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Abstract—Fuzzy Cognitive Maps (FCMs) can be used to design game-based learning systems for their excellent ability of concept

representation and reasoning. However, they cannot 1) acquire new knowledge from data and 2) correct false prior knowledge, thus

reducing the game-based learning ability. This paper utilizes Hebbian Learning Rule to solve the first problem and uses Unbalance

Degree to solve the second problem. As a result, an improved FCM gains the ability of self-learning from both data and prior

knowledge. The improved FCM, therefore, is intelligent enough to work as a teacher to guide the study process. Based on the

improved FCM, a novel game-based learning model is proposed, including a teacher submodel, a learner submodel, and a set of

game-based learning mechanisms. The teacher submodel has enough knowledge and intelligence to deduce the answers by the

improved FCM. The learner submodel records students’ study processes. The game-based learning mechanism realizes the guided

game-based learning process with the support of the teacher submodel. A driving training prototype system is presented as a case

study to present a way to realize a real system based on the proposed models. Extensive experimental results justify the model in

terms of the controlling and guiding the study process of the student.

Index Terms—Game-based learning, Fuzzy Cognitive Maps, teacher model, learning guidance, interactive computing.
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1 INTRODUCTION

THE first computer game was developed in the late 1960s
and it was not long before computer games were also

used and developed for educational purposes [1]. But the
term game-based learning1 was not coined until 2000, when
Prensky first discussed it in detail [2]. After that, game-
based learning systems started to be developed according to
various theories and methods [3], [4], [5].

In terms of teaching and studing, good learning
demands teachers and students to make joint efforts. For
students, their interest plays such an important role in their
studying [6] that they must keep interested to exert their full
potential. For teachers, it is concluded that any attempt to
improve students’ achievements should be based on the
development of effective teaching behaviors [7]. In other
words, they should give students appropriate guidance.

As a new study mode, game-based learning processes do
well in arousing students’ interest as students can be
attracted easily in the form of gaming. On the other hand,
because learning guidance is a creative and flexible job, it is
difficult for some teachers to guide the learning process
effectively, let alone in a game-based learning system.
Therefore, there is still significant work needed to be done

in order to improve the guidance ability of game-based
learning. In this paper, we apply Fuzzy Cognitive Maps
(FCMs) to address the aforementioned problem.

An FCM has excellent concept representation and
reasoning ability, which makes it widely used in various
fields, such as geographic information systems [8], tacit
knowledge management [9], and virtual worlds [10].

But the original FCM lacks self-learning abilities due to
two shortcomings. One is that it cannot acquire new
knowledge from data and the other is that it cannot correct
false prior knowledge. If an FCM can be improved to
address the above two issues, it can be more suitable for
game-based learning system design. The basic idea of this
paper is to improve FCM by overcoming the two afore-
mentioned shortcomings and equipping it with the ability
of self-learning and knowledge acquisition from both data
and prior knowledge. Specifically, we utilize the Hebbian
Learning Rule to enable an FCM to acquire new knowledge
and the Unbalance Degree to correct false prior knowledge in
an FCM automatically.

Based on the improved FCM, a game-based learning
model is proposed which focuses on how to improve the
game-based learning system’s guidance ability. A driving
training prototype system is developed as a case study to
present a way to realize an actual system using the
proposed models. The system provides a game-based
learning environment for driving training. Students can
study driving skills and traffic laws in the system. The
driving scenario is generated including roadway geometry,
representations of interactive traffic and pedestrians, and
roadside object representations, among others. The gui-
dance actions are generated by the teacher submodel, and
the driver’s actions are collected and judged by our
proposed model. With the system, the experimental results
are collected and demonstrate that our system is effective
and the proposed model is valid.
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1. Learning falls into two categories in this paper. One is human learning
and the other is machine learning. In order to avoid confusion with these
two categories of learning, we use the word “studying” to represent human
learning (except for game-based learning) and “learning” to represent
machine learning.
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The rest of this paper is organized as follows: In Section 2,
related work is discussed. In Section 3, the FCM is improved
and a game-based learning model is proposed based on the
improved FCM. In Section 4, a case study of the proposed
model is introduced. In Section 5, our game-based learning
model is evaluated from objective and subjective aspects.
Finally, the conclusion is reached in Section 6.

2 RELATED WORK

The related work falls into two main categories: how to
improve the FCM’s learning ability and how to design a
game-based learning system.

On the first one, much work has been done on improving
FCMs in various aspects. Elpiniki and Peter proposed a
method to train an FCM, which is based on nonlinear
Hebbian learning and the differential evolution algorithm
[11]. Wojciech et al. proposed a novel parallel approach to
the learning of FCMs in order to deal with large maps due
to their high computational complexity [12]. Mateou et al.
proposed two algorithms for a multilayer approach devel-
oped to expand the capabilities of FCMs, one is Multilayer
FCM (ML-FCM) and the other is Enhanced Multilayer FCM
(EML-FCM) [13]. Our research is different from the above
work in that we utilize the Hebbian Learning Rule and the
Unbalance Degree to improve an FCM, so as to make it able
to learn by itself and acquire knowledge from both data and
prior knowledge.

On the second one, there is also some work. To
improve a distributed game-based system’s performance,
Ng et al. proposed a parallel architecture [14] and Chim
et al. proposed a method of caching and prefetching [15].
Wu et al. focused on how to realize a special game-based
learning system or a game-based framework [3], [4], [5].
Compared with these efforts, our research aims to
propose a general game-based learning model instead of
a special game-based learning system, so as to facilitate
the design of other game-based learning systems.

3 GUIDED GAME-BASED LEARNING USING FCM

3.1 Fuzzy Cognitive Map

An FCM is a graphical model for causal knowledge
representation and reasoning. It can represent not only
causal relations between concepts but also knowledge of
different granularity levels. An FCM comprises concepts
(nodes) and the relations between concepts (edges). Accord-
ing to [8], the mathematic model of FCM is as follows:

Vcjðtþ 1Þ ¼ f
XN
i¼1
i6¼j

VciðtÞwij

0
@

1
A; ð1Þ

where Vci and Vcj are the state values of the cause concept Ci
and the effect concept Cj, respectively, wij is the weight of
the causal relation from concept Ci to concept Cj, and fðxÞ
is the threshold function of concept Cj.

Fig. 1a illustrates the FCM for robot high-level planning,
where Ci is a concept with a state value. The state value can
be a fuzzy value within [0, 1] that represents the existent
degree of a concept, or a bivalent logic in {0, 1} that represents

a concept’s open/close state. The weight wij of an edge

indicates the influence degree from the cause concept Ci to

the effect concept Cj, which can be a fuzzy value within

½�1; 1� or a trivalent logic within f�1; 0; 1g. If the weight is

positive, the increase/decrease of the state value of concept

Ci leads to the increase/decrease of the state value of concept

Cj. If the weight is negative, the increase/decrease of the

state value of conceptCi leads to the decrease/increase of the

state value of concept Cj. The adjacency matrix correspond-

ing to the FCM is shown in Fig. 1b.
For a classic FCM, there are three major defects. First, an

FCM is a closed system and lacks learning ability. Second,
an FCM cannot acquire knowledge from the data auto-
matically because it is overly dependent upon expert
knowledge; thus, an FCM lacks the self-adaptation ability
to a change of environment. Third, there is no global view of
FCMs’ behaviors because the behaviors are the outcomes of
the interaction of concepts, and each concept has its own
control subsystem.

The three defects are related. If an FCM is an open

system, it should have the ability to acquire knowledge

from data automatically. If an FCM has a global view, it

should have the ability of adjusting the weights between

concepts automatically in order to correct the false prior

knowledge in an FCM.
In order to apply an FCM in game-based learning, the

FCM should be improved to overcome the above three

defects. So, the major work of this paper is:

1. how to make the FCM own the abilities of self-
learning and knowledge acquisition,

2. how to build a guiding game-based learning model
resting on an improved FCM,

3. how to realize an actual game-based learning system
resting on the proposed model, and

4. how to verify the effectiveness of our proposed model.
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Fig. 1. (a) An FCM for robot high-level planning and (b) its matrix

representation.



3.2 Guided Game-Based Learning Model

Game-based learning is different from computer games, as
its objective is to improve a student’s knowledge level. In
particular, game-based learning needs a “teacher” to guide
the student’s study process. There are two issues to be
discussed here. One is how the “teacher” is created, which
we term as the teacher submodel. The other is how the
“teacher” works, which is reflected by how the teacher
submodel guides the student to study in a game-based
learning environment.

To solve these two issues, we propose a game-based
learning model using an FCM. As shown in Fig. 2, this
model consists of three parts: a teacher submodel, a learner
submodel, and a set of game-based learning mechanisms.

The teacher submodel based on the improved FCM has
abundant knowledge and the ability of self-learning from
both data and prior knowledge, which makes the FCM
suitable for acting as a teacher. The submodel plays the role
of monitor and guides the student’s study process.
Consequently, this game-based learning model has the
teacher-guidance function. The construction and self-learn-
ing of the teacher submodel will be discussed in Section 3.3.

The study process of a student is recorded by the learner
submodel. The learning mechanism consists of various
parts to control the whole learning process. Both the learner
submodel and the game-based learning mechanism will be
discussed in Sections 3.4 and 3.5, respectively.

In Fig. 2, Ii is an input which represents the task or the
scene of the game that the student will face, Im is the real
input of the student, Ot is the standard output of the teacher
submodel, Os is a real output of the learner submodel, ! is
the difference between Ot and Os, and �wij is a variable to
adjust the learner submodel.

3.3 Teacher Submodel

The core of the teacher submodel is a teacher FCM, the
construction of which includes three steps as follows:

The first step is to build an initial FCM which stores the
prior knowledge of the teacher and it is usually manually
constructed by domain experts.

The second step is to study the relations between pairs of
concepts in the FCM by the drive-reinforcement Hebbian
learning rule. This step only focuses on certain parts of the
concepts, so we call it the local learning of the teacher
submodel, which will be discussed in Section 3.3.2.

The weight of a relation between a pair of concepts can
be adjusted to an optimal FCM by local learning. But from
the global viewpoint, the teacher submodel may not be
optimal. So, the third step is the global learning of the
teacher submodel, which aims to get a global optimal FCM.

Note that steps 2 and 3 are usually conducted by data
training, which makes the FCM have the ability of
automatic learning and knowledge acquisition from both
data and prior knowledge. So, this method combines expert
knowledge with data training’s virtue.

3.3.1 Construction of the Teacher Submodel

The initial FCM of the teacher submodel is usually
constructed by domain experts. Because domain experts
have abundant prior knowledge of their domains, they can
build the FCM effectively, which corresponds to the real
world. This work involves finding the concepts in the model
and the initial weight between concepts. These weights
reflect the expert knowledge and are fine adjusted by using
the local and global learning described in the next section,
which makes them emulate the real world effectively.

3.3.2 Local Learning of the Teacher Submodel

Local learning of the teacher submodel is mostly to learn
the weight value between the concepts of an FCM. We
mainly use the classic Hebbian Learning Rule [16] and the
Drive-Reinforcement Hebbian Learning Rule [17], [18] in the
local learning process of the teacher submodel. The main
steps are as follows:

1. Self-Learning Based on the Hebbian Learning Rule
Generally, for a common neural computing model

ncmðNÞ ¼ <CG; AG; IF ;OF;WA;OA>, where CG is the
concepts set, AG is the connection relation matrix, IF is the
input set,OF is the output set,WA is the working algorithm,
and OA is the organizing algorithm [19], we notate the
output of random conceptCi 2 CGði ¼ 1; 2; . . . ; NÞ as Vci and
Vci 2 f0; 1g. According to Hebb supposition, the correction
of connection weight rij between concept Ci and Cj is
defined as

�rijðtÞ ¼ �VciðtÞVcjðtÞ ð� > 0Þ;
rijðtþ 1Þ ¼ rijðtÞ þ�rijðtÞ;

�
ð2Þ

where t is the discrete time, that is, t 2 f0; 1; 2; . . .g, � is the
learning factor, and �rijðtÞ is the correction value of rij at
time t.

From (2), if presynaptic concept Ci and its postsynaptic
concept Cj excite at the same time, that is, both the output
VciðtÞ of concept Ci and the output VcjðtÞ of concept Cj equal
to 1, and the correction value (connection weight rij)
�rijðtÞ > 0 , then the connection weight rijðtþ 1Þ at time
tþ 1 will be improved. At time t, if either the output VciðtÞ
of concept Ci or VcjðtÞ of concept Cj is zero, the correction
value �rijðtÞ ¼ 0.

2. Self-Learning Based on the Drive-Reinforcement Hebbian
Learning Rule

According to the drive-reinforcement algorithm and the
Hebbian Learning Rule [17], [18], the correction of connection
weight rij between concept Ci and Cj is defined as [18]

�rijðtÞ ¼ ��VciðtÞ�VcjðtÞ ð� > 0Þ;
rij tþ 1ð Þ ¼ rijðtÞ þ�rijðtÞ;

�
ð3Þ
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where �VciðtÞ is the change of the output VciðtÞ of
presynaptic concept Ci at time t.

For the concept of Ci, the change of its output VciðtÞ at
time t is

�VciðtÞ ¼ VciðtÞ � Vciðt� 1Þ: ð4Þ

According to (3), if �VciðtÞ and �VcjðtÞ have the same sign,
that is, the changes from time t� 1 to t of Ci and Cj are of the
same sign, then the connection weight rijðtþ 1Þ at the time of
tþ 1 will be improved. On the contrary, if �VciðtÞ and �VcjðtÞ
have different signs, that is, the changes from time t� 1 to
t of Ci and Cj are of different signs, then the connection
weight rijðtþ 1Þ at the time of tþ 1 will be reduced.

3. Local Learning Algorithm
Every concept has some different influences on other

concepts. Through the one-to-one learning between any two
concepts, that is, the state value of a concept is adjusted
singly on the condition that other state values are not
changed, the influence on the other concept can be observed
so as to learn the relation between the two concepts.

In the local learning cycles, the state value VCiðtÞ of
concept Ci is adjusted continuously. Meanwhile, the state
value of the corresponding concept Cj also varies, and its
changed value is denoted by �VCjðtÞ. Also, the program-
ming output of the concept Cj based on the expert
knowledge also varies, and its changed value is denoted
as �TCjðtÞ. Thus, the error ��jðtÞ is �TCjðtÞ ��VCjðtÞ.
Besides, the changed value of concept Ci is denoted by
�VCiðtÞ, and the modifier �wij between concepts Ci and Cj
is then defined as

�wijðtþ 1Þ ¼ ��VCiðtÞ��jðtÞ þ " ���jðtÞ: ð5Þ

The algorithm of the local learning between the concepts is
shown as follows:

Local Learning Algorithm:

Step 1: calculate �VCjðtÞ, �TCjðtÞ, �VCiðtÞ;
Step 2: ��jðtÞ ¼ �TCjðtÞ ��VCjðtÞ;
Step 3: �wijðtþ 1Þ ¼ ��VCiðtÞ��jðtÞ þ " ���jðtÞ;
Step 4: if round < m and �wijðtÞ > 10e-8

then wijðtÞ ¼ wijðtÞ þ�wijðtÞ; go to Step 1;

else go to Step 5;

Step 5: end.

In the algorithm, round is the counter of learning cycles
and m is the maximum of learning cycles. If round reaches
the maximum or �wijðtÞ is small enough, then the learning
process will be completed.

In the local learning, from the local viewpoint of
concepts, the teacher submodel can adjust the unreasonable
weights of the relations in the FCM. However, because the
learning is based on the local viewpoint, there may exist
unreasonable points in the teacher submodel which need to
be improved through the global learning.

3.3.3 Global Learning of the Teacher Submodel

Global learning of the teacher submodel refers to the global
learning of the FCM itself. The construction of the FCM is
from the top down and is used to represent prior
knowledge, but the classic FCM has three major defects,
as discussed in Section 3.1.

The dynamic behaviors of an FCM are realized through
the interaction of its concepts, and the dynamic behaviors
will then reach a fixed point, a limit cycle, or a chaos state.
The positions of concepts in the FCM are equal and each
has its own local viewpoint, but there is no global concept
among all the concepts which deprive the global learning
ability of the FCM. In this section, we discuss how to
construct a global concept for the FCM so as to enable it to
possess global learning ability.

In our approach, a virtual super concept is constructed,
which does not belong to any of the other types of concepts.
The state value of the virtual super concept may be
regarded as the energy of the FCM. Before proceeding to
subsequent discussions, the following three definitions are
defined as follows:

Definition 1 (Error of concept’s state values �j). The
difference between the expectation output and the actual
output of a concept’s state value is denoted as �j, and the sum
of �j represents the difference between the FCM and the real
world. The definition of �j is given as

�jðtÞ ¼ ECjðtÞ � VCjðtÞ; ð6Þ

where VCjðtÞ is the actual output of Ci at time t and ECjðtÞ is
the expectation output of the concept Ci in the FCM at time t.

Note that the dynamic behaviors of the system are the
result of interaction between a concepts set CG and its state
values set VCG, which reflects the state value of each
reasoning concept at time t. The interaction of concepts’
state values and their weights will produce the simulation of
the real world. So, the sum of �j is an import parameter that
represents whether the FCM can simulate the real world.

By comparing the actual output with the expectation
output of all the concepts, the differences between the FCM
and the real world can be obtained. Specifically, let

� ¼
Xn
j¼1

�2
j

�
n; ð7Þ

where n is the number of concepts. If � � 0, the difference
between the FCM and the real world is small and the FCM
reflects the world factually.

Definition 2 (Concept weight adjusting variable �wij). The
adjusting variable of concept weight �wij is to hold the
adjustment value in order to keep the minimal change of
weight in the learning process of the FCM. �wij is defined as

�wijðtþ 1Þ ¼ �jðtÞ � wijðtÞ þ " � �jðtÞ: ð8Þ

The weight adjustment of the FCM follows Linsker’s
maximum entropy principle [20], i.e., when the environ-
ment needs to change the weight of concepts, the change
should be minimal, so it can mostly keep the original
information.

In (8), " is a random adjusting variable used for
disturbing the learning process of the FCM. In order to
prevent the FCM from being trapped in a local minimum
point in the learning process, a random adjusting variable "
is set. If the weight of the FCM does not fit the expectation
value after being trained several times, there may be an
erroneous setting in the connection intensity of important
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causality. Hence, " should be increased in positive or
negative scope.

Sometimes, the random adjusting variable " is added,
which might cause the FCM to be in an error mode. So, the
random adjusting variable is modified to �j � " to remove
this fault. This modification can correct the error mode of
the FCM and hold its right mode.

Definition 3 (Unbalance degree h). The unbalance degree h is
a measurement of the difference between the FCM and the real
world at time t, and is defined as

hðtÞ ¼
X
i

X
j

�wijðtÞ
�
�2
j ðtÞ þ " � �jðtÞ

�
; ð9Þ

where " is a random adjusting variable.

Under the unbalance degree h, the closer the state value
of the FCM is to the real world, the more effective the
adjustment it produces, so it will be a better adjustment. The
same applies to the opposite situation too. The adjustment
can be completed when the system touches the minimal
unbalance degree.

After �wij is gained and wij is adjusted, the value of h
should be minimal. When h reaches a specified value, the
adjustment process can be terminated. A global concept of
the FCM can control the learning process of the FCM.

After the combination of the concept states is given, the
real output is compared from a global viewpoint with the
expectant output of the teacher submodel, so as to learn all
the relationships of the concepts as a whole.

Let VCj and ECj denote the real output and the
expectant output of the teacher submodel, respectively,
�jðtÞ denote the error at time t, and �wijðtÞ denote the
modifier of the relationship weight between concepts Ci
and Cj at time t. The global learning algorithm of teacher
submodel is as follows:

Global Learning Algorithm

Step 1: calculate ECjðtÞ, VCjðtÞ;
Step 2: �jðtÞ ¼ VCjðtÞ � ECjðtÞ;
Step 3: �wijðtþ 1Þ ¼ �jðtÞ � wijðtÞ þ " � �jðtÞ;
Step 4: hðtÞ ¼

P
i

P
j �wijðtÞð�2

j ðtÞ þ " � �jðtÞÞ;
Step 5: if round < m and h > 10e-8

then wijðtþ 1Þ ¼ wijðtÞ þ�wijðtÞ; go to Step 1;

else go to Step 6;

Step 6: end

After the local and global learning process, the teacher
submodel is revised and optimized, and the final one can be
used to guide the study process of the student.

3.4 Learner Submodel

In Fig. 2, the learner submodel is depicted as an improved
FCM too, which has the same structure the teacher
submodel FCM. The learner submodel has all or part of
the concepts of the teacher FCM, according to the concepts
that the student plans to grasp.

Although the learner submodel, like the teacher sub-
model, is an FCM, they are quite different. First, the teacher
submodel has expertise while the learner submodel does
not. Second, during the study process, the teacher submodel
is static while the learner submodel’s knowledge is changing
dynamically. Third, the change of the learner submodel is

under the guidance of the teacher submodel. The construc-
tive processes of the learner submodel are as follows:

1. Storing Student’s Knowledge
One important function of the learner submodel is

storing the student’s knowledge. Before studying, the
learner submodel is a zero matrix, which means that the
student does not have any knowledge or that his knowl-
edge has not been recorded in the learner submodel.

In the study process of a student, the learner sub-
model’s FCM approaches the teacher submodel, in whole
or in part, which implies that the student’s knowledge is
being improved.

2. Output of the Learner Submodel
In Fig. 2, Ii is the input which represents the task or the

scene of the game that students will meet. Os is the output
of the learner submodel.

Os ¼ Ii � sE: ð10Þ

In (10), both Ii and Os are the vectors of 1� n and sE is
the adjacency matrix of the learner submodel FCM, which
is an n� n dimension matrix. Equation (10) indicates that,
with the current knowledge of the learner (sE), action (Os)
should be taken in the scene (Ii). Comparing the learner
and teacher submodel outputs, the difference (! in Fig. 2)
can be estimated.

3. Adjustment of the Learner Submodel
The difference ! between the teacher and learner

submodel outputs results from the difference of their FCMs,
which further reflects the difference in knowledge between
the teacher and student. Throughout the study process,
the learner’s real input Im may be better or worse than the
learner submodel output. According to Im, !, and Ot, the
adjustment �wij is calculated, which is used to modify
the learner submodel by

sEij ¼ sEij þ�wij: ð11Þ

After this adjustment, the learner submodel may be
improved or worsened, which can be estimated by ! in the
next round of the study process.

3.5 Game-Based Learning

Before the game-based learning starts, the teacher submodel
has prior knowledge but the learner submodel has no prior
knowledge. The goal of the learning is that the learner’s
knowledge should be as similar to the teacher’s as possible
after the end of the study process.

With respect to Fig. 2, before starting the learning
process, the weight of each side in the learner FCM is zero.
That is, the FCM’s adjacency matrix of the learner submodel
is a zero matrix, indicating that the student has no
knowledge about it. It is expected that the weights of the
FCM in the learner submodel will be adjusted to become
similar to that of the teacher submodel afterward.

In Fig. 2, Ii is an input which represents the task or the
scene of the game that the student will face. Ii will be sent to
both the teacher and the learner submodel, Ot is an ideal
output of the teacher submodel and is considered as the
standard, and Os is a real output of the learner submodel.
The difference between Ot and Os is notated as !, which is
the terminated condition of the game-based learning. If ! is
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small enough, it means that the knowledge of the student
is close enough to the teacher’s that the study process can be
terminated. Otherwise, it means that the student has not
mastered the concept well and needs to continue studying.
Im is the real input of the student, which means the
student’s real action in the game process under Ii. Im may
be right or wrong. According to Im, Os, Ii, and Ot, the
adjusting variable �wij can be computed and used to adjust
the learner submodel.

Combing the unsupervised Hebbian learning with supervised
� learning rule, the supervised Hebbian learning defined in
[21] is as follows:

�wijðtÞ ¼ � � ðdjðtÞ �OjðtÞÞ �OjðtÞ �OiðtÞ; ð12Þ

where � is a learning factor, OiðtÞ is the input, OjðtÞ is the
real output, djðtÞ is the expectation output, and djðtÞ �OjðtÞ
is called the “teacher signal.”

Applying (12) to our game-based learning mechanism,
�wij can be calculated by

�wijðtÞ ¼ � � ðOtðtÞ �OsðtÞÞ � ðImðtÞ �OsðtÞÞ � IiðtÞ: ð13Þ

The difference between (12) and (13) lies in the fact that
there are two teacher signals in (13), i.e., OtðtÞ �OsðtÞ and
ImðtÞ �OsðtÞ. The former is a teacher signal evaluating the
effect of the study process, and the latter is another teacher
signal representing the difference between the student’s real
action and learner submodel’s real output. Both of the two
signals can be used to guide the adjustment of the learner
submodel. The following algorithm summarizes how the
game-based learning works:

Game-based Learning Algorithm

Step1: Input IiðtÞ
Step2: OtðtÞ ¼ IiðtÞ � tE
Step3: OsðtÞ ¼ IiðtÞ � sE
Step4: ! ¼ OtðtÞ �OsðtÞ
Step4: �wijðtÞ ¼ � � ðOtðtÞ �OsðtÞÞ � ðImðtÞ �OsðtÞÞ � IiðtÞ
Step5: If ! < " then goto step 6 else goto step 1.

Step6: end.

In the algorithm, tE is the adjacency matrix of the teacher
submodel, sE is the adjacency matrix of the learner
submodel, and " is a threshold. When ! is less than ", we
regard that the student has mastered the knowledge and the
study process can be finished.

3.6 Game Evaluation

Students can game in the system time after time. During
the study process, guidance will be given to the students
when their operations are not right. Corresponding to the
matrix E of the learner submodel, matrix E0 is set, which
has the same elements as E and each element Eij records
the study effect of a concept. The average error of wij
represents the study effect:

Eij ¼
1

m

Xm
t¼1

ðswijðtÞ � twijðtÞÞ; ð14Þ

where m is the study time and swijðtÞ and twijðtÞ are the
weights of the learner submodel and the teacher submodel
at time t, respectively.

3.7 Reward and Punishment

In Fig. 2, ! is the difference between the submodel outputs
of the teacher and learner for the same input. That is, it is
the difference between the student’s real action and the
anticipated action in the game scene. According to !, we
can design the reward and punishment mechanism for the
game sensibly, the details of which are omitted here due to
space limitations.

4 DRIVING TRAINING PROTOTYPE SYSTEM

In order to test this model’s effectiveness, we developed a
prototype system for studying driving. It provides a game
environment for driving training using the proposed game-
based learning model. In the game process, students can
study approaches for following automobile and traffic laws
while playing games.

4.1 Overview

The system was developed in Microsoft Visual Studio .Net
2005 with C# language. The system can be executed on
Microsoft Windows family operating systems with .Net
framework 2.0 or above versions’ support.

All of the knowledge and rules that the system needs are
derived from Chinese traffic laws. To acquire the knowl-
edge, one of the students of our group attended classes in a
driving school for two months. We also communicated with
some driving school teachers and senior drivers many
times. All of this knowledge is represented in the teacher
submodel which will be discussed in Section 4.2.

It is difficult to develop a 3D system and it requires a lot
of work, so instead, we developed a prototype system, as
shown in Figs. 3, 4, and 5. It works based on scene changes.
With this system, a car can be operated and controlled, but
the scene shown to the student is generated by the system
according to the student’s actions. Although it is a flaw that
the cartoon of the car moving is not shown, it is enough for
the students to study driving in the real scenes and it is
also enough for us to collect the student’s actions to
validate our model.

In the system, the driving student first selects the concept
he/she will try to study. According to the selected concept,
the system generates a scene (See Fig. 3) for the concept.
Through the FCM’s reasoning of the teacher submodel, the
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Fig. 3. The system gives tasks according to the current environment.



system knows the right answers and actions he/she should

take. In the game process, the student’s real actions are

gathered and sent to the learner submodel. During the

study process, if the student needs guidance, he can press

button F1 and the system will give guidance for this task to

him (see Fig. 4). After being evaluated by the model, the

evaluation result is shown to the student and advice is

given to the student at the same time if possible (see Fig. 5).

4.2 Teacher Submodel Construction

The intelligence and the study guidance of the system are

based on the teacher submodel to a great extent. For this

system, the challenge is how to construct the teacher

submodel. First, the teacher submodel should contain the

basic driving knowledge which can be realized by building

the initial teacher submodel. Second, the error or conflict

driving knowledge should be overcome and the absent or

implicit knowledge should be mined. All of these are

realized by the self-learning of the teacher submodel.

4.2.1 Constructing the Initial Teacher Submodel

The initial teacher submodel for the system (Fig. 6) is built

with the prior knowledge from the experts of the driving

school and some senior drivers who have driven over tens

of years. The initial teacher submodel, represented by the

FCM, consists of concepts and relationships between them.

Concepts are formed in terms of the car states, operations,

and situations of the road lane when driving. The

relationships among them are represented by edges. For

instance, Ci �!
!ij

Cj means that concept Ci has an influence

on concept Cj. Generally, a state of a car can be affected by

multiple operations or situations of the lane. For example,

upgrade, downgrade, throttle, and brake all have an influence

on the car speed. Herein, we use wij to express the degree of

the effect from concepts Ci to Cj.
The following four steps are essential to construct the

initial teacher submodel:
Step 1. Determine basic concepts in driving.
Through discussion with the experts of the driving

school and some senior drivers, 48 basic concepts were

selected, which are described as the nodes in Fig. 6. These

nodes are as follows:

C1: Steering Wheel,C2: Left-Turn Indicator,C3: Horn,C4: Clutch,

C5: Driving Brake, C6: Throttle, C7: Parking Brake, C8: Gears,

C9: Speedometer, C10: Fog Lamp, C11: Clearance Lamp,

C12: Hazard Warning Lamps, C13: Low Beam, C14: High Beam,

C15: Urban Road, C16: Slow Sign, C17: Stop Sign, C18: Tunnel,

C19: Upward Trail, C20: Downhill, C21: Right Turn Indicator,

C22: Fast Traffic Lane, C23: Slow Traffic Lane, C24: Crossroads,

C25: Heavy Road, C26: Snowy and Icy Road, C27: Rainy Road,

C28: Flooded Road, C29: Speed Up Sign, C30: Crosswind,

C31: Tire Puncture, C32: Steering Failure, C33: Braking Failure,

C34: Collision, C35: Foggy Weather, C36: Congestion,

C37: Left-Hand Bend, C38: Right-Hand Bend, C39: U Turn,

C40: Night Driving, C41: Immovable Obstruction,

C42: Human, Livestock, Nonmotor Vehicle,

C43: Rear-End Collision Danger,C44: Traffic Light (Yellow to Red),

C45: Traffic Light (Yellow to Green), C46: Speed Limit Sign,

C47: Sidewalk, C48: Getting Start.

Step 2. Find the relation between concepts.

By analyzing each pair of concepts, if one concept

influences another, there exists a relationship between

them. Correspondingly, there exists an edge between the

pair of concepts in Fig. 6. Fig. 6 is a directed graph and the

arrows of edges show the influence direction.
Step 3. Determine the weight of relation.

This step determines the degree of influence of a pair of

concepts, namely, the weight of relation. The weights fall

into three types as follows:

The first type is a constant weight value in the range of

[0, 1]. This type of relation does not vary with the state

values of other concepts.

The second type is a condition dependence whose weight

is related to the state value of other concepts and the value is

binary: 1 or 0. For example, the means of P ð1jV ðC2Þ � 0;

V ðC4Þ � 0Þ is that if V ðC2Þ � 0 and V ðC4Þ � 0, then P ¼ 1;

otherwise, P ¼ 0.

The third type is a function whose weight is also related to

the state value of concepts. To different state values, relevant

weights are various. For example, the means of P ðV ðC3Þ;
V ðC5ÞÞ is that if V ðC5Þ � V ðC3Þ > 0, then P ¼ �0:2; if

V ðC5Þ � V ðC3Þ < 0:2, then P ¼ 0:2; otherwise, P ¼ 0.
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advices are given by the teacher submodel.



Step 4. Build the initial FCM.
According to Fig. 6, the initial FCM can be obtained and

the part adjacency matrix of Fig. 6 is shown in Fig. 7.
Because there are so many concepts and the adjacency
matrix of FCM is too big to be fully shown here, matrixes in
Fig. 7 are only parts of the full matrixes.

It is unavoidable that the initial teacher submodel will
have some defects resulting from the structure of the FCM
or unreasonable weights in the FCM. The defects, related to
unreasonable weights, can be overcome by the self-learning
of the teacher submodel.

4.2.2 Self-Learning of the Teacher Submodel

As mentioned in Section 3.3, after the initial teacher
submodel is gained, the next step is the self-learning
process of the teacher submodel to create the optimal FCM
by using the local and global learning process. The learning
process is based on the local learning algorithm and the
global learning algorithm. In addition, based on the local
and global learning, the teacher submodel can learn
continuously according to real situations.

Fig. 8 shows the global learning process of the teacher
submodel. For this case, it needs five learning steps to
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reach its final state. Fig. 8a is the result of the first learning
step, Fig. 8b is the result of the second step, and Fig. 8c is
the result of last step.

As a result, the improved FCM of the teacher submodel
contains driving knowledge which consists of not only prior
knowledge of experts but also the modified and the new
knowledge achieved by self-learning. So, the teacher
submodel is intelligent enough to reason the answer and
evaluate the students’ actions, that is, it can guide students’
study process.

4.3 Game Process

Using this system, students can study automobile driving
skills and traffic laws. The system constructs a learner
submodel for each student, which has the same structure as
the teacher submodel. Before the study process, the weights
between concepts in the learner submodel are all initialized
to zero. In the game process, the weights are adjusted
continuously by interaction between the student and
system. The specific game process is as follows:

. Step 1. Generate the game scene, that is, generate street map,
traffic light, passerby, road-rock, and disturbance autos.

. Step 2. Generate the right game guidance by the teacher
submodel.

. Step 3. Get the operating sequence of the student.

. Step 4. Judge the veracity of the student’s operation
according to the game-based learning algorithm.

. Step 5. If the error is a bit big, the right guidance to the
student is presented.

. Step 6. Update the FCM of the student.

5 EVALUATION

Two aspects of experiments should be carried out. The first
aspect is to evaluate the self-learning ability of the model,

that is, the self-learning ability of the teacher submodel.

Experiments of this aspect will be discussed in Section 5.1.

The second aspect is to prove that the model has a good

ability to guide the study process of the student. The

experiments of this aspect will be discussed in Section 5.2.

All the experiments are carried out in our driving training

prototype system.

5.1 Experiments for Self-Learning

As Section 4.2.1 stated, the initial FCM of the teacher

submodel is given by the driving experts. It may have

conflicts or false knowledge in it. Since the improved FCM

has the ability of self-learning, it can remove the false

knowledge hidden in the initial FCM automatically. The
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Fig. 8. Global learning of the initial FCM. For this case, it needs five
steps to finish the learning process. (a) Step 1 of global learning.
(b) Step 2 of global learning. (c) Step 5 of global learning.

Fig. 7. The adjacency matrix for the initial teacher submodel in Fig. 6.



self-learning process is composed of two steps, i.e., the
local learning and the global learning, to get the local
optimal FCM and global optimal FCM.

5.1.1 Experiments for Local Learning of Teacher

Submodel

The aim of this experiment is to guide the local learning
process between concepts in the FCM. Figs. 9, 10, and 11
show the local learning process of relation between C9 and
C28, taking no account of the influence of other concepts.

Fig. 9 shows that the expectation output and actual output
of C9 before the local learning are almost equal, but those of
C28 are quite different, which means that the relation
between C9 and C28 needs to be adjusted by local learning.

Fig. 10 shows the local learning process. In Fig. 10, the
weight of connection between C9 and C28 is changing along
with the increase of the training process.

As a result, after the local learning, the relation between
C9 and C28 is right, which can be reflected by the fact that
the actual output of C9 and C28 is almost equal to the
expected output, as shown in Fig. 11.

5.1.2 Experiments for Global Learning of the Teacher

Submodel

In the global learning experiment, the automobile driving
FCM obtained in the last experiment is used as the initial
FCM. First, the initial values of concepts are set, such as
setting the initial speed of auto, other autos place, the crossing,
and so on. Second, assign the expectation values ECi

according to the real ones and expert knowledge. Before

the training process, the actual output VCi is different from
ECi, and VCi is much closer to ECi after the global learning.

In Figs. 12, 13, and 14, T_state is the expected output of
the concepts and O_State is the actual output of the concepts.
The X-axis represents the 48 concepts (as shown in Fig. 6)
and the Y-axis represents the output of state values.

Fig. 12 is the actual output of concepts before global
learning. Fig. 13 is the actual output of concepts after
learning five times. Fig. 14 is the actual output of concepts
when global learning is completed. More specifically,
Fig. 12 shows that there are many differences between the
expected output and actual output of some concepts before
global learning. The initial FCM is imperfect and is far from
reality, justifying for the need for learning.
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Fig. 9. The expectation output and actual output of concepts before local
learning.

Fig. 10. The weight between C9 and C28 varies with the local learning
process.

Fig. 11. The expectation output and actual output of concepts after local
learning.

Fig. 12. The actual output of concepts before global learning.

Fig. 13. The actual output of concepts after five steps of global learning.



After learning for five times, the actual output is much
closer to the expected output except for C12 and C13 (Fig. 13),
which shows that our global learning process is quite
effective. After the global learning process is complete, the
actual output is almost consistent with the expected output.

5.2 Experiments for the Model’s Learning Guidance
Ability

To test the learning guidance ability of our game-based
learning model using the FCM, we adopted contrast
experiments between two groups of students on the driving
training prototype system. After experiments, question-
naires filled by each student were analyzed to find out the
usefulness of the system and the model [22].

5.2.1 Participants of the Experiments

The participants of the experiment were 20 persons who
were studying driving skills or were going to study driving
skills. They were randomly divided into the control group
A and the experimental group B with 10 students in each
group. Group A learned the concepts from the driving
handbook directly, while group B was trained in the
simulation system when they were studying from the
driving handbook.

5.2.2 Experimental Design

There is much information to study in the driving study
process. From the information, we selected some complex
and related topics to construct six study cases: two simple
ones, two mediocre ones, and two difficult ones. The
students studied these cases one by one. The study process
consisted of three rounds of study. The first and the second
rounds were time-limited study, while the third round was
a time-unlimited study. After each round of study, there
was a test to evaluate the study effectiveness. During the
study process, we recorded how long each student spent on
each case. The study process did not end until the students
got above 80 percent of the correct answers.

This experiment focused on whether the simulation
system and the model can improve the efficiency of the
students’ study. There were only two groups, A and B, in
experiments. Group A was used as the control group and
group B was used as the experimental group. We made use
of the t-test for computing the result of the experiment,
which is shown in Table 3.

After the study experiments, we took advantage of a

questionnaire to collect subjective evaluations of the system

and the model from the students. Only group B studied

with the help of the simulation driving system and was

asked to fill in the questionnaire. The questions in the

questionnaire were designed simply to see whether our

design and implementation of the simulation system was

effective or not in helping them study.

5.2.3 Experimental Procedures

In order to ensure the correctness of the evaluation of the

driving training prototype system, the following steps were

carried out [23]:
Step 1. Introduction.
The first step was to make students know the objective of

the experiment and to make students familiar with the basic

instructions about the driving training prototype system. To

do this, we let the students of group B study an irrespective

concept to the following test using the simulation system.
Step 2. Pretest.
The second step was that all the students of the two

groups attended an individual test. The answers of each

student were analyzed by statistical methods and the

statistical results were compared with the post-test.
Step 3. First-round time-limited study and test.
In this step, group A and group B employed different

methods of the leaning process. The students of group A
did not use the simulation driving system and they only
studied from the driving handbook. The students of group
B studied from the handbook and practiced in the driving
training prototype system. That is to say, group B used
game-based learning, but group A did not. The time for
each case was limited to 5 minutes, and after this round of
study, the test was repeated.

Step 4. Second-round time-limited study and test.
This step repeated step 3 and the test result was recorded

separately.
Step 5. Time-unlimited study and test.
To get the same study effectiveness in principle, different

students need different times. In addition to the individual

difference, the main reason might lie in different study

methods. To compare the two groups’ differences, this

round of study was an unlimited time study. The student

could not stop studying until he got above 80 percent of the

correct answers in the test. During the process, the time

each student spent was recorded for the final analysis.
Step 6. Survey.
The last step was that students fulfill an individual

subjective questionnaire which collected their opinions about

the experiments. The questionnaire is shown in Table 1.

5.2.4 Design of the Questionnaire

The questionnaire included 10 questions: questions 1 and 2

were about the knowledge of the participant, questions 3 and

5 were about using the system, and the other questions were

about the learning effect of the system. By analyzing the

scores students gave, the subjective estimate about

the system can be achieved and the analysis is included in

the following sections.
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Fig. 14. The actual output of concepts when global learning is
completed.



5.2.5 Experimental Results

There are two aspects of the experimental results: subjective
survey and objective evaluation, which are discussed in the
following:

1. Results of subjective survey
The questionnaire used a five-point Likert Scale, with

each question having five selections marked from one point
to five points. One point means the least favorable to the
statement. Five points means the most favorable to the
statement. Each student filled in the questionnaire indivi-
dually and gave each question a score. The summary of the
survey is shown in Table 1. Through analyzing the results of
the questionnaire, we know that the students’ opinions
about the system are very positive in general. In Table 1,
except for the fifth question, most of the questions’ mean
value is above 4.5, which means the students agreed that the
system was very helpful to improve their driving skills. Most
of them thought that the system made studying interesting
and that the teacher in the system guided them to study
effectively. The fifth question surveyed if “the teacher”
interfered the student, which is a negative question. In other
words, the low score means a better result.

Furthermore, the standard deviation of each question is
small, which means that all the students had a consensus
opinion about this question.

2. Results of objective evaluation
The guidance ability of the model can be evaluated by

the differences between the two groups’ real study
effectiveness. In the experiment, we consider the study
effectiveness from two aspects. One is the test score and the
other is the study time.

Table 2 summarizes the average results of the four tests.
The pretest results show that two groups had similar

knowledge levels on driving skills. After the first round of
study, the test results show that group A was a little better
than group B. The reason is that group B spent some time
familiarizing themselves with the game system. After the
second round of study, group B was better than group A,
obviously because of the help of the driving training
prototype system. It should be noted that the result of the
post-test does not mean anything because the two groups
spent different amounts of time to achieve the goal.

Both gamed and nongamed students had significant
improvement in the second round test compared with the
pretest. However, it is very evident that the improvement of
gamed students is greater than that of nongamed students.
So, the driving training prototype system is effective in
improving the study process of students effectively.

The test was designed so that each student must answer
the questions correctly above 80 percent by continuous use
of the study process. During the test, the time each student
spent on each case was recorded. The time for each case
consists of three parts: the first round and the second round,
which are 5 minutes each, and the third round, which is
different for different students. We measured how long the
students spent studying to finish the test. By using an
Independent Samples t-test Procedure, where P < 0:05 is
considered to be significant, the average, standard deviation,
and P-value are computed and listed in Table 3.

In Table 3, with the difficulty level increasing, the
difference between the two groups extends more and more.
For the simple cases, P > 0:05 means that the difference is
small. For the mediocre cases, the average time group B
spent is less than that of groupA andP < 0:05 means that the
difference is significant. For the difficult cases, group B did
much better than group A and the P is much smaller than
0.05, which means that the difference is very significant.
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Average the Test

TABLE 3
The Results of the T-Test

TABLE 1
Summary of Results from the Student
Responses to a Series of Questions



In general, Tables 2 and 3 show that the driving
training system is helpful in improving the study process
effectiveness.

5.2.6 Discussion of External Factors

Although the experimental results are satisfactory, some
external factors, which may have influenced the experi-
mental results, should be further discussed. Here, we only
discuss the following three factors:

1. Difference of participants
It is inevitable that the knowledge of participants varies

from person to person. For example, some participants have
acquired some driving knowledge, so their experimental
results are influenced by their prior knowledge.

2. Motivation of participants
During the experiment, each participant has different

motivations. For example, some participants may be absent-
minded in the experiments, which will influence the results.

3. Group of participants
If participants are not divided into groups randomly and

different participants are not in a fairly equal manner, the
groups will influence the results to a great extent.

The difference of participants is an objective factor, while
the motivation of participants is a subjective factor. The
influence of both is difficult to eliminate, so we tried to
minimize the influence in our experiments.

Our method was to divide the participants into groups as
randomly as possible. In the next step, we will increase the
number of participants and groups, which may get more
convincing results.

5.2.7 Comparison with Traditional Driving Simulation

Based on the proposed model, the prototype system is
different from traditional driving simulations in the two
main aspects as follows:

1. Efficiency
Since the proposed model is based on the improved FCM

which has the abilities of reasoning and self-learning, it can
automatically generate the scenario and deduce the answer
to the generated scenario by the FCM’s reasoning. But, for
most of the traditional driving simulations, they need the
programmer to design the scenario by hand. They also need
to define the conditions for the scenario to judge the
operator’s actions. So, it is more efficient to develop the
system based on our model than on the traditional methods.

2. Precision
It is for the same reason that our system may have lower

precision than traditional systems. Because our model
generates scenarios and reasons the answers automatically,
it is certain that its precision is lower than those by hand. It
requires a further study in order to improve the precision in
sophisticated studying environments.

In conclusion, compared with traditional simulations, our
model is highly automatic in generating study scenarios and
reasoning the answers. But the procession of the system is
lower than traditional simulations and needs to be improved.

6 CONCLUSIONS AND FUTURE WORK

This paper utilizes the Hebbian Learning Rule to improve the
FCM to acquire new knowledge from data itself, and uses

the Unbalance Degree to improve the FCM to correct the false
prior knowledge automatically.

A new game-based learning model is proposed based on
the improved FCM. Compared with traditional game-based
models, the proposed model can generate study scenarios
and reason answers automatically, which can increase the
efficiency of game-based learning system design and
provide good guidance for students in their study process.

In order to show how to design a game-based learning
system with the proposed model, a driving training
prototype system was developed as a case study. Under
the system’s guidance, students studied driving knowledge
more effectively, which is demonstrated by contrast experi-
ments. The experimental results also show that the
proposed model is available and effective.

The main contributions of this paper include:

1. Taking advantage of the Hebbian learning rule and
unbalance degree to extend the FCM in order to equip
it with the abilities of self-learning and knowledge
acquisition from both data and prior knowledge,
which makes the FCM more suitable for designing a
game-based learning system.

2. Proposing a new guided game-based learning model
based on the improved FCM including the teacher
submodel, the learner submodel, and a set of learning
mechanisms. The model provides a workable meth-
od to help design a game-based learning system.

3. Giving a case study of the proposed model in which
a driving training prototype system was implemen-
ted according to the proposed model. Experimental
results show that the proposed model is effective
and valid in terms of controlling and guiding
students’ study process.

We will improve the submodels in our future work.
Taking the teacher submodel as an example, decreasing its
dependence on expert knowledge and increasing its
adaptive ability to the changing environments are worth
further investigation. These issues can lead to fruitful
research outcomes in the future.
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