based on a given
environment map. In both the activities, the student must
devise a control algorithm in order to drive the robot
according to the computed trajectory.

7.2 WebLab Infrastructure

The WebLab infrastructure, shown in Fig. 12, is spread over
two domains: FEEC and Information Technology Center
Renato Archer (CTI). Each domain operates a Pioneer P3-
DX mobile robot, an Axis 214 PTZ camera, and a Dell
PowerEdge server. The domains are connected through
KyaTera, a high-speed academic network deployed in the
state of São Paulo, Brazil.

All robots and cameras have private IP addresses
accessible only through an HTTP proxy. The proxy runs
in the FEEC server, and is able to forward HTTP requests to
the CTI via the KyaTera network. From the user’s
standpoint, there is no perceived difference when operating
a robot at FEEC or CTI, although all the Internet access
reaches the FEEC first and is then proxyed to the CTI when
necessary. Packet filters and queues for traffic prioritization
and limitation are installed for each experiment on the Dell
server at FEEC using the shell script generated by the
REALabs platform.

All students are subscribed at FEEC. We plan to test
the Single Sign On infrastructure in the next offering of
the course.
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Fig. 10. Occupancy grid obtained through REALabs-BOT WebLab.

Fig. 11. Potential fields navigation experiment in a real environment.



7.3 Evaluation by Students

Although we have not conducted a systematic evaluation of
the WebLab, inputs from the 15 students were positive,
particularly with regard to 1) the ability to develop and test
the experiments first on a simulated environment and then
on the real robots, 2) the fact that the code supplied as a
VirtualBox virtual machine avoids the problems of software
installation, and runs above the student’s favorite operating
system, and 3) the ability to conduct practical experiments
remotely from home or office as allowed by the WebLab.

Three students complained that their Internet connection
bandwidth was too low for remote experimentation. In
these cases, they reduced the quality of the panoramic
camera to a minimum, or did not even open the camera in
order to avoid long delays in the interaction with the mobile
robot. More recently, we implemented an adaptation
mechanism in the panoramic camera component in which
size and frame rate are adjusted according to the round-trip
time of a video frame request.

As most of the students own notebooks, the deployment
of access points connected to the KyaTera network was
suggested. From these access points, FEEC students could
connect directly to the WebLab through a high-speed
network improving significantly the quality of interaction.

There was a consensus that the APIs provided by
REALabs-BOT are much simpler to use than the ARIA
and Player low-level APIs. The freedom of choosing among
different programming languages was also noted, as ARIA
and Player demand C++ programming. Students also
recognized the value of the teaching assistants (TAs) aiding
the usage of the WebLab. The dialog between the students
and TAs was conducted via MSN.

Finally, students reported no failures during the usage of
REALabs-BOT. This robustness of the design and imple-
mentation of the WebLab is, in part, due to the RealLabs
platform that provides a set of common services already
implemented and tested.

7.4 Access Statistics

As the REALabs platform logs every reservation and access
into the database, it is straightforward to build a tool (e.g.,
using PHP) that provides access statistics based on logged
data. Log information consists of user and group identifica-
tion, WebLab and experiment accessed, reserved timeslot,

access session starting and ending times, and the event
causing session termination (logout, inactivity, or expired
reservation). Log analysis provides useful information for
next course offerings, such as average amount of time to
execute a particular experiment, relationship between
reservation time and usage time, reservation without access
(no show), and so on.

8 RELATED WORK

The control of remote devices through the Internet is not a
new topic, and early publications on the subject date from
the midnineties. For instance, [10], published in 1995,
addresses teleoperation of robots via the World Wide
Web. Since then, several architectures and technologies
have been proposed for the design and implementation of
remote operation of devices through computer networks in
general, mainly the Internet. Architectures based on
distributed objects, on software components, and on
services are found in the literature. In [11], [12], and [1],
the authors describe remote laboratories employing these
architectures.

On the server side, remote laboratories have used
technologies such as Common Gateway Interface (CGI),
Common Object Request Broker Architecture (CORBA),
Java Remote Method Invocation (RMI), Java servlets, and
Microsoft’s .NET platform. On the client side, Java has been
the choice of many projects due to its graphic capabilities
and its ability to run on web browsers as Java applets.
Communication between client and server components can
employ many TCP-based protocols such as HTTP, IIOP
(CORBA’s Internet Inter-ORB Protocol), RMI’s Java Remote
Method Protocol (JRMP), and Simple Object Access
Protocol (SOAP).

Recent publications on remote laboratories point to the
service-oriented architecture (SOA) as a trend. Web
Services, a comprehensive set of standards from the
Organization for the Advancement of Structured Informa-
tion Standards (OASIS) and the World Wide Web Con-
sortium, are strongly supported by the major software
companies and open software consortia. On the server side,
web services can be deployed on a wide range of modern
and extensible application servers. Such application servers
support virtualization, load balancing, programming of
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Fig. 12. Infrastructure of the REALabs-BOT WebLab.



new core functions, and a comprehensive set of functions
that are enabled via configuration. On the client side, web
services are supported by applications running standalone
or on the web browser.

The authors implemented a WebLab in mobile robotics
employing SOA/web services [1]. Two motivations drove
this development. The first was to replace CORBA due to its
lack of client-side support, and the fact that IIOP protocol
messages are constantly blocked by NAT boxes and
firewalls. The second motivation was to employ service
composition in the design of remote experiments. Business
Process Execution Language (BPEL) is an XML-based
workflow language for service composition supported by
many BPEL execution engines such as ActiveBPEL and
JDeveloper. Although we achieved an elegant architecture
and sound implementation, problems soon emerged:

. processing of SOAP messages on the client side is
cumbersome for small computers,

. efficiency of the SOAP protocol is far from adequate
for real-time control of remote devices,

. SOAP implementations from different sources still
lack interoperability,

. developing composite services with BPEL is not an
easy task,

. specialized services (the WS-*) are specified but lack
implementations.

In order to achieve more simplicity and efficiency on both
client and server sides, our current WebLab architecture
replaces SOAP by the REST interaction style (XML over
HTTP). Although SOAP has its role in business-to-business
web services, it was never adopted by successful services
offered through the Internet (e.g., Google Maps). On the
client side, we favor interfaces built over the web browser’s
native XML-based technologies. For example, the web-based
teleoperation interface shown in Fig. 11 (left) employs AJAX
for HTTP/XML interaction, XML DOM (an XML parser) for
processing the telemetry data from the robot, and Scalable
Vector Graphics (SVG) for the graphic components.

Finally, applications running on multiple organizations is
a trend set by grid/cloud computing and Web 2.0 commu-
nities. We incorporated such a trend into the REALabs
platform via a SAML-based Single Sign On authentication
procedure. This implementation has an architecture inspired
on Shibboleth [13], a production-grade Single Sign On
system that requires both a servlet container (e.g., Tomcat)
and the Apache HTTP server. In addition, Shibboleth runs a
daemon process on the HTTP server’s host. Our Single Sign
On solution is similar to Shibboleth’s in that both rely on
SAML, but ours needs only a servlet container to operate.
Shibboleth also requires the port 80 to be open for
authentication, a restriction absent in our solution.

8.1 Related Projects

Although many remote laboratory projects share the
service-oriented architecture adopted by REALabs-BOT
(e.g., the MoCoLab project [14]), what we are considering
related projects here are those that offer a domain-
independent WebLab infrastructure. Three projects offer
such infrastructure: the University of Deusto’s WebLabs,
the MIT’s iLAB, and the Polytechnic University of Madrid’s
Cyclope WebLab.

WebLab-Deusto [15] employs a service-oriented archi-
tecture for supporting WebLabs in different application
domains. The authors of WebLab-Deusto describe four
generations of WebLab architectural styles [16]. The most
restrictive style, called “Socket and Applet-based” by the
authors, employs proprietary protocols. Interoperability
and licensing issues are the major drawback of such
architectural styles. The first version of WebLab-Deusto
and the early versions of the authors’ REAL WebLab [11]
employ this architectural style.

The second architectural style, “web-based,” employs
web protocols and Java-based interfaces on the client side.
Security issues such as Java code signing and required
processing power at the client side are the major drawbacks.
The third architectural style, “AJAX and web-based,”
replaces Java on the client side by the web browser with
AJAX/Javascript. XML messages over SOAP or HTTP are
the communication mechanism between the client and
server sides. These three architectural styles rely on a single
server connecting the WebLab resources via RS-232, GPIB,
USB, etc., a solution that impacts on scalability and
dependency of proprietary protocols on the server side.
The version 2.0 of WebLab-Deusto and the previous version
of REALabs-BOT [1] employ this architectural style.

Finally, the fourth architectural style, “Micro-server
AJAX-based,” retains AJAX on the client side, and connects
most of the WebLab devices directly on the network. The
advantage of this solution is to allow an interface running
on the user’s web browser to access a resource without the
need of an intermediate server. Current versions of
WebLab-Deusto (3.0) and REALabs-BOT employ this
architectural style, although the former retains SOAP while
the latter employs HTTP as interaction protocol. In
REALabs-BOT, robots and cameras are fitted with micro-
HTTP servers.

WebLab-Deusto implements a WebLab-independent
layer with functions such as registry and locator, manage-
ment of sessions, and user authentication. In REALabs-BOT,
such an independent layer is provided by the REALabs
platform. For security and for conserving public IP address,
both WebLab-Deusto and REALabs-BOT employ private IP
addresses and proxies, as shown in Fig. 6.

iLab [17] is a pioneer project developed at the Massa-
chusetts Institute of Technology that employs web services
for communicating with the WebLab. Until recently, iLab
supported only “batched” (noninteractive) experiments.
Interactive experiments were added by extending the
functions of a central element in the iLab’s architecture,
the Service Broker, and adding new services for reservation
scheduling, secure access, and storage of data generated by
the experiments.

iLab enforces secure access via authentication and
authorization, both centered in the Service Broker. Author-
ization for interacting with the lab servers requires
credentials (tickets) issued by the Service Broker to the
client application. Tickets are issued only if the user has a
reservation scheduled for the time of access, and are valid
during the reservation period.

Service Brokers in different domains communicate
among themselves when the user on a domain wants to
perform a remote experiment in another domain. This is a
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simple form of federation, requiring installation of the iLAB
architecture in each domain.

The interactive version of iLab’s architecture and the
REALabs platform have some services in common: user and
resource management, secure access based on authentica-
tion and authorization, and simple authorization policy
(usage upon reservation). A difference is that iLab employs
SOAP as the interaction client-server, while REALabs
employs XML directly over HTTP. Another difference is
in the architecture: REALabs employs a fully decentralized
architecture without the need of lab servers or mediators as
the iLab’s Service Broker. The iLab’s architecture follows
the “web-based” style described above.

The Ciclope project [18] developed a WebLab architec-
ture composed of a set of modules. The core module
supports WebLab administration with facilities for user and
group management, resource management, and resource
reservation. These services are also supported by the
REALabs platform. In addition to the core module, a set
of lab modules provides access to lab facilities. For example,
Ciclope Robot [19] supports the remote access of a four-
degree-of-freedom manipulator for teaching real-time pro-
gramming in practice. Ciclope Robot employs Java applets
on the client side and a lab server connecting the lab
devices. Client and server communicate through the SSH
(Secure Shell) protocol. This is a “Socket and Applet-based”
architecture.

The reference model presented in Section 2 provides a
framework for comparing WebLab implementations, as it
identifies the major functions that a modern remote lab
must provide. For example, Table 4 compares REALabs-
BOT, iLab, and Ciclope according to this reference model.

Finally, we can clearly identify some important points
shared by the WebLabs presented above:

. the choice of a service-oriented architecture,

. the use of standard, “firewall-friendly” communica-
tion protocols,

. a set of domain-independent functions that can be
reused across multiple WebLabs, and

. usage policy based on user subscription, authentica-
tion, and reservation.

9 CONCLUSIONS AND FUTURE WORK

WebLab developers must take into account a series of
requirements that few distributed applications have simul-
taneously. This paper presented some issues that we
consider very relevant in WebLab design based on our

experiences in the development of WebLabs employing
many architectures and technologies. We summarize below
the requirements that a WebLab designer must pursue in
order to achieve a useful learning and research tool.

The first issue is access control. A WebLab must enforce
user management and usage upon reservation, if its
experiments operate over physical devices. Access control
must also log user activities for usage statistics, failure
detection, auditing, and, in some cases, accounting. User
management is a database-centered application and can
employ well-established technologies such as J2EE, .NET,
PHP, etc.

Security must be a major focus—no matter to which
access network the WebLab is connected. Physical resources
must always be placed behind a firewall, and have their
access subjected to stringent authentication and authoriza-
tion procedures. Overheads from authorization are unavoid-
able, but smart designs can reduce them to acceptable values.

Quality of service, another topic addressed by this paper,
can be incorporated in specific contexts. On the public
Internet, we suggest flow management and experiment
adaptation to maximize the benefits of the available, and
usually low, bandwidth.

We also consider that WebLabs become more attractive
under federated operation. A federation of WebLabs allows
experiment and resource sharing. Users subscribed at one
organization can use WebLabs offered by their organization
as well as by the remaining organizations. Single Sign On
authentication and federated authorization are the mechan-
isms for achieving this.

On the client side, the ideal situation is to have the access
to the WebLab entirely based on a web browser. Although
AJAX and other technologies available on modern web
browsers are replacing Java applets and plugins, they are
not sufficient in most cases. We are particularly interested
in situations where the user develops his/her own experi-
ments, evaluates and tunes them on simulated environ-
ments, and then tests the experiments on physical resources
maintained by the WebLab. In such cases, the user may
need a programming language more adequate than those
available on web browsers (e.g., Javascript and VBScript).
Languages such as Java, Python, and Matlab seem more
appropriate for coding experiments in the engineering
domain. Access from powerful mobile devices is also a
trend, and some WebLabs already offer it to their users [20].

Finally, in terms of architecture, we agree that a “Micro-
server AJAX-based Solution” as described in [16] is the
state-of-the-art architecture for WebLabs. We speculate that
only web-enabled devices will be part of a WebLab physical
resources portfolio in the near future.

9.1 Future Work

We are currently evaluating the Internet Multimedia
Subsystem (IMS) architecture as a framework for WebLab
developments. IMS has a comprehensive set of functions
related to user management, session management, and
federated authentication and authorization. We are con-
sidering porting part of the REALabs functions to the
OpenIMS developed by the Fokus Institute [21]. From the
standpoint of the IMS, WebLab experiments are IMS
applications.
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Comparison of WebLabs Employing the Reference Model



Another focus of our research is federated authorization.
The definition of ontologies to achieve a common semantics

for describing credentials, resources, and usage and

reservation restrictions, among others, is a necessary step
for federated authorization. We are currently evaluating

Apache’s Imperius and JBoss’ Drools frameworks to model

authorization policies. Imperius is based on Simplified
Policy Language (SPL) from the Distributed Management

Task Force, while Drools is based on the Java Rule Engine

API (JSR-94) from the Java Community Process.
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