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Abstract—This paper conducts the first detailed quantitative study of the process of publication of learning objects in repositories. This

process has been often discussed theoretically, but never empirically evaluated. Several question related to basic characteristics of the

publication process are raised at the beginning of the paper and answered through quantitative analysis. To provide a wide view of the

publication process, this paper analyzes four types of repositories: Learning Object Repositories, Learning Object Referatories, Open

Courseware Initiatives, and Learning Management Systems. For comparison, Institutional Repositories are also analyzed. Three

repository characteristics are measured: size, growth, and contributor base. The main findings are that the amount of learning objects

is distributed among repositories according to a power law, the repositories mostly grow linearly, and the amount of learning objects

published by each contributor follows heavy-tailed distributions. The paper finally discusses the implications that this findings could

have in the design and operation of Learning Object Repositories.

Index Terms—Learning objects, publication, repositories, LOR, OCW, LMS.
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1 INTRODUCTION

LEARNING Object publication can be defined as the act of
making a learning object available to a certain commu-

nity. Collis and Strijker call this process “Offering” in their
Learning Object Life-cycle model [1]. The publication
process can take several forms. A professor can publish
lectures notes for students in a Learning Management
System (LMS). The same professor can decide to share
objects with a broader community and publish them in a
Learning Object Repository (LOR), such as ARIADNE [2] or
Connexions [3]. The University where this professor works
can decide to start an Open Courseware (OCW) initiative [4]
and put the learning material of its courses freely available
on the Web. Moreover, material already available online can
be discovered and republished for other communities. For
example, a student that found an interesting Web site to
learn about basic Physics could publish a link to that Web
site on a Learning Object Referatory (LORF), such as Merlot
[5] or SMETE [6]. In all its different forms, Learning Object
publication is the most important enabler of the Learning
Object Economy [7], because making the objects available is
the first step to fuel the “share, reuse, improve, and share
again” philosophy behind this economy.

The publication of learning objects has been an important

research issue since the definition of the field 15 years ago.

These efforts can be summarized into three different research

lines: Publishing Infrastructure [8], [2], Interoperability [9],

and Copyright and DRM [10], [11] . However, one area of
research that is practically unexplored is the study of the
actual process and results of learning object publication. The
research on technical and legal aspects lays the ground on
which publication can take place. However, it does not
provide any information about simple questions, such as
how many learning objects are actually published, how they
are distributed among different repositories, or how reposi-
tories grow. Moreover, answers to these questions are not
only relevant to measure the progress of the Learning Object
Economy, but also to provide information on which
decisions about architecture, interoperability strategies,
and planning for growth should be based.

The most prominent attempts to characterize learning
object repositories and measure their characteristics are
made by McGreal in [12]. He provides a comprehensive
survey of existing LORs and classifies them in various
typologies. Unfortunately, his analysis is mostly qualitative
and cannot be used to answer the questions mentioned
above. Other relevant studies are [13], [14], [15], [16], and
[17]. In these studies, different LORs are also qualitatively
compared, mainly by general characteristics as metadata
standard used, language, end users, quality control, etc. In
contrast with these studies, this paper will quantitatively
analyze and compare different types of publication venues
for learning objects. These types include Learning Object
Repositories (LORPs), LORFs, OCW Initiatives, and LMSs.
To provide some type of comparison and because their
content can also be used for educational purposes, Institu-
tional Repositories (IRs) are also included in the studies. For
simplicity, during this paper, we will refer to all these
systems as “repositories.” The main goal of this paper is to
provide empirical answers to the following questions:

. What is the typical size of a repository? Is it related
to its type?

. How do repositories grow over time?

. What is the typical number of contributors a
repository has? Is it related to its type?
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. How does the number of contributors grow over time?

. How many learning objects does a contributor
publish on average?

To answer these questions, data from different reposi-
tories are collected and analyzed. These answers will help
us to gain insight into the actual process of learning object
publication. Understanding how supply works in the
Learning Object Economy will help the administrator of
the repositories to design and plan the technological
infrastructure needed to receive, store, and share the
published material. Policy-Makers can also use these
answers to evaluate which are the best approaches to
encourage Contributors to publish their materials.

This paper is structured as follows: Section 2 presents an
analysis of the size distribution of different repositories.
Section 3 analyzes the growth rate in objects, as well as
contributors. Section 4 studies the distribution of contribu-
tion, publishing rate, and engagement time. Section 5
discusses the implication of the findings and answers the
research questions. The paper finalizes with Conclusions
and Further Work.

2 SIZE ANALYSIS

In this section, we will analyze the size of different
repositories. We define size as the number of objects
present in the repository. We compare the number of
objects between repositories of the same type. We start with
the study of 24 LORPs and 15 LORFs. These LORs were
selected from the list compiled in [12]. This list is biased
toward repositories that content materials in English. To
avoid an unfair size comparison between repositories, only
LORs that are not the result of the federation of other
repositories that are publicly available and contain or link to
learning objects of small and intermediate granularity (raw
material or lessons) were analyzed. While McGreal already
reported an estimate of the size, we measured each LOR
through direct observation on 3 and 4 November 2007.

The 24 LORPs have in total circa 100,000 learning objects,
with an average size of circa 4,000 objects. A simple
histogram of the data shows that the size distribution is
not Normal, but highly skewed to the left. To analyze the
distribution, we fit five known probabilistic distributions to
the data: Lotka, Exponential, Log-Normal, Weibull, and
Yule. These distributions were selected because they have
high skewness to the left and are commonly present in other
Information Production Processes [18]. The Maximum
Likelihood Estimation (MLE) method [19] was used to
obtain the distribution parameters. To find the best-fitting
distribution, the Vuong test [20] is applied on the competing
distributions. When the Vuong test is not statistically
significant between two distributions, the distribution with
less parameters is selected. This methodology is recom-
mended by [21] to select among heavy tail models instead
of the more common Least-Squares Estimation and R2

values used for Generalized Linear Models. In the specific
case of LORP, the best-fitting distribution is Exponential
(� ¼ 2:5� 10�3). Fig. 1a presents the empirical (points) and
fitted (line) Complementary Cumulative Distribution func-
tions (CCDFs) presented in logarithmic scales. In this graph,
the X-axis represents the number of objects present in the
repository. The Y-axis represents the inverse accumulated
probability of the size (P ðX � xÞ), that is, the probability

that a repository has x or more objects. This skewed
distribution of content size concentrates the majority of
learning objects in few big repositories, while the rest of
repositories contribute only a small percentage. Fig. 1b
shows the Leimkuhler curve [22] [23]. This curve is a
representation of the concentration of objects in the
different repositories. The Y-axis represents the cumulative
proportion of objects published in the top x proportion of
repositories. For example, it is easy to see that the top
20 percent of the repositories (the biggest 5) contribute
almost 70 percent of the total number of learning objects.
The smaller 40 percent of the repositories combined
contribute less than 3 percent of the objects.

The 15 studied LORFs offer in total circa 300,000 learning
objects, with an average of circa 20,000 objects per
referatory. The best-fitting distribution is Exponential
(� ¼ 5:2� 10�5). The biggest 20 percent (three referatories)
concentrate 66 percent of the 300,000 objects. The lower half
contribute only 10 percent of the total.

To study the size of OCW initiatives, we collect a list of
34 institutions providing their materials online from the Web
site of the OCW Consortium.1 The size was determined by
the number of full courses offered online by each Institution.
In total, 6,556 courses are available among all the studied
sites, with an average of 193 courses per site. However, the
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Fig. 1. Distribution and Leimkuhler curve of the size of learning object
repositories.

1. Open Courseware Consortium, http://www.ocwconsortium.org/.



average is a misleading value, because the size distribution is
extremely skewed. The best fitted distribution for OCW sites
with more than 7 objects (tail) was Lotka with an � ¼ 1:61.
The estimation of the start of the tail was performed
minimizing the Kolmogorov-Smirnov statistic [24] for the
Lotka law. This distribution leads to a very unequal
concentration of courses. The top 20 percent (seven sites) of
the OCW sites offer almost the 90 percent of the courses, the
remaining 27 sites just account for 10 percent.

Data about the size of LMSs are not usually available
online. Most LMS implementations only allow registered
users to have access to their contents. In order to obtain an
estimation of the size of an LMS, we use some characteristics
of Moodle [25], a popular Open-Source LMS. Moodle allows
guests to see the list of courses and a link to registered
installations is available on the Moodle site. We obtained a
random sample of 2,500 from the circa 6,000 LMS sites listed
on the Moodle site as installations in the United States. This
country was selected because it had the largest number of
installations. Through Web scraping, we downloaded the
list of courses for each one of those installations. In these
2,500 Moodle sites, 167,555 courses are offered, with an
average of 67 courses per site. The distribution that best-fits
the tail of the data (sites bigger than 70 courses) is Lotka with
an estimated � of 1.95. The estimation of the start of the tail
was determined through minimization of the Kolmogorov-
Smirnoff. Again, this distribution concentrates most of the
courses in just a few LMSs. For example, the top 20 percent
LMSs (500 sites) offer more than 85 percent of the courses.

Finally, to establish the size distribution of IRs, we collect
the list of repositories listed at the Registry of Open Access
Repositories (ROARs).2 An automated service connected to
this registry regularly harvests OAI-PMH-enabled [26] IRs
and provides information about their sizes. During data
collection, 772 repositories with more than one object were
measured. The total number of documents stored in those
repositories was 7,581,175. There were, on average, 9,820
documents per repository. The tail (repositories with more
than 3,304 documents) of the distribution was fitted by Lotka
with an estimated � of 1.73. The highly skewed concentra-
tion of documents produce that 20 percent (155) of the
repositories concentrate circa 90 percent of the documents.

Table 1 presents the summary of the findings about the
size of the different types of repositories. From the Average
Size column, the first conclusion that can be extracted is that
the size of a repository is directly related to its type. The
MannÐWhitney U test was applied to corroborate the
significance of these differences. The most interesting
difference can be found between Learning Object Reposi-
tories and Referatories. LORFs are almost an order of

magnitude bigger than LORPs. This difference can be
explained by the level of ownership required to contribute
to these repositories. To contribute to a Referatory, the user
only needs to know the address of the learning resource on
the Web. Any user can publish any online learning object
because its publication does not require permission from the
owner of the material. On the other hand, publishing
material in a Repository requires, if not being the author of
the object, at least to have a copy of it. It can be considered
nonethical, or even illegal, to publish a copy of the object
without having its ownership or at least the explicit consent
of its owner. It will be safe to assume that in the general case,
the number of online learning objects that interest a user is
larger than the amount of learning objects being authored by
herself. Another type of repositories, comparable by its
granularity to LORs, is the IRs. The average size, around
10,000, seems to be a midway between the LORF and the
LORPs. However, because its power law distribution, IRs
could normally be at least two orders of magnitude bigger
and 4 order of magnitude smaller than the average. In
conclusion, IRs present a larger “range,” with some IRs
10 times bigger than the biggest LORF and others 10 times
smaller than the smallest LORP. In the large granularity
group, OCWs and LMS, the difference is less significant. This
similitude can be explained because OCWs are not more than
the content of LMS published and made available. The
largest and smallest OCWs and LMSs have also similar
amount of courses.

If we consider the distribution of the sizes among
different types of repositories (Table 1, forth and fifth
columns), it is clear that the size of OCWs, LMSs, and IRs is
distributed according to a power law with an exponent
between 1.5 and 2. This distribution, as mentioned above,
produces a wide range of sizes. The variance of the Lotka
distribution for these values of alpha is infinite, meaning
that it is possible, at least theoretically, that extremely large
repositories exist. Also, this distribution presents a heavy
tail with few big repositories and a lot of smaller ones. It is
surprising that independently of the type of repository, the
alpha parameters are similar. On the other hand, LORPs
and LORFs present an exponential distribution. However,
we argue that in reality, they also follow a Lotka
distribution, but the finding of the exponential is an artifact
of the sampling method. In the case of OCWs, LMSs, and
IRs, the considered repositories were sampled from lists
that are not biased to consider only small or large
repositories. Any repository, regardless of size, can publish
itself in the sampled lists. In the case of LORPs and LORFs,
there are no compilation lists available, and the considered
repositories are only those that are known, biasing the
sample against the expected large amount of small and
relatively unknown repositories. An example of this
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Summary of Number of Objects Analysis

2. Registry of Open Access Repositories, http://roar.eprints.org/.



sampling artifact can be seen in [27]. There, only the top IRs
from ROAR are considered and the size distribution that
can be inferred from the presented graphs is distinctively
exponential. If all the IRs of ROAR are considered, we
found that the real distribution is actually a power law.

The final conclusion that can be extracted from the size
analysis is that the distribution of learning objects is very
unequal. Most of the resources, independently of the type of
repository, are stored in just a few repositories. The
concentration is a consequence of the power law distribu-
tion. The Pareto or 20/80 rule (also used to describe other
heavy-tailed distributions, such as wealth [28]) seems to be
a good guide to look at this inequality. The lower value
observed in the LORPs and LORFs can also be attributed to
the bias toward bigger repositories in the sampling. A more
detailed search for LORPs and LORFs will most certainly
find small repositories. Adding these small repositories will
increase the concentration at the top 20 percent. Despite this
inequality distribution, however, no single repository of any
type contains more than 40 percent of the available
resources. The remaining long tail [29] with the 60 percent
of resources is located in other repositories. This can be seen
as a strong empirical corroboration of the need to inter-
connect repositories, either through query federation [30] or
metadata harvesting [26].

3 GROWTH ANALYSIS

In order to understand how repositories grow over time,
this section analyzes several repositories of different types.
The repository growth will be considered in two dimen-
sions: growth in number of objects and growth in the
number of contributors. The following sections will present
the analysis for each one of these dimensions.

3.1 Content Growth

To measure the growth in the number of objects, 15 repo-
sitories of different type were studied. They were selected
based on how representative they are for their respective
type in terms of size and period of existence. The
availability of the object publication date was also a
determinant factor. The selected repositories are:

. LORPs: ARIADNE,3 Maricopa Learning Exchange,4

and Connexions.
. LORFs: INTUTE,5 MERLOT,6 and FerlFirst.7

. OCWs: MIT OCW and OpenLearn.

. LMSs: SIDWeb.

. IRs-Large: PubMed,8 Research Papers in Econom-
ics,9 and National Institute of Informatics.10

. IRs-University: Queensland,11 MIT,12 and Georgia
Tech.13

The collection of data for all the LORs, except INTUTE,
consisted in obtaining the date of publication of all their
objects. In the case of INTUTE, a sample with all the objects
containing the word “Science” (approximately 10 percent of
the repository) was obtained. This restriction was set to limit
the number of objects to be analyzed due to memory
restrictions in the statistical software packages. The data
for LORPs and LORFs were collected through Web scraping
of the sites during the period between the 5th and the 8th of
November 2007. In the case of OCWs and LMSs, the data of
publication of all the courses were obtained through direct
download. Finally, the selection criteria for the first three IRs
(IRs-Large) were size, time of existence, and current activity.
These three factors were evaluated from the data provided
by ROAR. The second three (IRs-University) were selected
from the University repositories of intermediate size with at
least three years of existence. The monthly size of these
repositories was obtained from data provided by ROAR.

The first variable analyzed was the average growth rate
(AGR), measured in objects inserted per day. This value is
obtained by dividing the number of objects in the repository
by the time difference between the first and last publica-
tions. Results for this calculation can be seen in the fourth
column (AGR) of Table 2. It is interesting to compare the
AGR of different types of repositories. LORPs, for example,
grow with a rate of one or two objects per day. OCWs and
LMSs grow similarly with an unexpectedly high value of
circa one course published per day. From the previous
analysis on course size, that rate can be translated, on
average, in 20 objects per day. In LORFs and IRs, the
variability is significantly higher. For example, big IRs grow
more than 10 times faster than University IRs. This
difference can be explained by the fact that big IRs are open
to a wider base of contributors. On the other hand, the
contributor base of University IRs is often restricted to
researchers and students of that specific University. The
difference between LORFs, however, could not be attributed
to size of the contributor community, but to their dedication.
INTUTE is a project that pays expert catalogers to find and
index learning material on the Web. Merlot and FerlFirst,
however, rely on voluntary contributions from external
users. A group of paid workers are expected to have a higher
production rate than a group of volunteers of a similar size.

The AGR describes linear growth. To test the actual
growth function, six models were fitted against the data:
linear (atþ b), biphase linear with breakpoint (a1t for t <
Breakpoint and a2tþ b2 for t � Breakpoint), biphase linear
with smooth transition (lnða � expðbxÞ þ c), exponential
(b � eat), logarithmic (b � lnðatÞ), and potential (b � ta). These
models were selected based on visual inspection of the size
versus time plot (Fig. 2). We use Generalized Linear Model
fitting with Least-Squares Estimation. The selection of the
model was based on the Akaike information criterion (AIC)
[31] that not only takes into account the estimation power of
the model, but also its simplicity (less estimated parameters).
The result of the fitting indicates that most data sets were best
explained by the linear biphase model (both the breakpoint
and smooth versions). In PubMed, Connexions, and OCW,
the growth is best explained by the potential function, but
biphase linear is the second best. A visual inspection of the
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3. ARIADNE Foundation, http://www.ariadne-eu.org.
4. Maricopa Learn Exchange, http://www.mcli.dist.maricopa.edu/mlx.
5. INTUTE, http://www.intute.ac.uk.
6. MERLOT, http://www.merlot.org.
7. FerlFirst, http://ferl.becta.org.uk (decommissioned).
8. PubMed repository, http://www.ncbi.nlm.nih.gov/pubmed/.
9. Research Papers in Economics repository, http://www.repec.org.
10. National Institute of Informatics repository, http://www.nii.ac.jp.
11. Repository of U. Queensland, http://espace.library.uq.edu.au/.
12. Repository of MIT, http://dspace.mit.edu/.
13. Repository of Georgia Tech, http://smartech.gatech.edu/dspace/.



plots (Fig. 2) shows indeed that in most data sets, two regimes

of linear growth can be easily identified, sometimes with a

clear transition point (BP ). This result suggests that growth is
mainly linear, but the rate is not constant. Two different

growth rates are identified in all the repositories. There is an

initial growth rate (IGR) that is maintained until a “Break-

point” (BP) is reached, and then, a mature growth rate (MGR)
starts. Table 2 reports the growth rates and breakpoint values

for all the studied repositories.
In most cases, the change between IGR and MGR is

positive, meaning that the rate increases with maturity. The
most logical explanation is that at some point, in time, the
repository reaches a critical mass of popularity and the
contributor base starts to grow faster, and therefore, the total
production rate increases. This hypothesis is tested in the
following section when the contributor base growth is
studied. However, in two LORs, the production rate
decreases from IGR to MGR (Ariadne and FerlFirst). Having
inside knowledge of Ariadne history, the inflection point
represents the moment when the focus from the Ariadne
community shifted from evangelization to attract new
members toward interconnection with other repositories
through the GLOBE consortium,14 decreasing the number of

active submissions to the core repository. As such, Ariadne is
moving from primarily being a repository to primarily being
an integrator of repositories. For FerlFirst, on the other hand,
the decline is explained by the abandoning of the project. At
the time of writing, this repository has been decommissioned
and absorbed by another project, Excellence Gateway.15

These two can be considered special cases, where the norm is
an increase at maturity.

Another interesting finding is that BP is, in most cases,
located between two and three years after the first object
has been inserted into the repository. In the case of LORs,
this can be seen as the time needed by the repository to
reach a critical mass of objects that could attract more users
or funding, and therefore, more objects. In the case of LMSs,
OCWs, and University IRs, this can be the time taken to
“cross the chasm” [32] between early adopters and main-
stream use inside the institution.

It is important to note that the linear trend is observed at
large time scales. The short-term growth, specially for
OCWs, LMS, and IR, is characterized by irregular “jumps.”
These jumps can be explained by external events such as the
start of the academic semesters or the deadline for annual
reviews. If we smooth these jumps over a long period of
time; however, the linear growth is apparent.
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Fig. 2. Empirical and fitted size growth.

TABLE 2
Results of the Growth Analysis of the Repositories

14. Globe Consortium, http://www.globe-info.org. 15. QIA Excellence Gateway, http://excellence.qia.org.uk/.



The main conclusion of this analysis is that linear
growth in the number of objects is a sign of the lack of
penetration of Learning Object technologies in educational
settings. It would be expected that the amount of learning
material created follows an exponential growth [33]. It
seems that much of this material is not published in any
type of repository.

3.2 Contributor Base Growth

Another way to consider repository growth is to measure its
contributor base at different points in time. For this analysis,
we try to use the same set of data as in the previous
experiment, with some exceptions. Intute, FerlFirst
(LORFs), and OpenLearn (OCW) were excluded because
they do not provide contributor data for their objects. To
obtain the data for the IRs, the complete metadata set was
harvested from the repositories. For this reason, the three
biggest IRs (PubMed, RePEc, and National Institute of
Informatics) were excluded. It was not feasible to process
the large amount of information using a single computer in
a reasonable amount of time. Nonetheless, the remaining
repositories are representative of their respective type.

The list of contributors was obtained by taken the name
of the authors of all the objects present in the repository. A
list of all the unique contributors was generated. In the case
that one object have several authors, only the first author is
considered its contributor. For example, if the learning
object metadata mention three authors, the act of publica-
tion is only attributed to the first author. Counting the first
author instead of assigned fractional counts to all the
authors is a common practice in Scientometrics [34].

As can be seen in the second column of Table 3, the size
of the current contributor base of the studied repositories
(with the exception of IRs) is within one order of
magnitude. The smaller contributor base is ARIADNE
(166) and the largest is Merlot (1,446). It is important to
note that the difference in numbers of objects of LORP and
LORF cannot be explained just by the size of the contributor
base. As it was hypothesized in the previous section, the
difference should originate in a different rate of contribu-
tion. In the case of IRs, the user base is considerably bigger
than in other types of repositories. The reason for this
difference can be found in the fact that contributing to

Institutional Repository is, in most cases, mandatory for

postgraduate students [35]. Publishing their thesis in the

Institutional Repository is commonly a requirement. Con-

trarily, contribution to the other type of repositories is

optional, and in the case of OCWs and LMSs, it is normally

reserved for professors only.
The analysis of the AGR, in the third column of Table 3,

presents an even more coherent picture. The number of

authors in LORs seems to incorporate a new contributor

each two to five days. In MIT OCW, with its accelerated

publishing program, a new professor is added every day on

average. SIDWeb has a rate similar to LORs with a new

professor using the system every five days, also on average.

As expected from the previous analysis, IRs have a much

higher AGR, counting between four and 10 new contribu-

tors each day. Based on these numbers, it would be an

interesting experiment to open LMSs and OCWs also to

under- and postgraduate student contributions.
The actual growth function was determined with the

same candidate functions and fitting procedure used in the

previous section. The results can be seen in Table 3, fourth

and fifth columns. While the majority of repositories

present a bilinear growth, similar to the growth in the

number of objects, it was surprising to find that in the case

of MIT OCW, SIDWeb, and Connexions, the contributor

base grows exponentially. This effect can be better

visualized in Fig. 3. Section 5 will present a model that

could explain how an exponentially growing user base

could generate a linear object growth.
The change from IGR to MGR is positive in all the

studied repositories. In most cases, the MGR is between two

and four times larger than the IGR. A notable exception is

MIT IR. In that particular case, the rate increases more than

10 times. In the case of exponential growth (Connexions,

MIT OCW, and SIDWeb), the rate at which new users enter

the system is always increasing. That growth is captured in

the exponential rate parameter. This parameter is similar for

the three repositories, with MIT OCW also presenting the

most rapid growth. However, exponential growth cannot

continue forever, especially in the case of MIT OCW and

SIDWeb. Once most of the professors have created a course

in those systems, the contributor growth rate will follow the
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incorporation of new faculty members, which is commonly

linear over large periods of time.
An interesting comparative analysis can be made between

the breakpoints of the object and contributor base growth.

This analysis can shed light on the “chicken or egg” dilemma

regarding repositories. This dilemma can be summarized as:

Does an increase in the number of objects attract more users?

Or does the increase in the number of contributors generate

more objects? The breakpoint in the case of Biphase linear

growth is the point of transition between the two linear

phases. In the case of exponential growth, we selected the

point where the function grows faster than linear. Compar-

ing the BP values in Tables 2 and 3, the evidence is

inconclusive. Some repositories, such as Maricopa, MER-

LOT, and MIT OCW, first have an increase in the rate at

which new contributors arrive and eight months later, on

average, an increase in rate of growth is perceived. However,

in the IRs, SIDWeb, and Connexions, the contrary is true.

First, the rate object growth increases, and four months to one

year afterward, the rate of new contributors follows. It seems

that to gain insight on how the “chicken or egg” dilemma is

solved in the repositories, a deeper analysis is needed.
A final conclusion for this analysis brings hope for the

establishment of Learning Object Technologies. Spotting
exponential growth in the number of contributors in three
repositories is maybe signaling that a transition phase
between linear and exponential growth is happening.
However, this change will depend on the ability of the
repositories to retain the productive users. This will be

ultimately defined by the engagement and fidelity that the
repository could produce in their contributors.

4 CONTRIBUTION ANALYSIS

In this section, we analyze in more detail how contributors
publish objects in the repositories. The first study will
analyze how many objects are published by each contributor.
The second section analyzes how frequently objects con-
tributors publish objects. The third and last section examines
the amount of time that each contributor keeps contributing
objects. These analyzes will help us to gain an insight on the
inner workings of the learning object publication process.

4.1 Contribution Distribution

To understand contributor behavior, full publication data
from three LORPs (Ariadne, Connexions, and Maricopa),
one LORF (Merlot), one OCW site (MIT OCW), one LMS
(SIDWeb), and three IRs (Queensland, MIT, and Georgia
Tech) was obtained. Each learning object was assigned
according to the data to one contributor. If more than one
contributor was listed, we counted the first author only.

The first step in this analysis is to obtain the average
number of publications per contributor (AC). This value
was obtained dividing the total number of objects in the
repository (Table 2) by the number of contributors (Table 3).
Table 4 presents this value in the second column. It is
interesting to note that the average output of contributors to
different kind of repositories differ substantially. The
contributors to the ARIADNE repository, while few, have
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produced, during the lifetime of the repository, more
objects per capita than any of the other LORs. The results
for Merlot also confirm that the bigger size of LORF is not
due to a bigger, but to a more productive contributor base.
The results for MIT OCW and SIDWeb show that they have
a similar productivity per contributor, hinting that the
publishing mechanics in LMSs and OCWs are very similar.
For IRs, the only way to explain the low productivity, in
what it is a scientific publication outlet, is to assume that the
majority of the content is made by student thesis.

The next step in the analysis is to obtain an approxima-
tion for the distribution of the number of publication for
each author. Given that the data are highly skewed to the
left, the best way to present it is the size-frequency graph in
logarithmic scales (Fig. 4). This figure represents how
probable (y-axis) is to find a contributor that has published
a certain amount of objects (x-axis). Five statistical distribu-
tions were fitted against the data: Lotka, Lotka with
exponential cutoff, Exponential, Log-Normal, and Weibull.
The parameter estimation was made with the MLE method
and the Vuong test was used to find the best fitting of the
competing distributions. The best-fitting distribution and
their estimated parameters can be seen in the third and
fourth columns of Table 4.

From the result of the distribution fitting, it is clear that
the number of objects published per each contributor varies
according to the type of repository. All LORs follow a Lotka
distribution with exponential cutoff. The meaning of this
cutoff is that it becomes increasingly harder to publish a
large amount of objects. The effect can be seen in Fig. 4 as a
slight concavity at the tail of the distribution. The para-
meters for the different LORs are similar. Even the cut off
rate seems to agree. For LORPs, the cutoff starts sooner by
an order of magnitude than for LORF. The finding of this
distributions means that most LOR contributors only
publish one object. Even high producing individual starts
loosing interest after publishing many objects. Maybe one of
the reasons behind this distribution is the lack of some type
of incentive mechanism [7].

OCW MIT and SIDWeb present a Weibull distribution.
The finding of this distribution means that for OCWs and
LMSs, there is an increased probability to produce a certain
amount of objects. This can be seen as the strong concavity
in the curve compared with the flat Lotka. The mechanism
behind this distribution is that there is an interest to

produce courses with a given amount of learning objects
(maybe one object per session).

The tails of the IRs are fitted by the pure Lotka
distribution. The head of the distribution and users that
have published one or two objects have a disproportio-
nately high value that cannot be fit by any of the tried
distributions. The tails, however, have an � of around 2.50
that is consistent with previous studies [36] [37] of the
distribution of scientific publications among authors. This
result suggests that the publication of documents in IRs has
a different mechanism than the publication of learning
objects in LORs, and maybe what we are measuring in the
IRs tail is a byproduct of the scientific publication process.

Finally, the percentage of objects created by 20 percent of
the users is calculated. The results are presented in the last
column of Table 4 (C-20). From these results, it can be
concluded that the LORs are affected by the Pareto inequal-
ity (20/80 rule). The concentration for OCW MIT is less
unequal, with just 50 percent of the objects being published
by the top 20 percent contributors. The explanation for this
result is that there is a considerable proportion of users that
produce between 10 and 50 objects. This group of con-
tributors is productive enough to balance the production of
the tail. In the case of IRs, an interesting effect, produced by
the thesis publication, can be observed. The most productive
section of the contributors is located at the head of the
distribution. This effect is more visible in the Queensland
repository. There, 20 percent of the most productive
contributors also publish around the 20 percent of the
material. The only way to reach this percentage is that almost
all the contributors publish the same amount of documents,
more concretely for this repository, one document.

As can be concluded from the previous analysis, all
contributors are not equal. In any population, regardless if it
is Weibull or Lotka, there will always be several “classes” of
users, similar to the segmentation use to classify socio-
economic strata (as mentioned before, income is also heavy-
tailed distributed). We can divide the contributing popula-
tion in a large “lower class” of contributors that only
publish few objects. A smaller “middle class” that publishes
intermediate amount of objects and a very small “higher
class” that publishes a large amount of objects. These
classes arise naturally and have to be dealt with. While the
publishing capacity can be increased with better tools and
intuitive environments, the inherent inequality will, most
probably, persist.
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4.2 Lifetime and Publishing Rate

In this analysis, we consider the publication history of each
individual contributor. Two variables will be measured:
First, the lifetime of the contributor. This is the time from its
first to last publication. Second, the publishing rate. This is
the average number of objects published during the lifetime
of the contributor. In real-world terms, the lifetime can be
considered as the period during which the contributor is
engaged with the repository. The publishing rate, on the
other hand, can be considered as proxy measurement of the
talent or capacity that the contributor has to publish
learning objects. To compute these values, we extract the
contributor information from the repositories used in the
previous analysis.

In the calculation of the lifetime, we always know its
beginning, but we are never sure about its end. A
contributor could have published its first object two years
ago and its last object one year ago. The measured lifetime
will be one year. However, if the contributor published one
more object just the day after the data were captured, its
actual lifetime will be two years. To cope with this
limitation, the lifetime of a user is only considered finished
if the time from the last object insertion is at least as long as
the longest period without activity between two consecu-
tive publications. If a lifetime is not ended, it will be
assigned the time interval from the first object insertion
until the date of data collection.

The measurement of the rate of production also presents
some difficulties. The rate of contribution could not be
measured if all the objects have been published on the same
day. Also, the publication of few objects in a short lifetime
will produce inflated rate values. To alleviate this problem,
only users whose lifetime is larger than 60 days, and that
have published at least two objects are considered for the
calculation. To prevent the bias in the distribution produced
by only considering highly productive contributors, the
contributors that have a lifetime shorter than 60 days are
assigned the smallest production rate.

As expected, each contributor present a different lifetime.
To obtain a clearer picture of how these values compare
between different repositories, we calculate the Average
Lifetime (ALT). Table 5 presents the results measured in
days. The first conclusion that can be extracted from the
lifetime values is that, on average, they are much smaller
than the lifetime of the repositories (Table 2). This means
that most contributors are “retired” after a period of one
year. This conclusion holds even if the contributors “born”
during the last year are removed from the calculation.
However, the actual values of ALT are not related to the
type of repository and do not provide much information
about the distribution of the lifetime among contributors.

Based on the skewed nature of the distribution of
lifetime, we fit the five heavy-tailed distributions used
previously. The results can be seen in Table 6. The
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TABLE 6
Result of the Analysis of Publishing Rate
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distribution is clearly related to the type of repository. A
comparison between the different lifetime distributions
across several repository types can be seen in Fig. 5.

LORs contributors have lifetimes that are distributed
exponentially among the population. The � parameter of the
exponential is also similar across LORs. This similarity
suggests that LORs contributors share the same type of
engagement with the repository. The probability of cease
publishing is proportional to the time that the contributor
has been active. The result is that there are considerable
amount of users with short lifetimes (less than three months).
We can classify this behavior as engagement by novelty. As
the novelty worn off, the user ceases contributing.

In the case of OCWs and LMS, the lifetime follows a
Weibull distribution. Again, the shape and scale parameters
are similar. A Weibull distribution with these parameters
hints that the amount of contributors with very short
lifetimes (less than one month) does not dominate the
population. It is more common to find contributors that
keep publishing after three months to one year. However,
Weibull decreases rapidly after its peak, meaning that it is
infrequent to find contributors with several years of
publication. We describe this behavior as engagement by
need. The average contributor keeps publishing until a goal
is reached (for example, a course is completed and/or
improved). After the goal has been reached the probability
of stopping increases rapidly.

The IRs present a very different publishing behavior,
denoted by the Log-Normal distribution. The low �log
parameter, found in all the IRs lifetimes, means that the
majority of the contributors have a very short lifetime (few
weeks), with a neglectable amount having lifetimes mea-
sured in months or years. This result is consistent with the
finding that most contributors in the studied IRs published
just one object, probably their thesis. After this publication,
and maybe some immediate corrections or additions, the
contributors cease publishing. We describe this behavior as
low engagement. The repository does not require or

promote continuous submissions from the majority of
users. As a response, most user lifetimes are basically
instantaneous compared with the lifetime of the repository.

After analyzing the lifetime, we calculate the average
publication rate (APR) for each repository. The results are
presented in Table 6. The only clear conclusion that can be
extracted from the APR is that LORP contributors publish
less frequently than other types of repositories. Specially, if
compared with the similar LORF, MERLOT, the publication
rate seems to be one order of magnitude lower. As
mentioned before, the main difference between the size of
LORPs and LORFs seems to indicate a difference in
productivity of the contributor base. The difference of
APR between the other type of repositories is not clear.

To gain better insight on how the publication rate is
distributed across the contributing population, the five
previously used statistical distributions are fitted to the
data. The results of the fitting are presented in Table 6.
Surprisingly, all the repositories show the same distribu-
tion, Log-Normal. The main difference seems to be that the
�log parameter is around one for LORPs, LORFs, OCWs,
and LMSs, and around 2 for IRs. A higher �log creates a
larger skewness to the left, meaning that a larger proportion
of contributors is low-productive. The finding of the same
distribution for all the repositories is very significant,
because it means that there is no difference between the
distribution of talent or capacity among the different
contributor communities.

This analysis shows that the main differentiator between
different types of repositories is the type of engagement that
the contributors have. According to the findings, the most
successful models of repository seems to be OCWs and
LMSs, where most of the contributors keep publishing for
longer periods of time. This result suggests again that an
incentive-based publishing is the most effective form to
increase the total number of learning objects available.

5 IMPLICATION OF THE FINDINGS

The results of the quantitative analysis can be used to
answer the questions raised in Section 1. This section
presents those answers and the implications that they have
in our understanding of the learning object publication
process and the technological design of repositories.

What is the typical size of a repository? Is it related to its type?
In general, individual learning object repositories seems to
vary from hundreds to millions of objects. Their average size
depends on the type of repository. LORPs can be considered
to have few thousand of objects. LORFs are in the order of
the tens of thousands. However, these numbers are small
compared with multi-institutional IRs that can count
hundreds of thousands and even millions of objects. OCWs
and LMSs can have from hundreds to thousands of courses.

However, the answer to this question is not that simple.
The size is not Normally distributed, meaning that the
average value cannot be used to gain understanding of the
whole population. It is not strange to find repositories several
orders of magnitude bigger or smaller than the average.
Sampling biases aside, the distribution of learning objects
among repositories seems to follow a Lotka or Power Law
distribution with an exponent of 1.75. The main implication
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of this finding is that most of the content is stored in few big
repositories, with a long, but not significant tail. Adminis-
trators of a big repository would want to federate [30] their
searches with other big repositories in order to gain access to
a big proportion of the available content. On the other hand,
it makes more sense for small repositories to publish their
metadata [26] for a big repository to harvest it in exchange for
the access to their federated search. It seems, through an
initial reading of this finding, that a two (or three) tiered
approach mixing federation and metadata harvesting is the
most efficient way to make most of the content available to
the wider audience possible using the current infrastructure.

How repositories grow over time? Linearly. This is a
discouraging finding. Even popular and currently active
repositories grow linearly. Even if we add them all together,
we will still have a faster linear, but no exponential. The
main reason for this behavior is the contributor desertion.
Even if the repository is able to attract contributors
exponentially, it is not able to retain them long enough to
feel the effect. The value equation, how the contributor
benefits from contributing to the repository, is still an
unsolved issue in most repositories. Several researches have
suggested incentive mechanism [11] [40] comparable to
scientific publication, in order to provide the professor with
some type of reward for their contribution.

Another interesting result in the growth analysis was to
find that all repositories went through an initialization with
usually a very low growth rate. The length of this stage
varied from one to three years (shortening for more recent
repositories). After this period, a more rapid expansion
begins caused by (or that cause) an increase in the number
of contributors joining the repository. Having knowledge of
these phases could help repository administrators to not
discard slow growing repositories too soon.

What is the typical number of contributors a repository has? Is
it related to its type? We can estimate, from the analysis in
Section 3, that medium LORs have a base of 500 to
1,500 contributors. This number is also similar for OCWs
and LMSs contributor bases. On the other hand, IRs, being
targeted also to students, have contributor bases one order
of magnitude bigger. The size of the contributor base,
however, is not always related to the size of the repository.
Merlot contributors, being outnumbered 1-10, produce a
comparable amount of objects as MIT IR contributors.
Moreover, the title to the most productive contributors in
the study goes to the OCWs and LMSs professors (Table 4)
with around 40 objects on average. This results also support
the idea that LMSs are the most effective type of repository,
given that they provide a clear value into the publishing step
(students not asking for copies of the material, for example).

Given the relatively small size of the communities that
build repositories, it would be an interesting experiment to
measure the impact that the introduction of social net-
works could have in the sharing of material. For example,
users would be interested in knowing when a colleague in
his same field has published new learning objects [41]. This
social networks can be created explicitly (a lá Facebook) or
implicitly (relationship mining) [42]. The deployment of
these types of networks could also help to solve the lack of
engagement problem.

How the number of contributors grows over time? Most of
them linearly, but surprisingly three of them Connexions,
MIT OCW, and SIDWeb, exponentially. This unexpected
result, specially in SIDWeb, a run-of-the-mill LMS, is very
encouraging for the future of the Learning Object Economy,
because it can give rise, with the right environment, to
exponential growth of content available. However, we also
found that at this stage, the growth in these repositories
continues linear. However, this observation can be due to
the recent kickoff of exponential contributor base growth in
these repositories. A follow-up study in a year period
would help us to have a better perspective. Again, the
finding of exponential growth in course-based repositories
confirms the idea that we should strive to connect LMS as
the main source of learning material.

How many learning objects a contributor publishes on

average? As mentioned before, the average productivity of
users depends on the type of repository. For LORP, it can be
around 10 objects per contributors. IRs present the lowest
production per contributor with 1 or 2 on average.
However, heavy tail distributions, Lotka and Weibull, make
this answer a little more complicated. The problem with the
average values given previously in the current situation is
that in heavy tailed distributions, “there is not such thing as
an average user.” As mentioned in Section 4, the best way to
describe the production of different contributors is to
cluster them in “classes” similar to socioeconomic strata.
If we adopt this approach, we gain a new way to look at our
results. In LORP and LORF, the repository is dominated by
the high class. Most of the material is created by a few
hyperproductive contributors. the 10 percent of the users
could easily have produced more than half of the content of
the repository. In the case of OCWs and LMS, the Weibull
distribution determines that the middle class is the real
motor of the repository. The low and high classes are
comparatively small. Finally, University IRs, with Lotka
with high alpha, are dominated by the lower class as more
than 98 percent of the population produce just one object.
From our analysis on publishing rate and lifetime, we can
conclude that these different distributions are caused not by
an inherent difference in the talent or capacity among the
different communities, but by the difference in contributor
engagement with the repository. It seems that the distribu-
tion of lifetime, the time that the contributor remains active,
is different for this three observed repository types. In
LORP and LORF, there is some time of novelty engagement
that keeps the contributor active at the beginning, but the
chances of ceasing publication increase as more time is
spent in the repository. For OCWs and LMSs, there is a
goal-oriented engagement that keeps the contributor pro-
ductive until her task is finished (course is fully published).
In the case of IRs, there is no engagement at all. The norm is
just discrete contributions. Changes on the type of engage-
ment should have an effect not only in the distribution of
publications among users, but also in the growth and size of
the repository.

In conclusion, it is very important for a repository
administrator to know the composition and characteristics
of her contributor base. Having a clear view of what and
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who need to be incentivized is the first step before building
any type of incentive plan [43].

It is also interesting to note that these distributions are
not exclusive for the publication of learning objects, but are
shared by various types of user-generated content (UGC)
[44] . Moreover, there is a long research history of how the
Lotka law fits the process of scientific publishing [37]. The
quantitative study of Learning Objects (or Learnometrics as
we call it) can borrow substantial amount of research results
from other Informetrics fields. Moreover, Informetrics could
also benefit from having new sources of data in an specific
domain to test the generality of their conclusions.

Despite the previous answers, this analysis raises more
questions than it solves. We invite the reader to check the
Further Research section at the end of this dissertation to
share what we consider to be the most interesting new
paths opened by this work.

6 CONCLUSIONS

This paper is the first quantitative analysis performed to the
publication of learning objects. We have raised and
answered several basic questions important for the under-
standing of the publication process and the design and
operation of learning object repositories of several types.

Maybe the most relevant conclusion from the quantita-
tive analysis is that the publication process is dominated by
heavy-tailed distributions and the usual Gaussian-based
statistics are not enough to gain insight on the nature of the
compiled data. These distributions also provide the reposi-
tories with several characteristics not found in more normal
sets. For example, difference in size or productive can span
through several order of magnitude. Depending on the
parameters of the distributions, it will not be unexpected
that most of the content of a repository is produced but few
individuals or that 99 percent contributor base only publish
one object. The black swan effects [45] can be seen, measured
and modeled in the composition of all repositories.

Finally, measuring the publication process enables us to
take better decisions about the architecture and infrastruc-
ture needed to support the Learning Object Economy.
Moreover, measuring is our only way to test the unproven
assumptions over which some of the current Learning
Object technology rests.

To complement this study about the supply of learning
objects, the next paper will analyze the other side of the
economy: the demand. Having a clear view of how these
two process work could help Market-Makers and Policy-
Makers to understand how different technologies and
policies affect the Learning Object Economy.

7 FURTHER RESEARCH

The quantitative analysis of the production of learning
objects has received little research attention, although it is
the base of Learning Object Economy. This paper answered
some basic questions, but much more are left open.
Moreover, embedded in the provided answers, there are
the seeds of new questions.

. Effect of openness. An interesting question is
whether repositories with open publication, such

as Connexions or Merlot, are more efficient or
productive that closed projects, such as Intute or
MIT OCW, in the long run.

. Publication patterns. While the easy metrics of
lifetime and rate of contribution give an idea of the
publication process, a deeper analysis of the patterns
in which publications take place would add more
information to understand this process.

. How to integrate LMS. One of the interesting
findings of this paper is that LMSs seem to be the
best environment for learning object publication.
However, traditionally, these are isolated silos of
information. How to intercommunicate between
them and share their contents, not only at the
technical level, but also, and more importantly, at
the social, legal, and administrative level should be
one of the main challenges of our field.

Finally, we make a call for more quantitative analysis for
Learning Objects. There are other important aspects in the
life cycle of the learning objects that we know little about:
creation, reuse, versioning, etc. The fact that the data for this
kind of studies are hard to get does not make the questions
that those measurements could solve less important or
urgent. Measuring will let us know where we are and
whether we, indeed, are moving forward.
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