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Abstract—The assessment of knowledge and learning progress in the context of game-based learning requires novel, noninvasive,

and embedded approaches. In the present paper, we introduce a mathematical framework which relates the (problem solution)

behavior of a learner in the game context to the learner’s available and lacking competencies. We argue that a problem situation and its

status at a certain point in time can be described by a set of game props and their current properties or states. In the course of the

game, the learner can perform different actions to modify the props and, consequently, change the problem situation. Each action is

evaluated with respect to its correctness or appropriateness for accomplishing a given task which, in turn, enables conclusions about

the competence state of the learner. This assessment procedure serves as the basis for adaptive interventions, for instance, by

providing the learner with guidance or feedback.

Index Terms—Game-based learning, noninvasive competence assessment, microadaptivity, knowledge space theory.
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1 INTRODUCTION

IT is quite evident that digital learning games are a
dawning educational technology. The idea is to utilize the

rich and appealing potential of modern computer games
and their immense intrinsic motivational potential for
educational purposes [1]. The vision that at least a small
portion of time spend on playing computer games can be
used for learning is fascinating and desirable and, conse-
quently, there is a rapidly increasing body of research and
development in this field. The core strength of game-based
learning is that such games—in a very natural way—are
capable of making learning and knowledge appealing and
important to the learner. Moreover, learning games serve
the educational needs of the “Nintendo generation” and the
“digital natives,” who grew up with “twitch speed”
computer games, MTV, action movies, and the Internet
[2]. Authors like Mark Prensky argue that this context has
emphasized certain cognitive aspects and deemphasized
others, thus, the demands on education have changed [2].
Although there is an ongoing debate about such ideas,
computer games can be considered as powerful tools
children and adolescents are familiar with.

We nevertheless have to note that the educational
potential of computer games depends on the learner’s
motivation to play and, therefore, also to learn. A number of
authors accomplished pioneering work in terms of selecting
game genres and game design for successful learning

games (e.g., [3], [4], [5]). Additionally, it is of vital
importance to tailor the concrete game play and gaming
experience to the individual learners and to provide them
with didactically meaningful and individualized guidance
and support. Moreover, it is necessary to find an appro-
priate balance between gaming and learning and, maybe
more importantly, between the challenges through the
game and the abilities of the learner. The underlying idea is
the following: If the player is bored by a too easy game play,
or the challenges are too difficult to be accomplished, the
player will quit playing the game very soon. This idea is
common to most entertainment games. In a learning game,
however, we need to establish the same principle from a
learning perspective. Ideally, the increase in challenge
should match individual abilities and individual learning
progress. Essentially, this idea matches the foundations of
adaptive or intelligent tutorial systems (cf. [6]).

An intelligent adaptation to preferences, motivational
and emotional states, to learning progress, learning objec-
tives and interests, and, above all, to the learner’s abilities is
crucial for being educationally effective and for retaining
the user’s motivation to play and to learn. This adaptation is
not trivial, however. It requires a subtle balance between the
challenges through the game and the abilities of the learner.
Unfortunately, such balance is very fragile and, due to the
coexistence of gaming and learning aspects, likely more
complex than adaptation and personalization in conven-
tional educational settings.

Research on adaptive and intelligent tutoring basically
focussed on adaptive presentation and adaptive navigation
support [7]. The data basis for adaptation is most often
querying the learner, asking for preferences, or providing
typical test items for assessing the user’s knowledge and
learning progress. This strategy is not feasible in an
immersive learning game, however. In contrast to conven-
tional adaptive tutoring and knowledge testing, the
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adaptive knowledge assessment within such games is

massively restricted by the game play, the game’s narrative,

and the game’s progress. Typical methods of knowledge

assessment would suddenly and seriously destroy immer-

sion and, consequently, also the gaming and learning

process. What is required is an assessment procedure that is

strictly embedded in the game’s story and covered by game

play activities. In some sense, this is similar to work in the

area of embedded assessment and student tracking [8].

Those methods and theories, however, are predominantly

driven by human (i.e., the teacher’s) interpretation and

evaluation of knowledge, understanding, and learning

progress. In the present paper, we introduce a method for

a “machine-driven” assessment of knowledge and learning

progress in a noninvasive and embedded way. The core

idea is to avoid any queries or interruptions but to monitor

and interpret the learner’s behavior in gaming situations.

Subsequently, psychopedagogical interventions (e.g., pro-

viding the learner with appropriate guidance, feedback,

cheer, or hints) can be triggered on the basis of probabilistic

conclusions drawn by the system.
The present approach has been developed in two projects

focusing on game-based learning: ELEKTRA (www.elektra-

project.org) and 80Days (www.eightydays.eu). Both projects

have the ambitious and visionary goal to utilize the

advantages of computer games and their design funda-

mentals for educational purposes, and to address the

disadvantages of game-based learning as far as possible. A

group of interdisciplinary European partners contribute to

the development of a sound methodology for designing

educational games and to the development of a compre-

hensive game demonstrator based on a state-of-the-art 3D

adventure game. To illustrate our approach, we refer to a

concrete example from the ELEKTRA demonstrator game,

which is a typical first person adventure game (cf. Fig. 1).

The aim is to save Lisa and her uncle Leo, a researcher, who

have been kidnapped by the evil Black Galileans. During this

journey, the learner needs to acquire specific concepts from a

eighth grade physics course. Learning occurs in different

ways, ranging from hearing or reading to freely experiment-

ing. After finding a magic hour glass, the learner is in

company of the ghost of Galileo Galilei (Fig. 1a), who is the
learner’s (hidden) teacher.

To learn about the straight propagation of light, for
instance, the learner experiments with a torch and blinds on
a table in the basement of uncle Leo’s villa, or with a device
that allows balls of different materials rolling down a slope
(Fig. 1b). These skills are important to understand that light
propagates straight, as opposed to the curved trajectories of
other objects. This, in turn, is important for the game play,
because to continue in the game, the learner has to unlock a
door by exactly hitting a small light sensor with a laser
beam. The experimenting is accompanied and observed by
Galileo who, if necessary, can also provide feedback or
guidance. The goal of using the slope device is to make the
various balls (of wood, plastic, hollow, or solid iron, etc.)
fall into a given hole. As shown in Fig. 1b, the learner can
adjust a magnet and a fan to alter the trajectories of the
balls. On the contrary, a laser beam cannot be influenced by
such external forces.

The important point is that by continuously interpreting
the learner’s actions in terms of his or her knowledge, the
system gathers information about the learner’s learning
progress. If, as an example, the learner continuously tries to
affect the trajectory of a plastic ball by increasing the
magnetic force, the system eventually concludes that the
learner lacks the knowledge that plastic is not affected by
magnetic force. If, at the same time, the fan is adjusted
properly, the system can also conclude that the related
knowledge is available. Since, usually, a single observation
cannot provide reliable evidence, we are relying on a
probabilistic approach, which means that with each ob-
servation we are updating the probabilities that certain
knowledge is available.

Although this is a rather simple example, it illustrates the
underlying ideas of our assessment method. The following
parts of the manuscript will specify these ideas in more
detail, including the basics definitions and the mathematical
formalism of the assessment procedure. Subsequently, we
will illustrate the approach with an exact walk-through,
using the well known and suitably limited problem space of
the Tower of Hanoi. Finally, we will provide a conclusion
on the hand of more realistic examples and give an outlook
to future work.
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Fig. 1. Screenshots from the ELEKTRA demonstrator game on physics. (a) The ghost of Galileo Galilei, who is the learner’s (hidden) teacher; (b) the
slope device.



2 BASIC DEFINITIONS

Imagine a certain situation in a digital learning game with

an educational intention, for example the aforementioned

slope device or the experimenting with a torch and blinds.

To describe such a virtual scenario in a formal way, let O be

the set of (educationally relevant) and manipulable objects,

no matter if torch, fan, slider control, or even space ship.

These objects can be used to define all possible gaming

situations a user can be confronted with. For simplicity of

notation, we assume that O ¼ fo1; . . . ; oNg. Furthermore, for

1 � n � N , let Sn be the set of all possible “states” of the

nth object on. These states can be of quite different

character, like for instance, a multidimensional vector

describing position and orientation of an object in the

(virtual) space, or simply two values (“on” and “off”) for a

switch. This allows us to describe each gaming situation as

an N-tuple ðc1; . . . ; cNÞ, where ci 2 Si for all 1 � i � N . For

the sake of simplicity, let us agree on the following

convention: If cn ¼ ;, then the nth object does not appear

in the situation. If, on the other hand, cn 6¼ ;, then the

nth object on appears in the gaming situation and can be

manipulated by the user. It is important to note here that

not every N-tuple in S1 � � � � � SN represents a meaningful

gaming situation. If, for instance, the aim of the game is to

teach optics (e.g., by conducting virtual experiments like,

for instance, in the ELEKTRA demonstrator game), then it

would be pointless to present two blinds, a mounting rail,

and a screen, but no torch. In order to exclude such

meaningless situations, let S � S1 � � � � � SN be the set of

all “meaningful” gaming situations.
Furthermore, a problem situation or task is assumed to be a

tuple ði; T Þ 2 S � 2S with the following interpretations in

mind: 1) i 2 S is the initial state, a user is confronted with;

and 2) T � S is the set of solution states. If one of the

solution states in T is accomplished by the user, then the

task is completed successfully. Finally, the set of different

problem situations (tasks) is denoted by P.
To master a certain problem situation, a person can

perform different actions to modify the gaming situation.

In the ELEKTRA blinds problem, for example, the learner

might turn on the torch, vary the torch’s orientation, or

move a blind. With the slope device, they can change the

position of the sliders for the strength of the fan or the

magnet (see Fig. 1b). Additionally, we assume that any

problem can be solved in a finite number of steps. Note

that, within the context of game-based learning, this is

quite plausible to assume since, in general, a person can

only proceed with the next level of difficulty, if all the

problems of a given level are successfully solved. This

general idea is formalized as follows: Let A be a nonempty

set of actions a user can perform. The element q 2 A stands

for that action that quits the current task. Furthermore, let

R � S �A denote a “compatibility relation” with the

following interpretation in mind: ðs; aÞ 2 R if and only if

action a is performable in the gaming situation s. Finally,

let f : R! S be a “transition function” in the following

sense: If a user performs action a in the gaming situation s,

then the gaming situation fðs; aÞ results. In the following,

let us consider a fixed problem situation ði; T Þ 2 P. Then, a

finite sequence

Xði; T Þ :¼ hðs1; a1Þ; ðs2; a2Þ; . . . ; ðsn; anÞi

is called a solution process for problem ði; T Þ if and only if the
following conditions are satisfied:

1. s1 ¼ i;
2. ðst; atÞ 2 R for all t ¼ 1; . . . ; n;
3. fðst; atÞ ¼ stþ1 for all t ¼ 1; . . . ; n� 1;
4. st 62 T , for all 1 � t � n;
5. at 6¼ q, for all 1 � t � n� 1.

Note that, if fðsn; anÞ 2 T , then the task is completed
successfully. If, on the other hand, an ¼ q, then the user
quits the task before completion.

3 THE UPDATING RULE

To interpret the learner’s actions in terms of his or her

knowledge, we have to link the observed actions to the

underlying skills. There are a lot of definitions of the terms

“knowledge,” “competence,” or “skill.” As a working

definition, we refer to “skill” as an atomic and well-

defined entity of knowledge or ability, which ideally can

be formalized as a proposition of two related concepts.

This view is in accordance with definitions articulated by

[9] and [10]. Although it is a rather low-level and limited

view, it is suitable, even necessary, for the aim of a fine-

grained knowledge assessment. This, in turn, is a pre-

requisite for providing the learner with fine-grained

guidance and feedback.
To proceed successfully through the game, we assume

that a set E of skills (in the following also referred to as

elementary competencies) is required. Following the assump-

tions of Knowledge Space Theory (e.g., [11], [12], or [13]) and

Competence-based Knowledge Space Theory (e.g., [9], [14], [15],

[16], or [17]), we assume prerequisite relations between the

skills in E. This means that some skills are prerequisites to

other skills. To give a very simple example, to “know that

the distance between blind aperture and light source is in

inverse proportion to the diameter of the resulting light

spot,” it is necessary to “know what light is” or to “know

what an inverse proportion is.” For a more realistic

example, which is adopted from the 80Days project on

game-based learning in geography, see Fig. 5b.
According to these relationships, not every collection of

skills provides a well-defined “competence state.” For this

reason, let C be a family of subsets of E, containing at least

E, and the empty set ;. The elements in C are referred to as

competence states, and the tuple ðE; CÞ is denoted as

competence structure (cf. [17], [18]).
According to Competence-based Knowledge Space

Theory, we assume that at a certain point in time, any

person is in a specific, yet not directly observable,

competence state in C. The present approach attempts to

specify the learner’s competence state by interpreting his or

her actions. Formally, we assume that for any problem

solution process Xði; T Þ, there exists a conditional prob-

ability distribution
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Lð�jXði; T ÞÞ : C ! ½0; 1�;

with the following interpretation in mind: LðCjXði; T ÞÞ is
the conditional probability that a person has all the
elementary competencies in C but none of the competencies
in E n C, given that the solution process Xði; T Þ has been
observed.

In the following, let us consider a fixed problem situation
ði; T Þ, and an associated problem solution process Xði; T Þ.
Then, without loss of generality, we can assume that, for a
fixed number n 2 IN,

Xði; T Þ ¼ hðs1; a1Þ; ðs2; a2Þ; . . . ; ðsn; anÞi;

with fðsn; anÞ 62 T . Furthermore, let us assume that,
subsequent to action an, the user performs action anþ1 in
the gaming situation snþ1 ¼ fðsn; anÞ. If the resulting
problem solution process is denoted as X0ði; T Þ,

X0ði; T Þ :¼ hðs1; a1Þ; ðs2; a2Þ; . . . ; ðsn; anÞ; ðsnþ1; anþ1Þi;

then we are confronted with the problem of computing the
conditional probability distribution Lð�jX0ði; T ÞÞ from the
given probability distribution Lð�jXði; T ÞÞ and the obser-
vation that the user performed action anþ1 in situation snþ1.

To solve this problem, the multiplicative updating rule
by Falmagne and Doignon [19] is adapted to our needs:

1. If action anþ1 in situation snþ1 provides evidence in
favor of the elementary competency c, then increase
the probability of all competence states in C contain-
ing c, and decrease the probability of all competence
states not containing c.

2. If action anþ1 in situation snþ1 provides evidence
against the elementary competency c, then decrease
the probability of all competence states in C contain-
ing c, and increase the probability of all competence
states not containing c.

This means that we have to assign to each possible action
an interpretation with respect to required and/or missing
skills, i.e., if a learner performs a certain action we can
assume that s/he has certain required skills while some
others are apparently missing (otherwise we would have
observed a better suited action). In the ELEKTRA slope
device, e.g., observing a learner selecting full fan speed for
a plastic ball rolling down the slope would show that this
learner knows that the plastic ball’s flight is influenced by
the fan. However, s/he apparently does not know that a
plastic ball is very light and, therefore, a much lower fan
speed is needed.

To formalize this general idea, let1 Eði; T Þ � E denote
those elementary competencies in E which are necessary to
understand and solve the problem situation ði; T Þ.
Furthermore, let us assume two “skill assignment” func-
tions �ði;T Þ : R! 2Eði;T Þ and �ði;T Þ : R! 2Eði;T Þ with the
following interpretations in mind: If action a is performed
in the gaming situation s, then we can surmise that the
user has all the elementary competencies in �ði;T Þðs; aÞ 	
�ðs; aÞ (“supported skills”), but none of the competencies

in �ði;T Þðs; aÞ 	 �ðs; aÞ (“unsupported skills”). Furthermore,

to compute Lð�jX0ði; T ÞÞ from the given probability

distribution Lð�jXði; T ÞÞ, let us fix two parameters �0 and

�1 with �0 > 1 and �1 > 1. Then, for a competence state

C 2 C, let

LðCjX0ði; T ÞÞ :¼ �ði;T ÞðCÞLðCjXði; T ÞÞP
C02C �

ði;T ÞðC0ÞLðC0jXði; T ÞÞ ; ð1Þ

with the parameter function �ði;T ÞðCÞ 	 �ðCÞ defined as

�ði;T ÞðCÞ :¼
Y

c2C\�ðsnþ1;anþ1Þ
�0

Y

c2ðEði;T ÞnCÞ\�ðsnþ1;anþ1Þ
�1: ð2Þ

It is important to note here that �ði;T ÞðCÞ is set to 1 if
C \ �ðsnþ1; anþ1Þ ¼ ; and ðEði; T Þ n CÞ \ �ðsnþ1; anþ1Þ ¼ ;.
Furthermore, if X0ði; T Þ ¼ hðs1; a1Þi, then we postulate that

LðCjX0ði; T ÞÞ :¼ �ði;T ÞðCÞLðCjði; T ÞÞP
C02C �

ði;T ÞðC0ÞLðC0jði; T ÞÞ ; ð3Þ

where Lð�jði; T ÞÞ is the initial distribution at the beginning
of the task, that is, before action a1 is observed. Note that,
at the beginning of the game (i.e., prior to the first problem
situation), either the initial distribution is estimated from
an entry test, or the competence states are assumed to be
uniformly distributed:

LðCjði; T ÞÞ ¼ 1

jCj ; 8C 2 C:

Alternatively, let us assume that the user has already solved
some of the problem situations in P. If the final problem
solution process is denoted as Xði; T Þ, then the conditional
probability distribution Lð�jXði; T ÞÞ is used as initial
distribution for the next problem situation ði0; T 0Þ.

4 PARTITIONING COMPETENCE STRUCTURES

In realistic applications, we are confronted with the problem
that, in general, the number of competence states is huge,
and that, consequently, the probability updates (in the sense
of (1) and (3)) cannot be realized in real time as it is
necessary to keep an undisturbed game experience. If, as an
example, we have a relatively small set E of 50 skills, then
the resulting competence structure ðE; CÞ can have up to

j2Ej ¼ 250 ¼ 1:1259� 1015

different competence states. If, in order to consider a more
realistic example, the number of elementary competencies
in E is doubled, then there can be up to

j2E j ¼ 2100 ¼ 1:267651� 1030

competence states, which is far beyond the number of stars
in the observable universe (about 3 to 7� 1022). In order to
reduce the computational demand of the updating process,
the present paper proposes a modified update by restrict-
ing the underlying competence structure ðE; CÞ to a
smaller set of elementary competencies.To this end, let
us consider the set Eði; T Þ of those elementary compe-
tencies in E which are necessary to understand and solve
the problem situation ði; T Þ (cf. Section 3). Then, a trivial
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1. In real applications, it is important to specify the problem situation
ði; T Þ in such a way that the “restricted” skill set Eði; T Þ is much smaller
than the overall skill set E (cf. Section 4).



consideration shows that the competence states in C can be
restricted to the elementary competencies in Eði; T Þ: If we
define

Cði; T Þ :¼ fC \ Eði; T Þ : C 2 Cg;

then the tuple ðEði; T Þ; Cði; T ÞÞ is referred to as ði; T Þ-
restricted competence structure. Furthermore, in order to
restrict the conditional probability distributions Lð�jXði; T ÞÞ
and Lð�jði; T ÞÞ to the ði; T Þ-restricted competence structure
Cði; T Þ, let

½C� :¼ fC0 2 C : C0 \Eði; T Þ ¼ C \Eði; T Þg; C 2 C:

Then, a mathematical argument shows that

LðrÞðC \Eði; T ÞjXði; T ÞÞ :¼
X

C02½C�
LðC0jXði; T ÞÞ; C 2 C;

ð4Þ

and

LðrÞðC \ Eði; T Þjði; T ÞÞ :¼
X

C02½C�
LðC0jði; T ÞÞ; C 2 C; ð5Þ

are probability distributions on Cði; T Þ. For a formal proof,
see [20].

Furthermore, by applying the multiplicative updating rule
(1) to the restricted probability distribution LðrÞð�jXði; T ÞÞ,
we obtain that

LðrÞðKjX0ði; T ÞÞ ¼ �ði;T ÞðKÞLðrÞðKjXði; T ÞÞP
K02Cði;T Þ �

ði;T ÞðK0ÞLðrÞðK0jXði; T ÞÞ ;

K 2 Cði; T Þ;
ð6Þ

with the parameter function �ði;T ÞðKÞ 	 �ðKÞ defined
according to (2). It is noteworthy and of central importance
for the rest of this paper that an update of the (unrest-
ricted) probability distribution L can be accomplished by
updating the restricted distribution LðrÞ. The following
theorem specifies the relationship between the (unrest-
ricted) distribution L and its restricted counterpart LðrÞ:

Theorem 1. For every competence state C 2 C, and every

problem solution process Xði; T Þ,

LðCjXði; T ÞÞ ¼ L
ðrÞðC \ Eði; T ÞjXði; T ÞÞ
LðrÞðC \ Eði; T Þjði; T ÞÞ LðCjði; T ÞÞ: ð7Þ

For a mathematical proof of Theorem 1, see [20]. It is
important to note that the initial distributions Lð�jði; T ÞÞ
and LðrÞð�jði; T ÞÞ are given by definition (cf. Section 3).
Furthermore, we have to note that, in general, the restricted
competence structure Cði; T Þ is much smaller than the
original structure C. If, for instance, jEði; T Þj ¼ 10, then the
number of competence states in Cði; T Þ is bounded by

j2Eði;T Þj ¼ 210 ¼ 1;024:

Even if the number of elementary competencies in Eði; T Þ is
increased to 15, then the maximum number of competence
states is relatively small (as compared to the original
competence structure):

j2Eði;T Þj ¼ 215 ¼ 32;768:

This shows that, in general, an update of the restricted
probability distribution

LðrÞð�jXði; T ÞÞ : Cði; T Þ ! ½0; 1�

is less CPU-intensive than a (direct) update of the unrest-
ricted distribution

Lð�jXði; T ÞÞ : C ! ½0; 1�:

Thus, in order to reduce the computational load of the
updating process, the following strategy is advisable:

1. Within a given problem situation ði; T Þ, we update
the restricted probability distribution LðrÞ according
to (6).

2. The unrestricted distribution L is updated only
after task completion. This is done according to
Theorem 1.

3. The final distribution Lð�jXði; T ÞÞ is used as initial
distribution for the next problem situation ði0; T 0Þ.

5 THE ADAPTIVE PROBLEM SELECTION PROCESS

Let us assume that a user has successfully completed a
given problem situation ði; T Þ. Furthermore, let Xði; T Þ
denote the observed problem solution process. Then, the
problem is to tailor the next problem situation to the
competence state of the user. To this end, let us assume an
“assignment-function” � : C ! 2P with the following inter-
pretation in mind: If a person is in competence state C, then
one of the problem situations in �ðCÞ � P is presented to
the user. In order to ensure that there is an adequate
problem situation for every competence state, we assume
that for every C 2 C, �ðCÞ 6¼ ;.

A problem arises from the fact that the given probability
distribution Lð�jXði; T ÞÞ provides only probabilistic infor-
mation on the user’s competence state. To solve this
problem, we combine the probability distribution
Lð�jXði; T ÞÞ with the (deterministic) assignment function
� in a straightforward way:

1. Use Lð�jXði; T ÞÞ to select a competence state in C.
2. If, in the first step, the competence state C is selected,

then one of the problem situations in �ðCÞ is
presented to the user. For the sake of variety, the
problem situations are selected randomly from �ðCÞ.

Finally, if at the outset, no information on the compe-
tence state of a user is available, then one of the problem
situations in P is chosen at random. If, on the other hand, an
initial distribution on C is derived from an entry test, then
the initial distribution is combined with the deterministic
assignment function � as stated above.

The following section provides a hypothetical applica-
tion to the Tower of Hanoi, which should illustrate the basic
concepts of the presented model. It is important to note,
however, that this example is not representative for realistic
applications in that the number of competencies and
problem situations is quite small. Despite its limited
applicability to realistic digital games, it has the didactic
advantage that all the computations can easily be carried
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out, even without any programming skills while a real
example from a game-based learning application like
ELEKTRA would be too large to be presented in a paper
in such detail.

6 THE TOWER OF HANOI: A WALK-THROUGH

DEMONSTRATION

To provide a walk-through demonstration of the outlined
approach, we refer to the problem-oriented game of the
Tower of Hanoi, invented by the French mathematician
Edouard Lucas in 1883. We exemplify our approach with
the simple problem scenario of the Tower of Hanoi for
several reasons: On the one hand, this “game” offers an
illustrative field of application since it provides a well
known and easy to understand problem scenario. On the
other hand, the Tower of Hanoi perfectly matches the
nature of many game-based problem scenarios and can
easily be extended toward more complex and difficult
settings. Finally, this type of game covers the very nature
of our approach, that is, melding competence structures
and problem spaces to enable the system to assess
and—to a certain degree—understand a learner’s behavior
in the game.

The Tower of Hanoi consists of three pegs in a row, and

a stack of disks of differing size. At the start, all the disks

are on the first peg, from the largest disk at the bottom

to the smallest disk at the top. A player is only allowed to

move one disk at a time from one peg to another, and at no

time may a larger disk be placed on a smaller disk. The aim

of the puzzle is to move the disks from the starting peg 1 to

the destination peg 3. In the following, we concentrate on

three different puzzles, referred to as d2 (two-disk puzzle),

d3 (three-disk puzzle), and d4 (four-disk puzzle), respec-

tively. Consequently, P ¼ fd2; d3; d4g.
In diagnosing the competence state of a person, we

assume that a person can have one or more of the following

elementary competencies in E :¼ fc2; c3; c4g:

. c2: ability to solve problem d2;

. c3: ability to reduce problem d3 to problem d2;

. c4: ability to reduce problem d4 to problem d3.

To demonstrate the basic concepts of the presented
model, we assume that the ability to solve problem d2

(i.e., the elementary competency c2) can be surmised from
the ability to reduce problem d3 to problem d2 (i.e., the
elementary competency c3). Similarly, we assume that
the elementary competency c3 can be surmised from the
elementary competency c4. By these assumptions, we
derive at the following four competence states: ;, fc2g,
fc2; c3g, and fc2; c3; c4g (cf. Fig. 2).

To make sure that the selected problem situations are
tailored to the competence state of a user, we specify the
following assignment function � : C ! 2P :

�ð;Þ :¼ fd2g; �ðfc2gÞ :¼ fd2; d3g;
�ðfc2; c3gÞ :¼ fd3; d4g; �ðfc2; c3; c4gÞ :¼ fd4g:

Note that, by these definitions, a user is either confronted
with the most complex problem situation he or she is capable

of solving, or the next more complicated one. Additionally,

let us assume a player, who is in the (unknown) competence

state fc2; c3g.
Since, at the outset, no information on the user’s

competence state is available, a problem situation is chosen

at random. Assume that, at first, the player is confronted

with the three-disk puzzle: ði1; T 1Þ ¼ d3. Then, Eði1; T 1Þ ¼
fc2; c3g and

Cði1; T 1Þ ¼ f;; fc2g; fc2; c3gg:

Furthermore, the initial distribution Lð�jði1; T 1ÞÞ is assumed

to be the uniform distribution:

LðCjði1; T 1ÞÞ ¼
1

4
; 8C 2 C:

Then, according to (5), the restricted initial distribution on

Cði1; T 1Þ is equal to

LðrÞð;jði1; T 1ÞÞ ¼ LðrÞðfc2gjði1; T 1ÞÞ ¼
1

4
;

LðrÞðfc2; c3gjði1; T 1ÞÞ ¼
1

2
:

In order to demonstrate the multiplicative updating rule,

let us assume that the player solves the three-disk puzzle

in seven steps (the minimal number of steps to solve d3)

(cf. Fig. 3).
Action a1 provides evidence in favor of the elementary

competency c3. Furthermore, according to the competence

structure ðE; CÞ, the elementary competency c2 is a pre-

requisite for c3, that is, a person who has the elementary

competency c3 has also the elementary competency c2. Thus,

we conclude that �ði1;T 1Þðs1; a1Þ 	 �ðs1; a1Þ ¼ fc2; c3g and

�ði1;T 1Þðs1; a1Þ 	 �ðs1; a1Þ ¼ ;. Finally, to update the restricted

initial distribution LðrÞð�jði1; T 1ÞÞ, let �0 ¼ �1 :¼ 2. Then,

according to (2),

�ðCÞ ¼
Y

c2C\�ðs1;a1Þ
�0

Y

c2ðEði1;T 1ÞnCÞ\�ðs1;a1Þ
�1 ¼

Y

c2C\fc2;c3g
�0;

and consequently,

�ð;Þ ¼ 1; �ðfc2gÞ ¼ 2; �ðfc2; c3gÞ ¼ 4:

Thus, (6) yields
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LðrÞðCjhðs1; a1ÞiÞ ¼
�ðCÞLðrÞðCjði1; T 1ÞÞP

C02Cði1;T 1Þ �ðC0ÞLðrÞðC0jði1; T 1ÞÞ

¼ �ðCÞL
ðrÞðCjði1; T 1ÞÞ

11
4

;

which provides the following update of the initial distribu-

tion LðrÞð�jði1; T 1ÞÞ:

LðrÞð;jhðs1; a1ÞiÞ ¼
1

11
; LðrÞðfc2gjhðs1; a1ÞiÞ ¼

2

11
;

LðrÞðfc2; c3gjhðs1; a1ÞiÞ ¼
8

11
:

Similarly, Action a2 provides evidence in favor of the

elementary competencies c2 and c3. Consequently, it is

�ðs2; a2Þ ¼ fc2; c3g and �ðs2; a2Þ ¼ ;, which shows that the

restricted probability distribution LðrÞð�jhðs1; a1ÞiÞ can be

updated as follows:

LðrÞðCjhðs1; a1Þ; ðs2; a2ÞiÞ ¼
�ðCÞLðrÞðCjhðs1; a1ÞiÞ

37
11

;

(cf. (6)). Furthermore, if the multiplicative updating rule is

consecutively applied to Actions a1 to a7, then the following

conditional probabilities result:
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LðrÞð;jhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ ¼
1

4;225
;

LðrÞðfc2gjhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ ¼
128

4;225
;

LðrÞðfc2; c3gjhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ ¼
4;096

4;225
:

Finally, in order to tailor the next problem situation to

the competence state of the user, we have to specify the

unrestricted distribution Lð�jhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ. This can

be done according to Theorem 1:

Lð;jhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ ¼
1

4;225
;

Lðfc2gjhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ ¼
128

4;225
;

Lðfc2; c3gjhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ ¼
2;048

4;225
;

Lðfc2; c3; c4gjhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ ¼
2;048

4;225
:

If we assume that, based on these probabilities, the

competence state fc2; c3; c4g is selected (cf. Section 5), then

the player is confronted with the four-disk puzzle d4 next:

ði2; T 2Þ ¼ d4. Note that, by definition, �ðfc2; c3; c4gÞ ¼ fd4g.
Since Eði2; T 2Þ ¼ fc2; c3; c4g, the restricted competence

structure Cði2; T 2Þ is equal to the original structure:

Cði2; T 2Þ ¼ C.
Different from the previously discussed three-disk

problem, let us now assume that the player is on the wrong

track (cf. Fig. 4):
Action a8 indicates that the user is incapable of reducing

the four-disk problem d4 to the three-disk problem d3.

Consequently, �ðs8; a8Þ ¼ fc4g, and �ðs8; a8Þ ¼ ;. Therefore,

the definition of �ðCÞ yields

�ðCÞ ¼
Y

c2C\;
�0

Y

c2ðfc2;c3;c4gnCÞ\fc4g
�1 ¼

Y

c2ðfc2;c3;c4gnCÞ\fc4g
�1;

and

�ð;Þ ¼ �ðfc2gÞ ¼ �ðfc2; c3gÞ ¼ 2; �ðfc2; c3; c4gÞ ¼ 1;

(cf. (2)). Thus, by taking into account that the initial

distribution Lð� j ð i2; T 2 ÞÞ is equal to Lð� j ð i2; T 2 ÞÞ ¼
Lð�jhðs1; a1Þ; . . . ; ðs7; a7ÞiÞ, the multiplicative updating rule

yields

Lð;jhðs8; a8ÞiÞ ¼
2

6;402
; Lðfc2gjhðs8; a8ÞiÞ ¼

256

6;402
;

Lðfc2; c3gjhðs8; a8ÞiÞ ¼
4;096

6;402
;

Lðfc2; c3; c4gjhðs8; a8ÞiÞ ¼
2;048

6;402
;

(cf. (3)). Finally, let us consider Action a9: similar to Action

a8, we conclude that �ðs9; a9Þ ¼ ; and �ðs9; a9Þ ¼ fc4g.
Consequently, we obtain strong evidence that the learner

is in the competence state fc2; c3g (cf. (1)):

Lð;jhðs8; a8Þ; ðs9; a9ÞiÞ ¼
4

10;756
¼ 0:0004;

Lðfc2gjhðs8; a8Þ; ðs9; a9ÞiÞ ¼
512

10;756
¼ 0:0476;

Lðfc2; c3gjhðs8; a8Þ; ðs9; a9ÞiÞ ¼
8;192

10;756
¼ 0:7616;

Lðfc2; c3; c4gjhðs8; a8Þ; ðs9; a9ÞiÞ ¼
2;048

10;756
¼ 0:1904:

7 CONCLUSION AND OUTLOOK

The present paper provides a theoretical model to assess

knowledge and learning progress in an embedded, non-

invasive way. The approach was developed in the context

of digital learning games, within which conventional

assessment procedures are not appropriate or possible.

The outlined approach is based on a mathematical frame-

work describing a person’s problem-solving behavior in an

explorative and problem-oriented gaming situation.

A gaming situation is assumed to be a tuple ði; T Þ, where

i is the initial state a user is confronted with, and T is the

set of possible solution states. If one of the solution states in

T is accomplished by the user, then the task is completed
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Fig. 4. The solution behavior of a fictive person dealing with the four-disk puzzle d4.



successfully. One might, as an example, think of a virtual

room with a table, a torch, blinds, a screen, and a mounting

rail in it. The learner’s task might be to reduce the torch’s

light cone into a narrow beam of light on the screen, using

the mounting rail and the two blinds. To master a problem

situation ði; T Þ, a person can perform different actions to

modify the gaming situation. The learner might, for

instance, turn on the torch, vary the torch’s orientation, or

move a blind. The central idea of the presented model is to

interpret these actions regarding its correctness or appro-

priateness for accomplishing the task (e.g., narrowing the

light cone). To formalize this general idea, we introduced

the conditional probability LðCjXði; T ÞÞ that a person is in

the competence state C 2 C given that the solution process

Xði; T Þ has been observed.

Additionally, we adapted the multiplicative updating

rule [19] to our needs: Let us assume that for a fixed

solution process Xði; T Þ :¼ hðs1; a1Þ; ðs2; a2Þ; . . . ; ðsn; anÞi,
the conditional probability distribution Lð�jXði; T ÞÞ is

given. Then, the multiplicative updating rule formalizes

the following intuitive idea: If action anþ1 in gaming

situation snþ1 :¼ fðsn; anÞ provides evidence in favor of

the elementary competency c, then increase the probability

of all competence states containing c, and decrease the

probability of all competence states not containing c.

Similarly, if action anþ1 in gaming situation snþ1 provides

evidence against the elementary competency c, then

decrease the probability of all competence states containing

c, and increase the probability of all competence states not

containing c. For a formalization of this general idea see (1).

It is important to note here that a single observation might

not be considered “meaningful.” However, with an increas-

ing number of observations, and therefore also an increas-

ing number of probability updates, the picture is gradually

becoming clearer.

In realistic applications, we might be confronted with

very large competence structures with millions of compe-

tence states, which might lead to the problem that the

probability updates cannot be realized at runtime. To

address this problem, we have introduced restricted

probability distributions defined on a restricted set of

elementary competencies (cf. (4) and (5)). The main result

of the paper shows that an update of the (unrestricted)

probability distribution L can be accomplished by updating

the restricted analogue LðrÞ (cf. Theorem 1). Consequently,

in order to reduce the computational load of the updating

process, the following strategies are advisable: 1) Within a

given problem situation ði; T Þ, the restricted probability

distribution LðrÞ is updated according to (6). 2) The

unrestricted probabilities are updated only after task com-

pletion. This is done according to Theorem 1. 3) The final

probability distribution Lð�jXði; T ÞÞ is used as initial

distribution for the next problem situation ði0; T 0Þ.
A major advantage of the outlined approach is that it can

be easily integrated in educational applications like, for

instance, digital learning games, for which conventional

knowledge testing is not suitable or possible. The mathe-

matical framework of our model enables the system to

monitor the learner’s behavior and draw probabilistic

conclusions about the user’s competence state.

The above-mentioned examples—the slope device or the

Tower of Hanoi—might be considered as simplifications.

However, we want to emphasize that those examples are

typical for the explorative, problem-oriented characteristic

of (learning) games. It is important to note that our

approach is not restricted to these examples, but is

universally applicable to all kinds of actions or observable

behavior. In principle, the approach can be applied to all

kinds of (educational) games that on the one hand have an

identifiable goal and on the other hand that allow a

quantification of the approach to this goal. Of course,

games that are based on the solution of more or less

complex problems, which, in turn, enables the formalization

of nontrivial problem spaces, are particularly suitable for

the presented approach. Examples might be task-oriented

adventure games, simulation games, or strategic games. In

the 80Days demonstrator game, for instance, the learner is

flying with a space ship over the Earth aiming at

discovering certain places (cf. Fig. 5). In this example, the

flying directions provide information about the learner’s
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Fig. 5. (a) A screenshot from the 80Days demonstrator game on geography. The learner’s task is to discover major European capitals by flying with a

space ship. (b) The prerequisite structure for the underlying skill set.



geography skills. A concrete application beyond the gaming

context, namely a training based on a haptic simulator

device in the medical domain (MedCAP; www.medcap.eu),

was described by [21].

The outlined approach was developed in the area of

game-based learning and is a core component of micro-

adaptivity, that is, the system’s capability to interpret a

learner’s actions with respect to his or her knowledge and

to respond adaptively in real time and on an individual

basis [1]. The aim is to provide the learner with appropriate

and tailored guidance, support, information, and feedback.

The concept was developed in the context of the ELEKTRA

project and is taken up and extended in the course of the

direct successor 80Days. While ELEKTRA predominantly

focussed on assessment and interventions in an educational

sense, 80Days incorporates broader aspects such as the

assessment and adaptation in terms of motivational states

as well as implementing aspects of adaptive, interactive

storytelling. In the context of both projects, we developed

demonstrator applications (cf. [22], [23]), which were

empirically evaluated. First, results indicate the usefulness

and supportive quality of the microadaptive approach in

general, as well as the validity of the noninvasive

assessment in comparison to conventional knowledge tests

[24]. The conceptual work, however, continues and will

extend the “multidimensional vector approach” presented

in this paper.

Future work will focus, in the first instance, on

simulation studies aiming at the precision and efficiency

of the multiplicative updating rule. Moreover, we will

address the problem of further reducing the computational

demands of the updating process, as well as the integration

of further “assessment axes,” like for instance, motivational

or emotional states of the learner. Finally, enabling the

computer system to draw autonomously meaningful

conclusions from a learner’s problem-solving behavior in

the virtual environment of games requires a categorization

of actions, problem states, or competence states. Although

this categorization limits the system’s understanding of

what is potentially going on, it does not limit the degrees

of freedom in terms of gaming and learning. Future work

will address this limitation by taking up ideas of emergent

game design.2
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2. Emergent behavior occurs due to a nontrivial interaction of system
components with each other and with the player, which gives rise to
behavior that was not specifically intended by the developer [25].
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