
Authoring and Reengineering of IMS Learning
Design Units of Learning

Iván Martı́nez-Ortiz, José-Luis Sierra, and Baltasar Fernández-Manjón, Senior Member, IEEE

Abstract—Educational Modeling Languages (EMLs) are notations that allow instructors to formally describe educational processes,

including teaching and learning interactions and activities. The description of a specific teaching process using an EML is called a

learning design. EMLs, where IMS Learning Design (IMS LD) is becoming a “de facto” standard, address aspects such as the

interoperability and reusability of teaching practices across learning management systems. However, the actual application of EMLs is

being hindered by different problems such as the technical skills required to use typical EMLs and the difficulty of understanding and

maintaining preexisting learning designs. Thus, to promote the adoption of EMLs, it is necessary to provide more user-friendly tools

and methodologies to facilitate their assimilation and reduce the workload required to use them. In this paper, we present the e-LD

system, which provides a graphical notation to design or redesign learning designs, an import-modification-export process to

reengineer IMS LD learning designs, and a tool to generate and analyze dependencies between different IMS LD elements.

Index Terms—Design notations and documentation, graphical notations, educational design, IMS learning design.

Ç

1 INTRODUCTION

FOR the last few years, e-learning has been a very active
research field with real applications in industry and

educational institutions. Even though e-learning has been
successful in many cases, a number of limitations have been
identified and have attracted criticism. One of the key issues
identified is that e-learning environments are too focused
on the learning content to be consumed by the learners [1].
However, an effective learning process requires more
learning activities than simply being exposed to the content.
It should also include other activities such as completing
exercises, preparing essays, discussing topics, and assessing
progress. Such activities reinforce the knowledge contained
in the content. Usually, when teachers or domain experts
design a course, they decide on the content to be included,
the activities to be performed, and the order in which
activities should occur to achieve effective learning. In other
words, teachers must design a teaching method.

The definitions of these teaching methods, referred to
hereafter as learning designs, include the goals and scope of
the course, methods for evaluation, course materials, and
the activities to be performed by the students. An explicitly
written learning design can be used for different purposes.
For example, it may be validated by a quality department
before the course is deployed, or it may be reviewed by
students before enrollment. Traditionally, this documenta-
tion task is performed by creating descriptive documents
that use natural language. Nevertheless, learning designs
can formally be described by using suitable Educational
Modeling Languages (EMLs). The most widely extended

formal EML currently used is IMS Learning Design (IMS
LD) [2], [3]. In EMLs, the minimum significant educational
piece is no longer the Learning Object [4] (i.e., content) but
the activity or course. With IMS LD, a course is called a Unit
of Learning (UoL) and includes not only content but also
learning objectives, activities, and other resources.

From a pedagogical perspective, an EML is a notation
system that teachers or instructors can use to formalize
the learning designs that they have in mind. This formal
approach, as opposed to using natural language, allows
the automatic processing of these designs by a computer
system. From a technical perspective, the EML can also
be seen as a scripting language for Learning Management
Systems (LMSs) that allows the configuration of the
learning experiences in these systems. But contrary to
traditional programming languages created for technical
staff, the EMLs’ intended target audiences are teachers
and instructors.

However, the application of EMLs is not devoid of
problems. A formal EML should be carefully designed to
provide an adequate balance between the expressivity
features related to its machine processing capabilities and
high-level abstractions in order to simplify its application
by humans. IMS LD, for example, is a powerful EML but its
use in practice is being hindered by different problems such
as the difficulty in using advanced features and the
technical skills needed for its application, which are far
beyond the reach of most real users who do not have
mature, user-friendly supporting tools.

To address this complexity-expressiveness balance, our
approach is to make a conceptual distinction between the
two kinds of EMLs: exchange EMLs and authoring EMLs
[5], [6]. Authoring EMLs are domain-specific languages
closer to instructors’ needs and ways of thinking. Because
authoring EMLs are specifically adapted to instructors’
expertise, authoring and repurposing tasks are far more
reasonable for nontechnical instructors. Exchange EMLs
are closer to the machine level, effectively becoming a low-
level representation for e-learning applications, allowing

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009 189

. The authors are with the Department of Software Engineering and
Artificial Intelligence, Universidad Complutense de Madrid, c/ Profesor
José Garcı́a Santesmases s/n, Facultad de Informática, 28040 Madrid,
Spain. E-mail: {imartinez, jlsierra, balta}@fdi.ucm.es.

Manuscript received 16 Dec. 2008; revised 8 Mar. 2009; accepted 22 Mar.
2009; published online 27 Mar. 2009.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLT-2008-12-0113.
Digital Object Identifier 10.1109/TLT.2009.14.

1939-1382/09/$25.00 � 2009 IEEE Published by the IEEE CS & ES

interoperability and the customization of any compliant
e-learning platform to suit specific needs. In this sense, IMS
LD should be classified as an exchange EML.

In our opinion, in order to promote the use of EMLs by
teachers and instructors, it is necessary to provide graphical
notations, which are more user-friendly than the terse XML
syntax usually provided in EML specifications (in the way it
is done in LAMS [7]). These notations, closer to the needs of
the user, are then translated to the more machine-friendly
notations of exchange EMLs via an exportation process. For
this purpose, in this paper, we propose a visual language
that includes concepts closely related to IMS LD, which is
our target exchange EML.

The paper also addresses how to redesign pre-existing
IMS LD UoLs using the aforementioned visual language.
For this purpose, the approach proposes a semiautomatic
process according to which an initial UoL in the authoring
EML is produced, as well as a report that helps instructors
to complete the redesign. In particular, we propose to
generate this report based on a thorough analysis of the
dependencies between elements that can affect the runtime
behavior of the original UoL.

This paper is structured as follows: In Section 2, we
analyze the IMS Learning Design specification and motivate
our approach. Section 3 describes the e-LD approach, which
is the whole approach promoted in this paper. The
authoring process of a new UoL is described in Section 4.
The reengineering process of an IMS LD UoL is presented
in Section 5. Section 6 analyzes some related work and
compares it to that reported in this paper. Finally, Section 7
provides some conclusions and future lines of work.

2 IMS LEARNING DESIGN ANALYSIS

IMS Learning Design [2], or simply IMS LD, is a specifica-
tion to represent and encode e-learning courses. Further-
more, IMS LD is focused on the design of pedagogical
methods that manage learning activities linked to learning
objects within a learning flow [3]. This learning flow
consists of plays, acts, role-parts, and simple and structured
activities, and is flexible enough to provide several
personalized itineraries, depending on the role assigned
or a set of rules.

IMS LD uses the term Unit of Learning (UoL) to represent
the minimum significant educational piece. According to
IMS LD, a UoL includes content, learning objectives,
activities, and other resources.

To facilitate the adoption of IMS LD, the specification is
divided into three levels:

. Level A: Specifies core components using concepts
like method, play, act, role, role-part, learning activity,
support activity, activity structure, and environment.

. Level B: Adds properties and conditions used for the
dynamic personalization of a UoL based on the
previous knowledge of the learner and learner
performance within the UoL.

. Level C: Adds notifications allowing the communica-
tion between actors involved in the UoL as well as
providing a new event-based mechanism for UoL
personalization.

In addition to this layered organization of the specifica-
tion, any IMS LD UoL is clearly divided into two different
parts: the static and dynamic parts. The static part comprises
the definitions of activities (simple and structured), the
environments within the activities are carried out, and the
participants’ roles involved in the UoL. The dynamic part
includes the sequencing of the simple and structured
activities defined in the static part and the assignment of
activities to the different participants.

The following sections conduct an analysis of IMS LD
and the sequencing expressiveness of activities. This
analysis reveals some of the authoring complexities of an
IMS LD UoL that have direct impact on our approach. This
analysis is focused on Levels A and B, as the work reported
in this paper does not provide support of IMS LD level C.

2.1 Analysis of IMS LD Level A Sequencing
Expressiveness

To understand the activities sequencing expressiveness of
IMS LD Level A, it is necessary to understand how the
UoLs’ participants (i.e., students or instructors) perceive the
sequencing of activities.

Both IMS LD specification [2] and existing IMS LD
players (e.g., SLeD [8], GRAIL [9], [10]) provide participants
with a tree-based user interface to interact with the activities
of the UoL. This activity tree is modified as a result of the
participant’s interaction with the UoL, where new elements
become visible after the participant completes the interaction
with some of the visible activities in the activity tree.
Therefore, activity sequencing in IMS LD is closely related
to these two key concepts: visibility and completion.

Visibility of elements is controlled in IMS LD level A
through the attribute isvisible. At design time, some Level A
elements (e.g., learning activity, support activity, etc.) may set
the isvisible attribute to false, making these elements hidden
to the participants at runtime. IMS LD Level A only
provides a mechanism to make simple hidden activities
visible, but there is no mechanism for the play element.

Completion of IMS LD elements serves two purposes.
It serves as a simple monitoring mechanism for partici-
pants’ progress and it affects the sequencing of the UoL’s
other elements.

Each element defined in the method section of the UoL
can be completed, as can activities (both simple and
structured ones). IMS LD Level A is equipped with four
mechanisms to decide when one of these elements has been
completed: completed by default, user choice, time-based,
and based on included elements’ completion.

Note that simple and structured activities can be used in
different parts of the same UoL and their completion and
visibility state is shared among all references to the same
activity. That is, if an activity is completed, all its occurrences
are also completed. Similarly, if an activity becomes visible,
all of its occurrences subsequently become visible.

The sequencing of the activities in IMS LD Level A is done
by using IMS LD elements: method, play, act, role-part, and
activity structure (activity structures are of two types: sequence
and selection). These elements act as building blocks that are
aggregated to define the entire sequencing behavior. All of
these elements have a predefined sequencing behavior
(defined in the IMS LD Information Model [2]) as follows:

190 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009

. Method: Methods run in parallel all the plays, which
they include.

. Play: Plays run in sequence all the acts, which they
contain. That is, an act starts after the previous act
has been completed.

. Act: Acts run in parallel all the role parts, which they
include.

. Role part: A role part runs the activity that it refers to.

. Activity structure (sequence type): Runs in se-
quence all the activities included. That is, an activity
starts after the previous activity has been completed.

. Activity structure (selection type): In these activity
structures, participants can randomly choose the
order in which they perform the activities included.

2.2 Analysis of IMS LD Level B Enhanced
Sequencing Expressiveness

IMS LD Level B introduces more powerful sequencing
concepts, which are particularly useful in allowing a
detailed personalization of the learning flow and in
supporting different pedagogical approaches [11].

The new elements related to activities sequencing
introduced in IMS LD Level B include properties, conditions,
and enhanced completion mechanisms.

Properties provide a storage mechanism to store pieces
of information of different types (e.g., numbers, text, etc.)
similar to variables in programming languages. The scope of
a property defines the context within which it is defined.
Moreover, properties can be grouped through the concept
of property group to simplify management.

In a similar way to the deductive approach proposed by
Heyer et al. [12] and the inductive approach put forth by
Koper and Burgos [11], we have followed a deductive-
inductive approach to analyze the applicability of the
different types of properties available in IMS LD level B.
This analysis is based on the study of the available IMS LD
level B UoLs at Learning Networks DSpace repository1 and
a careful study of the IMS LD specification. Table 1
summarizes this analysis.

The second key concept concerning activities sequencing
in IMS LD Level B are conditions. Conditions are defined as
a set of reactive if-then-else rules. A rule is guarded by an

expression so that when the expression holds, the actions
included in the rule’s then section are executed; otherwise,
the actions in the rule’s else section are executed. Guard
expressions are evaluated whenever an important event
happens during the execution of the UoL, particularly the
change of a property’s value. Available actions in IMS LD
allow for: 1) the personalization of the learning flow
through visibility modifications of activities and plays,
2) personalization of the learning content, and 3) modifica-
tion of the properties’ values.

In a similar way to the property analysis done in Table 1,
we have analyzed the rules of the conditions. As a result,
we propose the classification summarized in Table 2.

Properties and conditions in IMS LD level B enhance the
completion mechanism, introducing the possibility of
completing an element based on a property’s value, and
particularly for acts, based on Boolean expressions.

The sequencing features of IMS LD levels A and B,
especially conditions, provide a powerful and flexible
mechanism to create customizable learning flows. However,
this great expressiveness also introduces high complexity
during the UoL authoring. Moreover, to reuse a UoL that
makes extensive use of conditions for personalization
requires thorough knowledge of conditions, and thus,
becomes a complex task. The e-LD approach addresses these
authoring and reuse issues in IMS LD UoL (levels A and B).

3 THE E-LD APPROACH

In our opinion, one of the issues that hinders the adoption
of EMLs, in general, and of IMS LD, in particular, is the
lack of user-friendly supporting tools that simplify the use
of these languages.

Our aim with the e-LD approach is to provide an
evolving authoring tool, called e-LD Author, and a set of
support tools for helping instructors in the creation of their
courses. e-LD Author plays the same role as Computer-
Aided Software Engineering (CASE) tools in Software
Engineering processes.

In our e-LD approach, we have fully considered the
traditional Analysis, Design, Development, Implementa-
tion, and Evaluation (ADDIE) approach [13] widely used in
the development process for the creation of instructional
courses. This same development process can be applied to

MART�INEZ-ORTIZ ET AL.: AUTHORING AND REENGINEERING OF IMS LEARNING DESIGN UNITS OF LEARNING 191

TABLE 1
IMS LD Level B Properties Applicability

1. http://dspace.learningnetworks.org.

the creation of UoLs (see [14]). The rest of this section briefly

introduces the five phases of the ADDIE process and how

they are related to our approach, and also outlines some

final remarks.
The analysis phase comprises the identification of

learning needs, the audience’s needs, the audience’s knowl-

edge, and any already available content (e.g., available

UoLs). Once the learning needs are identified, the outcome

of this phase is a set of goals and objectives/competencies.

e-LD Author offers a graphical notation to describe learning

objectives (see Section 4.2) and their relationships. e-LD also

provides support for the analysis of a preexisting UoL (see

Section 5), allowing instructors to evaluate whether it meets

some of the objectives of the course’s learning design,

therefore becoming a candidate for total or partial reuse.
The design phase comprises the overall learning design

process including the selection of activities (e.g., quizzes,

exercises, etc.), learning contents and tools (e.g., media,

communication) needed to accomplish the identified learn-

ing objectives. In addition, the sequencing of these activities

is also defined during this phase. The outcome of this phase

is the instructional design document. This document

represents the instructor’s learning design, simply provid-

ing a high-level overview of the entire UoL without

containing any actual content.
The application of EMLs fits in this design phase. Instead

of creating an informal document using natural language or

filling in a template, the instructional design document is

created by using a particular EML that produces a formal

document, which allows for its automation (i.e., interpreta-

tion in an EML player).

The aim of the e-LD Author is to allow instructors to
design documents compliant with IMS LD during the
creation of educational programs. But as previously men-
tioned in Section 1 and in the analysis performed in
Section 2, IMS LD’s authoring becomes complex due to its
great expressiveness. We address this issue by proposing a
collaborative process (see [5] for details) between devel-
opers and instructors to create an authoring EML. This
authoring EML provides enough expressiveness required
by instructors to design their courses. Compatibility with an
exchange EML, in this particular case IMS LD, will be
maintained by an exportation procedure.

Flowchart notation was one of the very first techniques
used to describe business processes [15]. In addition,
flowcharting has been extensively used in computer science
to describe algorithms in an abstract and programming
language-independent way. We therefore believe that a
flow-oriented language can serve as the basis for authoring
EMLs. Although the authoring EML definition is indepen-
dent of its notations (e.g., XML, textual, graphical), graphical
notations stand out among other notations because they
provide powerful help for describing and understanding
complex systems [16]. In this respect, the e-LD Author tool
provides instructors with a visual notation for the flow-
oriented authoring EML, used to define the activities and
their sequencing (see Section 4). Note that the authoring
EML provision process can be performed in parallel to the
UoL authoring process.

The development phase is where the actual creation of
learning materials is carried out. e-LD Author currently
does not include specific tools to author learning contents,
but it provides support for importing learning contents that

192 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009

TABLE 2
IMS LD Level B Conditions’ Rules Classification

conform to IMS Content Packaging (IMS CP) [17] specifica-
tion and SCORM specification [18].

The implementation phase is where the UoL is put into
action. In addition to the translation process from the
authoring EML to the exchange EML, the technical
requirements of an IMS LD’s UoL has to be tackled, that
is, the construction of a valid IMS CP and the publication of
the UoL in an IMS LD Player. e-LD Author provides
support for these three tasks. Using this support, the author
can export the new UoL to an IMS CP and then publish this
UoL in an IMS LD Player (currently only CopperCore has
been tested).

The evaluation phase represents a final review checkpoint
for the UoL. This phase consists of: 1) formative and
2) summative evaluation. Although formative evaluation
should be performed by peers at each stage of the ADDIE
process, it is also easy to collect learners’ opinions about the
course through a short survey immediately after the course
is completed. This information can be used to improve the
UoL. Summative evaluation consists of tests designed to
determine the effectiveness of the UoL against established
objectives. e-LD Author does not currently include a tool to
create questionnaires and tests; however, instructors can
create them by using a specific authoring tool and then link
them as a course resource.

It is important to note that the ADDIE process does not
impose any pedagogical approach during the authoring of
the UoL. The instructor is therefore responsible for the
appropriate selection of the pedagogical methodology and
for designing the UoL accordingly. The application of EMLs
provides some advantages, for example, UoLs formalized
with an EML are less prone to error than a UoL described
using natural language, due to the elements of EML having
well-defined semantics. Moreover, EMLs also allow for the
formalization of proven teaching practices and pedagogical
methodologies such as UoLs’ skeletons/template that can
later be personalized.

Whether the creation of a UoL starts from a completed
UoL previously produced or from a template, it is necessary
to provide instructors with support for this task. The
following section describes how e-LD addresses this need.

4 AUTHORING OF IMS LD UOL:
THE VISUAL NOTATION

The use of graphical notations to provide a visual syntax for
modeling languages has been tested and put into practice in
many different domains. Some examples include databases
with Entity-Relationship models for defining database
schemas [19], software engineering with Unified Modeling
Language (UML) for describing software systems, and
business applications with Business Process Management
Notation (BPMN) for describing business processes [20].

UML and BPMN specifications not only introduce
graphical notations for software artifacts or process descrip-
tions but also define abstract metamodels for these domains.
In a similar way, we have defined an abstract metamodel and
a particular graphical notation for this metamodel (presented
throughout the section). However, because of this separation
between abstract model and notation, it is possible to define

different notations for the same metamodel (e.g., textual,
XML, etc.) or even more, to allow the personalization of the
graphical notation based on user preferences.

Graphical notations have been developed to reduce the
cognitive load when working with complex semantic
models. They provide a simpler notation that can be more
clearly understood by a wide range of users, from technical
to nontechnical staff. Following this trend, we propose the
use of graphical notations for the design of UoLs [21]. These
notations include:

. A notation for participants’ roles. This notation
provides instructors with a form of notation for
defining the different participant types (called roles).
These roles are used to classify the participants in
different types (e.g., student, teacher) and to assign
responsibilities to the different roles defined.

. A notation for learning objectives. This notation allows
instructors to define which goals (learning objec-
tives) will be covered in the UoL. For these purposes,
the instructor can define a high-level goal as the
overall objective and, later on, refine this objective
into subobjectives to be achieved by the different
parts of the UoL. With this type of notation, it is also
possible to define the participants involved in
reaching these goals.

. A notation for defining activities. This notation
contemplates the definition of the different activities
to be performed during the execution of the UoL.
Using this notation, instructors analyze which activ-
ities are needed to achieve the learning objectives.
They then design activities describing what is to be
done and which tools (chat, dossier, laboratory tool,
etc.) should be used. These activities also include the
instructions and the resources (learning contents and
tools) needed to perform the activities. Activities can
be classified into simple and structured ones.
Structured activities aggregate simple activities by
adding an implicit runtime behavior. As structured
activities can be very large and complex, the notation
introduces hierarchical abstraction facilities.

. A notation to describe the sequencing of activities. By
using this notation, instructors make the learning
flow explicit through different activities that com-
prise the UoL. In addition, the notation allows the
definition of roles involved during the performance
of the activities. Sequencing definitions can be a
simple ordering of activities applied to all partici-
pants or they can provide a personalized definition
of the learning flow based on the performance of the
UoL’s participant. This definition itself can be
verbose. Therefore, the notation also introduces
hierarchical decomposition mechanisms. Composite
elements can be collapsed to hide some parts of the
model that can also be refined in a separate diagram.

All these notations coexist in a unified, flow-oriented,
view of the learning design integrating all of the design
aspects. This feature, together with a user-friendly visual
representation, should increase the usability of the nota-
tions with respect to more general exchange-oriented ones
(such as IMS LD). This flow-oriented graphical notation is

MART�INEZ-ORTIZ ET AL.: AUTHORING AND REENGINEERING OF IMS LEARNING DESIGN UNITS OF LEARNING 193

used within the e-LD author tool to define learning designs.

Once instructors create their learning designs, they can

automatically export these learning designs to create UoLs

compatible with the IMS LD specification [22].
The following sections go inside the different notations

that constitute the unified flow-oriented view.

4.1 Notation for Describing Roles

UoL participants’ roles are defined in a diagram that

represents the hierarchy of the roles. Each role definition

not only includes the role name but also specific IMS LD

value attributes relevant from the author’s point of view

(e.g., create-new and href). In addition, a more verbose

textual description of the role can be attached to the

graphical notation.
UoL’s roles are arranged into a hierarchy where the two

IMS LD base roles, Learner and Staff, are used as hierarchy

root elements. The Learner role is a base role for roles

representing the different types of students in the UoL (e.g.,

student, fellow student, group leader, etc.). The Staff role is

a base role for roles representing different types of faculty

and staff involved in the UoL (e.g., instructor, teaching

assistant, lecturer, invigilator, etc.).
The role hierarchy is a hierarchy with inheritance. That

is, each subrole has the responsibilities of its superrole plus

additional responsibilities assigned to the specific subrole

(i.e., subroles are specializations).
Fig. 1 depicts an example of a role hierarchy definition.

Student and Advanced student roles (represented by rounded

boxes) are two subtypes of Learner where Advanced student is

a particular subtype of Student. Finally there is only one

Staff role, the Teacher role.

4.2 Notation for Describing Learning Objectives

UoL learning objectives are defined in a diagram. These

learning objectives can be decomposed into simpler

objectives. This allows for a definition of fine-grained

objectives, which also represents their interrelationships.

Each learning objective definition includes a verbose textual

description attached to the graphical representation.
The purpose of this decomposition is twofold:

1. To allow instructors to organize and document their
mental processes.

2. To provide instructors with a simple verification
mechanism to validate if the learning objectives are
covered by the activities of the UoL.

Learning objectives can be associated to the different roles

of participants previously defined. Fig. 2 shows an example

of this notation. The example contains two objectives,

Primary course objective and Secondary course objective, repre-

sented with ellipses. Primary course objective is subdivided

into a graph of subobjectives. Arrows in the learning

objectives diagram represent an inclusion relationship. Thus,

First module objective and Second module objective learning

objectives are part of (are included in) the main Primary

course objective learning objective. This means that to achieve

the Primary course objective, the minimum achievement of the

First module objective and Second module objective is needed.
Moreover, two different roles participate in the achieve-

ment of the example’s learning objectives: the Student (a

learner role) and Teacher (a staff role) represented by

rounded boxes. These roles are associated with learning

objectives by using lines between the role and the objective.

Note that the association between actors and objectives is

inherited by subobjectives, which means that the role

associated with the main objective also participates in the

achievement of the subobjectives. In our example, the

Teacher role is only involved in the achievement of Topic 4

and Secondary course objective learning objectives, while the

Student role is involved in Primary course objective, Secondary

course objective, and in all the sub-objectives of Primary course

objective (i.e., First module objective, Second module objective,

Topic 1, Topic 2, Topic 3, and Topic 4). It is also possible to

design learning objectives for different learner roles because

the notation for learning objectives is not restricted to only

one learner role per diagram.

4.3 Notation for Defining Activities

UoL graphical notation for defining activities is presented

in Fig. 3. Using IMS LD terminology, the notation

introduces two kinds of activities, simple and structured.

. Simple activities include learning activities (Fig. 3a),
which are typically performed by students, and
support activities (Fig. 3b), which are performed by a
supporting role, usually an instructor.

194 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009

Fig. 1. Example of a role hierarchy definition using the graphical

notation. Arrows represent the is a relationship between roles (e.g.,

Teacher is an specialization of Staff).

Fig. 2. Example of a learning objectives definition with role association.

. Structured activities allow instructors to aggregate
activities (both simple and structured) thus adding
an implicit sequencing behavior. With these activ-
ities there are two possibilities: activities are per-
formed in sequence or activities can randomly be
chosen. According to these possibilities, there are
two different graphical notations for activity struc-
tures: Fig. 3c shows the appearance of a structured
activity with a fixed sequenced runtime behavior
and Fig. 3d shows the appearance of a structured
activity with a user selection behavior.

In an UoL, it is possible to use the same activity (simple
or structured) in different places. As introduced before, the
completion state of an IMS LD activity is shared among all
its occurrences. Hence, a decoration symbol (a circular
button with an arrow, see Fig. 3e) is automatically applied
to all of the activity occurrences to highlight this behavior.
Fig. 3f shows an example of a learning activity with this
symbol. The authoring tool allows the instructor to clone an
activity in order to avoid this state-sharing behavior.

Due to the hierarchical nature of activity structures, the
graphical notation proposed also allows activities to be
collapsed or expanded in a diagram to increase the
diagram’s legibility as well as the definition of the activity
structures in separate diagrams.

All activities, whether simple or structured, have a set of
nonvisual properties that allow the complete definition of
the activity. For example, this activity definition can include
the resources available at runtime or the description of the
learning objectives to be achieved.

4.4 Sequencing Notation

Sequencing diagrams are very similar to UML Activity
diagrams. However, in contrast to Laforcade’s work [23],
we are not attempting to use UML as a learning design
notation, but simply to use activity diagrams as a natural
choice in a flow-oriented modeling domain. Our notation
also includes many other elements and concepts, which
have nothing to do with standard UML.

Fig. 4 depicts a repertory of symbols used in the e-LD

sequencing diagrams. There is, therefore, a notation for

indicating the following:

. The start (Fig. 4a) and end (Fig. 4b) points of the
diagram.

. The different learning flows, represented by arrows
(Fig. 4c).

. Parallel execution of elements is represented using
rounded boxes with highlighted parallel bars at the
top and bottom of the boxes (Fig. 4d).

. Assignment of participant roles to activities (Fig. 4e).
Activity sequencing diagrams can be partitioned to
specify which roles will be involved in the activity’s
performance.

Activities, whether simple or structured, will appear in

activity sequencing diagrams using the same notation as

described in Section 4.3.
To maintain compatibility with IMS LD, the notation for

sequencing diagrams includes constructions to represent

the method (Fig. 5a), play (Fig. 5b), act (Fig. 5c), and role-part

(Fig. 5d). These constructions have the same behavior as

IMS LD from the point of view of sequencing:

1. Plays inside the method run in parallel.
2. Acts inside a Play run in sequence.
3. Role-parts inside an Act run in parallel.

Note that, as with structured activities, the notation for

the method, play, act, and role-part concepts can be

collapsed and expanded as needed and its definition can

be done in a separate diagram.

4.4.1 Advanced Sequencing: Personalization

of the Learning Flow

To facilitate the personalization of the learning flow based

on the evolution of the learner during the performance of the

UoL, e-LD’s sequencing notation incorporates conditions.

Conditions are also present in mainstream exchange

languages, such as IMS LD. However, the way of incorpor-

ating conditions in e-LD is radically different from IMS LD.

In e-LD, conditions are integrated into the learning flow.

MART�INEZ-ORTIZ ET AL.: AUTHORING AND REENGINEERING OF IMS LEARNING DESIGN UNITS OF LEARNING 195

Fig. 3. Visual notation for simple and structured activities.

Fig. 4. Notations used in sequencing diagrams.

This integration increases the usability of the notation, since

now instructors are not required to think about a disag-

gregated set of rules defined in another portion of the

design. They only need to reason out each relevant point in

the natural evolution of a learning flow, which is a far lower

cognitive load.
Fig. 6 depicts the graphical notation for conditions as

follows:

. Fig. 6a shows an example of an if-then-else condition
rule definition. This condition notation has an
attached Boolean expression evaluated only when
the learning flow reaches the condition. If the
expression evaluates to true, the learning flow goes
through the If path, and if the expression evaluates
to false, the control flow goes through the Else path.

. Fig. 6b shows an example of a condition definition,
where if-then-else rules are nested, supporting a
detailed learning flow definition.

. Fig. 6c shows an example of a condition, which only
contains the If part. This means that until the
expression becomes true, the learning flow stays at
the condition element.

Fig. 7a depicts an example of the graphical notation for

conditions. The example scenario involves two activities,

Activity 1 and Activity 2, which will be performed by a

student. Activity 2 only becomes visible after Activity 1 has

been completed and when the condition of the If1

becomes true.
Fig. 7b provides an excerpt of the equivalent IMS LD

XML representation that encodes the behavior described for

the graphical notation depicted in Fig. 7a, which is

illustrative of the economy of the graphical notation.
The next section continues with the Geo-Quiz 3 UoL

example showing the application of the visual notation

described throughout this section.

4.5 Visual Notation for the Geo-Quiz 3 UoL

The Geo-Quiz 3 UoL is one of the examples developed by
Professor Koper’s group as an example of conditional text
and the monitoring of properties. This UoL simulates a
small learning module with adaptive content and adaptive
learning flow depending on the grade obtained by the
student after taking a test (see [11] and [24] for a detailed
explanation).

As introduced in Section 3 and explained in Section 5, the
importation process produces an e-LD UoL that needs to be
manually refined later, taking into account the information
provided by the dependency graph (see Section 5.3). During
this refinement process, the visual notation is used to fully
reconstruct the semantics of the original UoL.

Fig. 8 depicts an excerpt of the complete diagram
representing the sequencing of the different activities
involved in this UoL. Although some parts of the sequencing
of the UoL have been collapsed to create a snapshot fitting
the paper’s dimensions, it is much simpler to understand the
structure of the UoL by simply looking at the diagram.

This simplicity is also helpful during the importation
process, where the automatically generated part of the
diagram (without the conditional blocks) provides a high-
level view complementary to the low-level view provided
by the dependency graph.

5 REENGINEERING OF IMS LD UOL:
THE IMPORTATION PROCESS

This section describes the reengineering process of a
preexisting IMS LD UoL. In contrast to the authoring

196 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009

Fig. 6. Notation for conditional sequencing.

Fig. 5. Notation for method, play, act, and role-part IMS LD concepts.

process where instructors work on their own, the
reengineering process is a collaborative process, where
instructors are supported by developers.

In this section, the UoL e-LD reengineering process is
analyzed from a task and resulting products perspective
(Section 5.1). The UoL importation process is then detailed
(Section 5.2) and, finally, an example of the dependency
graph generated during the importation process is pre-
sented (Section 5.3).

5.1 Products and Tasks in the
UoL Reengineering Process

Fig. 9 depicts the overall UoL reengineering process. The

requirements analysis task involves the initial conceptualiza-

tion of the UoL, identifying the roles of the participants

involved (e.g., instructor, student, mediator, etc.) and the

learning objectives of the UoL as a product of this task.

Instructors are in charge of this task.

MART�INEZ-ORTIZ ET AL.: AUTHORING AND REENGINEERING OF IMS LEARNING DESIGN UNITS OF LEARNING 197

Fig. 8. Excerpt of the graphical notation for the Geo-Quiz 3 UoL.

Fig. 7. Example of notation and IMS LD XML excerpt.

The Importation task comprises the importation of a

previously created IMS LD UoL into the e-LD Author tool.

During this task, both developers and instructors

are involved. Instructors perform this task as part of the

analysis phase in the ADDIE process and they are the

leaders of this task, whereas developers assess instructors

regarding interpretation of the semantics of IMS LD and

provide support regarding the programming skills needed

to import IMS LD level B UoLs. As a result of this task, an

UoL formalized using the authoring EML is created.

Because of this task’s complexity, the detailed explanation

is given in Section 5.2.
The Authoring task is where instructors check and adapt

the (imported) UoL to fulfill the learning objectives

identified. This task may need several authoring sessions,

usually after a formative UoL evaluation, to refine the

design of the UoL. An almost-ready-to-execute UoL is the

result of this task.
The Exportation task takes as input the UoL generated in

the Authoring task to export it to a new UoL compliant with

the IMS LD specification. The translation process tackles

with the differences between the authoring and exchange

EMLs. This process is carried out automatically by the e-LD

Author tool, generating a content package that is ready to

be run in an IMS LD player.
Finally, the Execution task is where instructors publish

the UoL created, configure the IMS LD player (e.g.,

participants’ enrollment) with the support of developers,

and finally, create an instance of the UoL. Participants’

feedback during UoL execution may be used to evolve the

UoL into new UoL instances.

5.2 The IMS LD UoL Importation Process

The IMS LD UoL importation process addresses the gap
between the exchange EML (IMS LD) and the flow-oriented
authoring EML (graphical notation presented in Section 4).
The importation process is sketched in Fig. 10.

The Validation task involves several steps toward a
complete validation of the importing UoL. Particularly, the
validation comprises three groups of tests:

1. IMS CP Package Information Format (PIF) tests.
2. IMS CP imsmanifest.xml tests.
3. IMS LD UoL tests.

The first group of tests is related to IMS CP requirements
regarding the packaging format (i.e., a zip file) and the
existence of an XML file named imsmanifest.xml (hereafter
the manifest) along with control files (e.g., Document Type
Definition or XML Schema files) required to validate this
document as a valid XML document.

The second group of tests is related to the manifest
syntactic and semantic validation according to the IMS CP
specification. Syntactic validation checks the manifest as an
XML file against the IMS CP XML Schema. However, there
are other specification restrictions that cannot be expressed
by using XML Schema. In e-LD, this kind of restriction is
called a semantic restriction. An example of semantic
restriction might be checking the suitability of references
within elements of the manifest. In addition, e-LD includes
other semantic tests, such as checking, if all files included
inside the .zip file are referenced by an element of
the manifest.

The third group of tests is related to the syntactic and
semantic validation of the manifest file as an IMS LD UoL.
An IMS LD UoL is embedded inside the manifest, so the
manifest needs to be validated again against the IMS LD
specification control files. Again, another semantic valida-
tion is needed, since it is not managed by syntactic (XML-
schema oriented) validation. For example, resources tagged

198 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009

Fig. 10. Detailed importation process of an IMS LD UoL. Rounded boxes

represent tasks and 3D boxes represent the resulting task products.

Dotted arrows represent the participants’ involvement in each task.

Fig. 9. Products and tasks diagram of the e-LD reengineering process.

Rounded boxes represent tasks and 3D boxes represent the resulting

task products. Dotted arrows represent actors’ participation in each task.

as imsldcontent need to be validated to check: 1) if they
actually contain IMS LD global elements and 2) if the
properties referenced actually exist in the UoL.

All test results are logged in the importation report (see
Fig. 10). This importation report can be seen as an audit trail
that includes three different types of messages: information,
warning, and error messages. Information messages are just
useful information collected during the process (e.g., how
many files have been unzipped). Warning messages inform
about problems to be solved (e.g., a package without IMS
CP XML schema files). Finally, error messages inform about
fatal errors that stop the importation process.

After successful validation, the UoL is ready to be
translated into the authoring EML. This translation process
is done semiautomatically. The first stage of the translation
automatically translates as much as possible from the
original UoL into the imported UoL. This translation
process is performed in several steps using two guides:
1) the learning flow codified in the source UoL and 2) the
IMS LD specification levels. Due to the flow-oriented
nature of the authoring EML, the translation process’ goal
is to extract the implicit learning flow defined in the source
UoL. In addition, the learning flow in an IMS LD UoL is
defined incrementally at the different IMS LD levels (i.e.,
the learning flow defined using the elements of level A is
enriched with the elements of level B and in the same way
level B with elements of level C, although in its current
state e-LD does not deal with level C features).

Currently, this translation process automatically trans-
lates all elements of IMS Level A and partially translates
some Level B elements. The Level B elements addressed are:

. All the additions to the static model, both new
elements and modified elements.

. Additions to the completion conditions of the
elements in the dynamic model.

The remaining elements are Level B’s conditions. In IMS
LD, conditions are not directly linked to the learning flow,
but appear as a separate set of reactive rules, which are also
available for all the activities. This feature makes the IMS
LD level B very difficult to use and maintain. Even
computer science experts without advanced knowledge of
rule-based computation systems (a computation model
often used in contexts such as artificial intelligence
programming [25]) have difficulties using it [26]. Therefore,
the direct use of the IMS LD condition may be too complex
for the average instructor.

Aside from authoring complexities, there is no algo-
rithm for direct translation from rule-based to flow-based
conditions while still preserving the underlying learning
design. However, some heuristics can be established and,
in each situation, a set of possible translations can
automatically be offered.

In addition to the problems report incrementally gener-
ated during the Validation and Translation tasks, a new
document is generated, the manual importation report. The
manual importation report records the elements of the
source UoL that require manual translation, but also
includes some suggestions that can be taken into account
for this manual translation process. The result of the
Validation and Translation tasks are: an authoring EML

UoL and the validation-importation report are obtained.
Both elements are the input for the Refinement task.

The Refinement task is led by instructors, but with
developers’ help (particularly with conditions) if needed.
Following the developers’ suggestions, instructors can
modify the UoL to include the original conditions’ intended
behavior. Additionally, instructors can include small re-
finements according to their own educational needs.

To effectively assess instructors, developers need, in
turn, to understand the UoL. However, UoL under-
standing requires identifying the relationships of the
different elements from the XML document that represent
this UoL, which is a very difficult problem, even for
skilled developers.

Therefore, e-LD Author provides a browser to help
users navigate through an IMS LD UoL. This browser
allows for the navigation through different facets of the
UoL. This browser provides not only an abstract overview
with basic information of the UoL elements but also gives
a detailed view where the XML fragment regarding a
user-selected IMS LD element is printed for easy review
(including hyperlinks to the other referenced elements
included in the UoL). These hyperlinks save users’ time by
avoiding having to search for an element directly in the
XML document.

Finally, this browser also includes a dependency viewer
that helps users to understand the different relationships
between the UoL elements. This dependency viewer
provides a powerful tool for the understanding of the
learning flow defined in the UoL. This dependency viewer
presents an interactive graphical representation of the
UoL’s dependency graph. This dependency graph is a direct
graph representing all the relationships between the
elements of the UoL related to the sequencing of activities.
This graph is built from the XML definition of the UoL,
representing the elements of the UoL as nodes and their
relationships as edges of the graph. The user can interact
with the graph viewer to select which detail of information
needs to be displayed. The graph viewer also allows to
focus on a particular element.

The different node types included in the dependency
graph are the following:

. Element nodes: These nodes represent the plays, acts,
role-parts, activity structures, learning activities, and
support activities.

. IMSLD content: They represent learning contents
which are a source of property modification that can
fire a rule modifying the learning flow.

. Conditions’ rules: Each condition produces three
nodes: one representing the condition as a whole,
another one associated to the if part, and a third one
associated with the else part.

. Properties: Both properties and property groups are
represented.

The different edge types included in the dependency
graph are as follows:

. Inclusion dependency: Edges of this type represent
the inclusion relationship between elements.
Although all edges are generated, by default, only

MART�INEZ-ORTIZ ET AL.: AUTHORING AND REENGINEERING OF IMS LEARNING DESIGN UNITS OF LEARNING 199

inclusion dependencies between the rules’ compo-
nents and between property groups and their
components are displayed.

. Completion dependency: These edges represent the
dependencies between elements and properties
regarding the completion of such elements.

. Visibility modification dependency: Edges of this
type represent visibility modifications produced by
fired rules.

. Property modification dependency: Edges of this
type represent the modification of a property done by:
1) a rule execution, 2) a resource of type imsldcontent,
or 3) as a result of an element’s completion.

. Property reading dependency: An edge of this type
represents the act of reading the value of a property.
The reading of a property’s value can be done with
multiple purposes: to show some evaluation results
in a global element as a completion mechanism for
sequencing elements or as part of a condition guard
of a condition’s rule.

Once the dependency graph is built, properties and
conditions are classified according to the classification
proposed in Section 2.2. This information is available in
the manual import report but it is also attached to the rule
node in the dependency graph, so it is accessible from the
dependency viewer.

Due to the fact that the dependency graph contains a lot
of dependencies, its graphical representation may become
unmanageable in a complex UoL, and thus, useless for
users. To address that issue the dependency viewer
includes a set of configurable filters so that users can
control the display of subgraphs.

The next section provides an example of dependency
graph and some examples of the analysis that can be
performed from the dependency graph.

5.3 Dependency Graph for the Geo-Quiz 3 UoL

Fig. 11 depicts an excerpt of the dependency graph for the
Geo-Quiz 3 UoL introduced in Section 4.5 to illustrate
which kind of conclusions can be drawn. For example, the
dependency graph shows two imsldcontent resources
(Figs. 11f and 11g) with a different purpose. The imsldcon-
tent res-questions (Fig. 11g) have outgoing dependencies to
the properties Answer1, Answer 2, Answer 3, Answer4 (not
shown in Fig. 11), and Answer 5, so this resource is mainly
used to modify properties. In fact, this resource contains the
quiz that is proposed to the learner. The modification of
these properties fires some rules that modify the properties
Value1, Value2, Value3, Value4 (not shown in Fig. 11), and
Value5 (Figs. 11b, 11c, 11d, and 11e). These properties are
later read by the imsldcontent resource res-feedback (Fig. 11f).

So the overall behavior is that once the test’s answers
are collected in res-questions, some conditions are fired,
both preparing feedback (i.e., value properties) and
modifying the learning flow accordingly the score (the
accuracy property).

Finally, Fig. 11a shows a common pattern where a set of
rules modifies the visibility of the same activities (in this
example, flow1, flow2, and flow3) but in a complementary
way, showing one of them and hiding the others, so that

these rules control three conditional learning paths. This is
an example of a pattern that can be used as a heuristic
during the importation process. The graphical representa-
tion of the dependency graph, in which all the dependen-
cies are glued together, facilitates the realization of this kind
of analysis, and therefore, the comprehension of the
underlying learning design.

6 RELATED WORK

In this section, we present some work related to our
authoring and reengineering approach of IMS LD UoLs. As
an exhaustive analysis is not possible, we have focused on
the different topics and domains that have influenced our
approach: 1) business process modeling, 2) instructional
design and graphical authoring, and 3) specific IMS LD
authoring tools.

The business process management domain is facing a
similar problem to ours with the Business Process Manage-
ment Notation (BPMN) and Business Process Execution
Language (BPEL) [20]. BPMN addresses business manage-
ment from a business analyst’s point of view, providing a
high-level graphical notation, whereas BPEL provides low-
level Web services coordination language that can be used
to automate business processes. In fact, a mismatch between
BPMN and BPEL has been identified [27]. However, there
are proposals to translate BPMN diagrams (with some

200 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009

Fig. 11. Dependency graph excerpt of the Geo-Quiz 3 UoL. Stars
represent sequencing elements. Hexagons represent imsldcontent
resources. Pentagons represent properties. Squares represent rules
and circles represent rules’ parts. Arrows represent dependencies
between nodes. Dotted arrows represent a visibility modification
dependency, where the element is hidden.

restrictions) to the BPEL process [28]. e-LD Author provides
high-level notation for the authoring of UoL and then
translates it to IMS LD. However, to simplify this transla-
tion, the authoring EML retains part of the structure of the
exchange EML.

Graphical authoring of EML designs has attracted
significant attention in e-learning. There are several EML
proposals with built-in graphical notation, such as E2ML
[29], PoEML [30], and LAMS [7]. Some of these languages
have been proposed just as a design language like E2ML,
whereas others cover not only design but also execution
aspects like LAMS. A more complete analysis of instruc-
tional design languages and graphical notations can be
found in [31].

IMS LD authoring is a very popular research topic with a
great deal of ongoing work currently being done. Griffiths
et al. [32] provide an analysis of the tools needed to work
with IMS LD and the difficulties that teachers encounter
during the authoring of IMS LD UoLs. Some of the available
initiatives are: MOTþ [33], ASK-LDT [34], Reload LD Editor
[35], CoSMos [36], Prolix GLM [12], ReCourse [37]. In parallel
to our work, the last two tools are making a great effort to
provide IMS LD with a user-friendly graphical notation.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our approach, called e-LD,
to simplify the authoring and reengineering of IMS LD
UoLs. e-LD provides with an EML visual notation system
specifically oriented to simplifying UoL authoring. How-
ever, it is important to note that we are not promoting yet
another new EML. The key idea is to use this author-
oriented notation for the authoring process and then export
the designs to an EML standard notation (e.g., IMS LD). Our
approach also includes a collaborative semiautomatic
importation process to address the reuse of preexisting
UoLs. The authoring and reengineering processes are
supported by the e-LD Author tool.

We have conducted an initial evaluation of the graphical
notation included in e-LD and the reengineering process
described above has been tested in two different scenarios:
with advanced users (e-learning researchers) and PhD
students of an e-learning course offered at the Complutense
University. As a result of the preliminary experiments, we
obtained some evidence on how the graphical notation
proposed in e-LD simplifies the process of the authoring
UoLs. The creation of UoLs with the complexity of those
analyzed in our practical experiments is far beyond the
reach of most designers, but students without previous
experience in using EMLs were able to recreate them using
e-LD. However, further study is required, especially in
reuse scenarios, where nonexperts create new UoLs based
on UoL templates or previously built UoLs.

Readers who are familiar with UML graphical notation
will notice several parallels with the notation described in
this work. This is intentional, given the background in
Computer Science of the participants in the test case.
However, due to the e-LD authoring tool work with the
metamodel behind the graphical notation, different nota-
tion systems can be developed or customized for a
particular stakeholder or community. Therefore, our main
short-term goal is to improve the usability of the e-LD

Author tool and test our approach with users without a
computer science background.

As future work, we will explore new mechanisms to
improve the automatic importation of UoLs, particularly
conditions’ rule clustering and automatic detection of flow-
oriented structures. In addition, we will also explore the
compatibility with other exchange EMLs like SCORM
Sequencing and Navigation [18] and LAMS and whether
it is possible to integrate the authoring of UoLs using
different target EMLs at design time. We are in early
contacts with GRAILS [9], [10] developers to provide an
integrated approach that covers from the authoring to
publication of the learning designs.

ACKNOWLEDGMENTS

The Spanish Committee of Science and Technology (projects
TIN2005-08788-C04-01, Flexo-TSI-020301-2008-19, and
TIN2007-68125-C02-01) has partially supported this work,
as well as the Complutense University of Madrid (research
group 921340, Santander/UCM Project PR34/07-15865),
and the EU Alfa project CID (II-0511-A).

REFERENCES

[1] P.B. Sloep, “Reuse, Portability and Interoperability of Learning
Content: Or Why an Educational Modeling Language,” Online
Education Using Learning Objects, R. McGreal, ed., pp. 128-137,
Routledge/Falmer, 2004.

[2] IMS: IMS Learning Design Information Model Version 1.0, http://
www.imsglobal.org/learningdesign/, 2003.

[3] Learning Design—A Handbook on Modeling and Delivering Networked
Education and Training, R. Koper and C. Tattersall, eds. Springer
Verlag, 2005.

[4] P. Polsani, “Use and Abuse of Reusable Learning Objects,”
J. Digital Information, vol. 3, no. 4, p. 164, 2003.

[5] I. Martı́nez-Ortiz, J.L. Sierra, and B. Fernández-Manjón, “Enhan-
cing Reusability of IMS LD Units of Learning: The e-LD
Approach,” Proc. Eighth IEEE Int’l Conf. Advanced Learning
Technologies (ICALT ’08), pp. 402-404, 2008.

[6] I. Martı́nez-Ortiz, J.L. Sierra, B. Fernández-Manjón, and A.
Fernández-Valmayor, “Language Engineering Techniques for
the Development of e-Learning Applications,” J. Network and
Computer Applications, to appear.

[7] J. Dalziel, “Implementing Learning Design. The Learning Activity
Management System (LAMS),” Proc. 20th Ann. Conf. Australasian
Soc. for Computers in Learning in Tertiary Education (ASCILITE ’03),
2003.

[8] M. Weller, A. Little, P. McAndrew, and W. Woods, “Learning
Design, Generic Service Descriptions and Universal Acid,”
Educational Technology and Soc., vol. 9, no. 1, pp. 138-145,
http://www.ifets.info/issues.php?id=30, 2006.

[9] P.J. Muñoz Merino, C. Delgado Kloos, and J. Fernández Naranjo,
“Enabling Interoperability for LMS Educational Services,” Com-
puter Standards & Interfaces, vol. 31, no. 2, pp. 484-498, 2009.

[10] R. Hernández, A. Pardo, and C. Delgado Kloos, “Creating and
Deploying Effective eLearning Experiences Using .LRN,” IEEE
Trans. Education, vol. 50, no. 4, pp. 345-351, Nov. 2007.

[11] R. Koper and D. Burgos, “Developing Advanced Units of
Learning Using IMS Learning Design Level B,” Int’l J. Advanced
Technology for Learning, vol. 2, no. 4, pp. 252-259, 2005.

[12] S. Heyer, P. Oberhuemer, S. Zander, and P. Prenner, “Making
Sense of IMS Learning Design Level B: From Specification to
Intuitive Modeling Software,” Proc. Second European Conf. Technol-
ogy Enhanced Learning (EC-TEL ’07), pp. 86-100, 2007.

[13] W. Dick and L. Carey, The Systematic Design of Instruction, fourth
ed. Harper Collins College Publishers, 1996.

[14] P. Sloep, H. Hummel, and J. Manderveld, “The Learning Design
Specification,” Learning Design—A Handbook on Modeling and
Delivering Networked Education and Training, R. Koper and
C. Tattersall, eds., pp. 139-160, Springer, 2005.

MART�INEZ-ORTIZ ET AL.: AUTHORING AND REENGINEERING OF IMS LEARNING DESIGN UNITS OF LEARNING 201

[15] R.S. Aguilar-Saven, “Business Process Modeling: Review and
Framework,” Int’l J. Production Economics, vol. 90, no. 2, pp. 129-
149, 2004.

[16] F. Ferrucci, G. Tortora, and G. Vitiello, “Exploiting Visual
Languages in Software Engineering,” Handbook of Software
Engineering and Knowledge Engineering, pp. 53-76, 2002.

[17] IMS: IMS Content Packaging Information Model Version 1.1.4,
http://www.imsglobal.org/content/packaging/cpv1p1p4/
imscp_infov1p1p4.html, Dec. 2008.

[18] ADL, Shareable Content Object Reference Model (SCORM), third
ed., Sequencing and Navigation Version 1.0, http://www.
adlnet.gov/scorm/, 2006.

[19] P.P. Chen, “Database Design Using Entities and Relationships,”
Principles of Data Base Design, S.B. Yao, ed., pp. 174-210, Prentice-
Hall, 1985.

[20] W. Aalst and H. Kees, Workflow Management: Models, Methods, and
Systems. MIT Press, 2004.

[21] I. Martı́nez-Ortiz, P. Moreno-Ger, J.L. Sierra-Rodrı́guez, and B.
Fernández-Manjón, “Supporting Authoring and Operationaliza-
tion of Educational Modeling Languages,” J. Universal Computer
Science, vol. 13, no. 7, pp. 938-947, 2007.

[22] I. Martı́nez-Ortiz, J.L. Sierra, and B. Fernández-Manjón, “Translat-
ing E-Learning Flow-Oriented Activity Sequencing Descriptions
into Rule-Based Designs,” Proc. Sixth Int’l Conf. Information
Technology: New Generations (ITNG ’09), to appear.

[23] P. Laforcade, “Graphical Representation of Abstract Learning
Scenarios: The UML4LD Experimentation,” Proc. Seventh IEEE
Int’l Conf. Advanced Learning Technologies (ICALT ’07), pp. 477-479,
2007.

[24] D. Burgos, “Geo-Quiz 3,” http://hdl.handle.net/1820/404, Nov.
2008.

[25] L. Brownston, R. Farell, E. Kant, and N. Martin, Programming
Experts Systems in OPS5: An Introduction to Rule-Based Program-
ming. Adisson-Wesley, 1985.

[26] X. Li, “What’s So Bad About Rule-Based Programming?” IEEE
Software, vol. 8, no. 5, pp. 103-105, Sept. 1991.

[27] J. Recker and J. Mendling, “On the Translation between BPMN
and BPEL: Conceptual Mismatch between Process Modeling
Languages,” Proc. 18th Int’l Conf. Advanced Information Systems
Eng., pp. 521-532, 2006.

[28] C. Ouyang, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter
Hofstede, “Translating BPMN to BPEL,” BPM Center Report
BPM-06-02, http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/
reports/2006/BPM-06-02.pdf, 2006.

[29] L. Botturi, “E2ML: A Visual Language for the Design of
Instruction,” Educational Technology Research and Development,
vol. 54, no. 3, pp. 265-293, 2006.

[30] M. Caeiro, M.J. Marcelino, M. Llamas, L. Anido-Rifón, and A.J.
Mendes, “Supporting the Modeling of Flexible Educational Units
PoEML: A Separation of Concerns Approach,” J. Universal
Computer Science, vol. 13, no. 7, pp. 980-990, 2007.

[31] L. Botturi, M. Derntl, E. Boot, and K. Figl, “A Classification
Framework for Educational Modeling Languages in Instructional
Design,” Proc. Sixth IEEE Int’l Conf. Advanced Learning Technologies
(ICALT ’06), pp. 1216-1220, 2006.

[32] D. Griffiths, J. Blat, R. Garcia, H. Vogten, and K.L. Kwong,
“Learning Design Tools,” Learning Design—A Handbook on Model-
ing and Delivering Networked Education and Training, R. Koper and
C. Tattersall, eds., pp. 109-135, Springer, 2005.

[33] G. Paquette, M. Léonard, K. Lundgren-Cayrol, S. Mihaila, and D.
Gareau, “Learning Design Based on Graphical Knowledge-
Modeling,” Educational Technology & Soc., vol. 9, no. 1, pp. 97-
112, 2006.

[34] P. Karampiperis and D. Sampson, “A Flexible Authoring Tool
Supporting Adaptive Learning Activities,” Proc. Int’l Assoc. for
Development of the Information Soc. (IADIS) Int’l Conf. Cognition and
Exploratory Learning in Digital Age (CELDA ’04), 2004.

[35] C.D. Milligan, P. Beauvoir, and P. Sharples, “The Reload Learning
Design Tools,” J. Interactive Media in Education, vol. 2005, no. 7,
2005.

[36] Y. Miao, “Facilitating Learning Designers to Author Units of
Learning Using IMS LD,” Proc. Int’l Conf. Computers in Education,
pp. 275-282, 2005.

[37] D. Griffiths, P. Beauvoir, and P. Sharples, “Advances in Editors for
IMS LD in the TENCompetence Project,” Proc. Eighth IEEE Int’l
Conf. Advanced Learning Technologies (ICALT ’08), pp. 1045-1047,
2008.

Iván Martı́nez-Ortiz received the MS degree in
computer science from the Complutense Uni-
versity of Madrid (UCM) in 2004. He is currently
working toward the PhD degree at UCM, where
he is a member of the <e-UCM> Group, the
research group on e-learning technologies of the
university. From 2004 to 2007, he was a lecturer
at Centro de Estudios Felipe II, Aranjuez, Spain.
He has been a full-time lecturer of computer
science in the Computer Science School at UCM

since 2007. He has coauthored more than 30 research papers published
in international journals and international conferences. His research
interests include e-learning technologies, authoring in e-learning, and
the integration of educational modeling languages and workflows
technologies.

José-Luis Sierra received the BS and MS
degrees from the Technical University of Madrid
(UPM) in 1991, 1992, and 1995, and the PhD
degree in computer science from the Complu-
tense University of Madrid (UCM) in 2004. In
1998, he joined UCM as an assistant professor,
where he has been an associate professor of
computer science since 2007. He was a
research assistant in the Industrial Automatic
Institute at the Spanish Scientific Research

Council during 1990-1992 and the Artificial Intelligence Department at
UPM during 1993-1998. He has coauthored more than 70 research
papers published in international journals and international conferences.
His research interests include e-learning technologies, domain-specific
languages, and markup languages. He is a member of the <e-UCM>
Research Group.

Baltasar Fernández-Manjón received the MS
and PhD degrees in physics from the Complu-
tense University of Madrid (UCM) in 1989 and
1996. In 1992, he joined UCM as an assistant
professor of computer science, where he has
been an associate professor since 1998. Cur-
rently, he is the vice dean of research and
foreign relationships in the Computer Science
School at UCM. He has coauthored more than
90 research papers published in international

journals and international conferences. His main research interests are
e-learning technologies, educational uses of markup technologies,
application of educational standards, and user modeling. He leads the
<e-UCM> Research Group. He is a senior member of the IEEE.

202 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 3, JULY-SEPTEMBER 2009

