
Scaling Up Programming by Demonstration
for Intelligent Tutoring Systems Development:

An Open-Access Web Site for Middle
School Mathematics Learning

Vincent Aleven, Bruce M. McLaren, and Jonathan Sewall

Abstract—Intelligent tutoring systems (ITSs), which provide step-by-step guidance to students in complex problem-solving activities,

have been shown to enhance student learning in a range of domains. However, they tend to be difficult to build. Our project

investigates whether the process of authoring an ITS can be simplified, while at the same time maintaining the characteristics that

make ITS effective, and also maintaining the ability to support large-scale tutor development. Specifically, our project tests whether

authoring tools based on programming-by-demonstration techniques (developed in prior research) can support the development of a

large-scale, real-world tutor. We are creating an open-access Web site, called Mathtutor (http://webmathtutor.org), where middle

school students can solve math problems with step-by-step guidance from ITS. The Mathtutor site fields example-tracing tutors, a

novel type of ITS that are built “by demonstration,” without programming, using the Cognitive Tutor Authoring Tools (CTATs). The

project’s main contribution will be that it represents a stringent test of large-scale tutor authoring through programming by

demonstration. A secondary contribution will be that it tests whether an open-access site (i.e., a site that is widely and freely available)

with software tutors for math learning can attract and sustain user interest and learning on a large scale.

Index Terms—Homework support systems, adaptive educational systems, intelligent tutoring systems, authoring tools.

Ç

1 INTRODUCTION

STUDENTS in middle schools and high schools spend a
great deal of time outside of school. If they want to use

part of that time solidifying and extending the mathematics
they learned in school, however, they will have difficulty
finding effective learning activities. After-school tutoring
programs are available only on a limited basis and are often
not ideal. Professional tutoring services are costly. Of the
many Web sites available for math instruction, few are free
and offer rich problems with guided learning by doing.
Thus, there is a great need for a better math Web site, one
where students can “learn by doing,” as they engage in rich
and challenging math problems. To address this need, we
are creating Mathtutor (http://webmathtutor.org), an open-
access Web site (i.e., a site that is widely and freely available
to whoever wishes to use it) for middle school mathematics.

The site offers detailed, interactive, step-by-step guidance
with problem solving, individualized problem selection,
detailed reports of student performance for teachers,
parents, etc. On the Mathtutor site, students work with
intelligent tutoring systems (ITSs), programs that provide
step-by-step guidance with problem solving to support
students in learning a complex cognitive skill [57], [60]. A
first version of the Mathtutor site, with limited content, has
just been opened to the public. Over the next two years, we
will continue to add content to the site and extend its
capabilities. Eventually, Mathtutor will offer a comprehen-
sive range of middle school math topics (grades 6-8).
Mathtutor is likely to be useful as supplemental instruction
in many contexts, such as after-school tutoring, summer
schools, homework, home schooling, classroom instruction,
and remediation during the regular school day.

In developing Mathtutor, we address an important open

issue in research on ITS authoring tools and methodologies.

While ITSs have been shown to be very effective in a range

of domains [24], [60], they tend to be difficult to build. Many
authoring tools have been built to support and simplify ITS

development [37], but few have reached a state of maturity,

where we can say with confidence that they can support

large-scale ITS development projects with an extended

software life cycle. Tools such as the Assistments Builder

[21] and ASPIRE [34] have been used to build major ITS, but
on the whole, large-scale projects using dedicated ITS

authoring environments are still quite rare. Such projects

may bring up maintainability and scalability issues that do

not necessarily come up in smaller scale projects, so reports

64 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

. V. Aleven is with the Human-Computer Interaction Institute, Carnegie
Mellon University, 3613 Newell Simon Hall, 5000 Forbes Avenue,
Pittsburgh, PA 15213-3891. E-mail: aleven@cs.cmu.edu.

. B.M. McLaren is with the Human-Computer Interaction Institute,
Carnegie Mellon University, 2617 Newell-Simon Hall, 5000 Forbes
Avenue, Pittsburgh, PA 15213-3891, and the Competence Center for
e-Learning, Deutsches Forschungszentrum für Künstliche Intelligenz,
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany.
E-mail: bmclaren@cs.cmu.edu.

. J. Sewall is with the Human-Computer Interaction Institute, Carnegie
Mellon University, 2617 Newell-Simon Hall, 5000 Forbes Avenue,
Pittsburgh, PA 15213-3891. E-mail: sewall@cs.cmu.edu.

Manuscript received 8 Jan. 2009; revised 23 Mar. 2009; accepted 4 Apr. 2009;
published online 5 May 2009.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLTSI-2009-01-0002.
Digital Object Identifier no. 10.1109/TLT.2009.22.

1939-1382/09/$25.00 � 2009 IEEE Published by the IEEE CS & ES

on the experience of using ITS authoring tools in large-scale
projects are highly desirable. The current paper is such a
report; it describes an early stage of a large-scale ITS project.

In creating Mathtutor, we use a novel technology for ITS
called example-tracing tutors, developed in our lab. These
tutors support key behaviors that make ITS effective, such as
step-by-step hints and feedback during problem-solving
activities [57], but they are much easier to build than typical
ITS. Example-tracing tutors derive, from the Cognitive Tutor
technology [24], [25], an approach to ITS that has been shown
to be highly effective in improving students’ math achieve-
ment levels [24], [36], [45], [54]. Cognitive Tutors are rooted in
cognitive theory [3] and cognitive modeling. Like most other
ITS, they support learning by doing—students learn by
tackling complex problems for which the tutor provides step-
by-step guidance [57], typically, problems of a recurrent type
(e.g., solving algebraic equations) rather than “one-of-a-
kind” problems, and often problems that are amenable to
multiple solution strategies. Cognitive Tutors operate using a
rule-based cognitive model of student problem solving, a
computer simulation of student thinking. The tutor uses the
model to evaluate student problem-solving behavior, track
individual students’ skill development over time, and select
problems on an individual basis [4], [22].

Example-tracing tutors maintain both the grounding of
Cognitive Tutors in cognitive theory as well as their
essential tutoring behaviors. The underlying technology,
and the authoring process used to construct the tutors,
however, are very different. Example-tracing tutors have
two main advantages over Cognitive Tutors. First, the
Cognitive Tutor Authoring Tools (CTATs) [1], [23] make it
possible to build example-tracing tutors faster and more
economically than traditional development time estimates
for ITS [37], without requiring advanced computer pro-
gramming skills. Whereas typical ITS development tends to
require advanced AI programming skill, example-tracing
tutors can be built relatively easily by nonprogrammers,
through “programming by demonstration” [29], [38].
Second, CTAT makes it possible to deliver intelligent tutors
on the Web, which is now the preferred mode of delivery
for ITS [2], [13], [16], [18], [32], [33], [35], [46], [53], [58], [61],
although there are still architectural issues to resolve in
order to robustly support intelligent tutors on the Web [43].
Our claim is not that example-tracing tutors are always a
preferred option over Cognitive Tutors. They may not be,
for example, for tasks that have many operators whose
results differ depending on the state in which they are
applied. However, there is a large class of task domains for
which example-tracing tutors are well suited.

Whereas Cognitive Tutors use a rule-based cognitive
model of the targeted problem-solving skills to monitor
student problem-solving behavior, example-tracing tutors
evaluate student problem-solving behavior with reference
to specific examples of problem solutions. An essential step
in the process of authoring an example-tracing tutor is for
an author to demonstrate the problem-solving behaviors for
which the tutor is to provide guidance, as well as to
demonstrate common student errors. CTAT records the
demonstrated problem-solving steps in a behavior graph. The
author generalizes the graph among other ways by attaching

ordering constraints and formulas, described further below.
At tutoring time, an example-tracing tutor evaluates
student problem-solving behavior by flexibly comparing it
against the generalized behavior graph. Thus, the tutor is
capable of recognizing as correct student behavior not just
the fixed sequences of problem-solving steps recorded in
the behavior graph, but many variants as well. The
resulting tutoring behaviors include many features char-
acteristic of ITS, as catalogued by VanLehn [57]. CTAT is
not unique among ITS authoring tools in supporting
authoring without programming. The Assistments Builder
[21], ASPIRE [34], and the Task Tutor Toolkit [41] also
support authoring of tutors of varying levels of sophistica-
tion without requiring programming. The Assistments
Builder supports simpler tutors than CTAT through Web-
based authoring. ASPIRE supports a different type of tutors,
constraint-based tutors, but its GUI builder is much simpler
than CTAT’s. The Task Tutor Toolkit offers a programming-
by-demonstration approach not unlike that of CTAT, but
CTAT has a more powerful tutor engine and places more
emphasis than the Task Tutor Toolkit on efficient authoring
and maintenance of large sets of isomorphic or near-
isomorphic tutor problems.

CTAT-built tutors have been demonstrated to be fully
robust for use in real educational settings over a wide range
of projects. So far, at least 26 research studies have used
CTAT-built tutors, making CTAT the most widely used ITS
authoring tool that we know of. These projects provide
evidence that programming-by-demonstration techniques
can support highly cost-effective authoring of real-world
ITS, compared to historic estimates of authoring efficiency
[1]. However, these projects, while being “real-world,”
tended to have somewhat limited scope in terms of
curricular breadth (e.g., 1 or 2 hours of instruction), and
the number of students that used the CTAT-developed
tutors (e.g., 30-100). The current project, by contrast,
involves much greater curricular breadth than prior
projects, as well as longer and more independent real-life
use, iterative refinement of tutors, and—we anticipate—at
least an order of magnitude more users.

While a programming-by-demonstration approach un-
questionably simplifies the ITS authoring process, it has
not been fully proven that this type of process can support
the development, iterative refinement, and maintenance of
a large set of tutors. When not applied carefully, CTAT’s
programming-by-demonstration process can lead to ex-
tensive problem-specific authoring, with repeated structure
created across behavior graphs for different problems. This
duplication of structure would be detrimental to main-
tainability because any needed changes must then be
propagated across many similar or near-isomorphic pro-
blems. This risk must be offset by tools or tool features that
make it easier to establish and maintain consistency across
problems and problem types. CTAT has a number of such
features. A key question is whether we have struck a good
balance between ease of authoring and maintainability. As
discussed below, we believe that we are on the right track,
but the proof will be in whether we can grow Mathtutor to
large scale.

A second aspect of scale concerns the requirement that a
Web-based ITS architecture (such as Mathtutor’s) must

ALEVEN ET AL.: SCALING UP PROGRAMMING BY DEMONSTRATION FOR INTELLIGENT TUTORING SYSTEMS DEVELOPMENT: AN OPEN-... 65

support sophisticated tutoring behaviors even when hun-
dreds, or even thousands, of users work on the system
simultaneously. We investigate whether a “thin client”
solution can handle such a high load effectively. In this
approach, the tutor interface runs on the client but the tutor
engine runs on the server, with frequent communication
between them. Some Web-based ITS architectures have
opted for the same basic division of functionality (e.g., [2],
[32], [34]) while others have placed the tutor engine on the
client [46]. It is fair to say that this issue is still open [43],
particularly as ITS use scales up, and there may not be a
single best solution. The thin client solution may be
especially appropriate in an ITS authoring architecture (such
as CTAT’s on which Mathtutor is built), which aims to
support many different ITS configurations in a variety of
settings, specifically when the same tutor engine is
combined with many different tutor interface options.

Key anticipated contributions of the Mathtutor project
are, first, a demonstration that programming by demonstra-
tion can scale up and support a large tutor development
project. Also, we will learn whether a thin client approach is
feasible to support a large-scale ITS Web site. Beyond these
technical contributions, the Mathtutor project will provide
insight into whether an open-access site, for mathematics
learning with ITS, appeals to the general public and will be
an effective way of improving students’ mathematics
achievement in a variety of contexts. As mentioned, we
do not have full answers to these questions yet. The
experience in the coming two years will be interesting and
informative regarding these questions.

In this paper, we first describe the main goals and
foundation of the Mathtutor project and present examples of
tutors fielded on the site. We then describe the process of
programming by demonstration by which these tutors are
built and sketch out the main algorithm in the example-
tracing tutor engine. We also motivate the key architectural
choices in the Mathtutor site, including the decision to have
a thin client. We then compare and contrast Mathtutor with
other Web sites for math learning. Finally, we discuss our
initial experience with regard to the key scalability and
maintainability issues raised above.

2 THE FOUNDATION FOR MATHTUTOR:
COGNITIVE TUTOR MATH CURRICULA

Cognitive Tutor curricula for high school mathematics
have been very successful in real educational settings.
These courses are aligned with the (nonbinding but
influential) standards defined by the National Council of
Teachers of Mathematics (NCTM) [40], a large US
organization concerned with mathematics education.
Students in these courses use Cognitive Tutor about
40 percent of their classroom time. In 1999, the Cognitive
Tutor Algebra I curriculum was designated by the US
Department of Education as one of five “exemplary
curricula.” The Cognitive Tutor curricula have been
shown to improve student learning significantly, com-
pared to other math curricula (e.g., [24], [36], [45], [54]).
The high school curricula are in use in over 2,600 schools
across the USA and are being disseminated by Carnegie

Learning, Inc., a Pittsburgh-based company founded by
Carnegie Mellon University.

As we develop the Mathtutor site, we draw heavily from
an existing sequence of 6th, 7th, and 8th grade Cognitive
Tutor curricula for middle school math. These curricula
were developed in our research group and are based on the
same principles as the high school courses. They have been
piloted and incrementally improved in a number of schools
over several years. The middle school curricula also reflect
NCTM [40] curriculum, teaching, and assessment stan-
dards. They target and develop five content strands across
the three-year sequence as follows:

1. numbers and operations,
2. algebra,
3. data analysis,
4. geometry, and
5. measurement.

Across the three middle school courses, 66 Cognitive Tutor
lessons comprising over 1,000 problems have been devel-
oped. Text and material development have been guided by
research on students’ mathematical thinking [9], [11], [27],
[49], [46] and formative evaluations of text and tutor
activities [10], [12], [20]. Nine end-of-course summative
evaluations of the Cognitive Tutor middle school mathe-
matics courses have been completed in two partner
suburban school districts (Corbett, personal communica-
tion). Each of these evaluations compared learning out-
comes for students in the Cognitive Tutor courses with
students in corresponding traditional courses, with respect
to two types of tests: a test consisting of standardized test
questions drawn from various sources and one consisting of
open-ended problem-solving questions. The Cognitive
Tutor students scored higher on all nine of the standardized
tests; seven of the individual comparisons were statistically
significant or marginally significant. The same result was
obtained for the problem-solving tests, providing strong
preliminary evidence of the efficacy of the curricula and the
tutors within them.

The Mathtutor site will eventually cover the same five
content strands across a three-year sequence, in the same
breadth and depth. The scope and sequence of the material
remains largely the same. Further, in creating tutors for
Mathtutor we reuse existing problem types and specific
problems, as much as possible, reimplementing them as
example-tracing tutors using CTAT to permit Web access.
This reimplementation effort is necessary because the
original Cognitive Tutors do not run on the Web.

3 MATHTUTOR OVERVIEW AND CONTEXT OF USE

As mentioned, the Mathtutor site is open to anyone: any
teacher or student can sign up for the site. Students using the
site learn math by doing problems with guidance from the
ITS. Teachers who sign up for the site can create class lists,
assign work to an entire class or an individual student, and
view reports of their students’ progress (Fig. 1). The content
on the site is divided into problem sets, usually consisting of
about a dozen multistep problems. Teachers can select from
the existing problem sets to make assignments to their
students. A future version of Mathtutor will provide facilities

66 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

for teachers to easily assemble problem sets for their students,
by selecting problems from other sets available on the site.
The problem sets are indexed by state standards. Currently,
only the Pennsylvania standards are supported, but we plan
to index using standards from other states, and national
standards such as the NCTM Focal Points [39].

Mathtutor generates reports of student performance,
capitalizing on the fact that the tutors, as part of their
regular operation, evaluate student answers. Currently, it
supports three types of reports: 1) a report detailing the
progress of a class of students through the assigned
sequence of problem sets, 2) a report detailing the
performance of a class of students on a given problem set,
listing the time spent on the problem set and the frequency
of correct steps, errors, and hints, and 3) a report detailing a
single student’s performance on the assigned problem sets,
listing the same statistics for each problem set as those in
the second report (Fig. 1). Future reports will provide more
detail with respect to students’ performance on individual
problems and the individual skills targeted in the instruc-
tion, and will also break down each student’s performance
relative to specific standards. These reports have the
potential to help teachers focus their instructional efforts
on areas in which students could benefit the most (see also
[14], [15]), an advantage that has been claimed for the
Assistments Web site [46] described below, which also fields
tutors that enable detailed assessment of students.

A first version of Mathtutor is being pilot-tested in the
context of after-school tutoring programs, which are
required in the US under the “No Child Left Behind” act,
federal legislation aimed at improving the performance of
US primary and secondary schools (http://www.ed.gov/
nclb/overview/intro/factsheet.html). The Web site is ex-
pected to be beneficial in this context, as supplemental
instruction, for a number of reasons. First, human tutors or
teachers working with students after school could use the
Web site to supplement and extend their own efforts with
the students. In the common case, where there are many
more students than human tutors, the tutors could set their
several students at work on problems on the site, possibly
giving each student his or her own problem sets to work
on. The Mathtutor site may be especially helpful when

after-school programs are led by teachers who are not math
teachers, as happens far more frequently than would be
ideal. Finally, the Mathtutor site might facilitate commu-
nication between a student’s regular math teacher and the
after-school teacher/tutor. In particular, tutor and teacher
could periodically get together to view Mathtutor reports of
the student’s performance and plan further activities.

Although we are piloting Mathtutor primarily in the
context of after-school and math remediation activities, we
envision that the site will be useful in many other contexts
as well. For example, teachers could incorporate the use of
the site into their regular classes. They could assign
homework on the site or use Mathtutor materials for in-
class exercises or quizzes. Further, the site will offer help to
students doing math outside of regular school hours or
after-school programs, whether for remedial purposes or as
part of their own efforts to move ahead of the regular math
instruction in school. The site could also aid parents trying
to help their children with math. In a future version, parents
will be able to view reports about their children’s
performance. Finally, teachers and parents could use the
site to brush up on their own math, so they are better able to
help their students and children.

4 EXAMPLES OF TUTORS

In this section, we illustrate some of the Mathtutor problem-
solving exercises and highlight some features of the tutors.
Fig. 2 shows a Mathtutor problem for 7th-graders dealing
with early proportional reasoning, designed to help students
acquire a conceptual understanding of proportionality. The
reader can try out this particular tutor by going to http://
webmathtutor.org. The interface of the tutor has been
carefully designed to make the thinking steps visible [4].
Here, the student must identify the operation that leads from
the number of balloons in one pack (12) to the desired
number of balloons (36) so that he or she can then apply that
same operation to the cost of one pack of balloons ($4.25). The

ALEVEN ET AL.: SCALING UP PROGRAMMING BY DEMONSTRATION FOR INTELLIGENT TUTORING SYSTEMS DEVELOPMENT: AN OPEN-... 67

Fig. 1. Mathtutor report showing detailed performance data for one

student; this type of report is available to teachers and students.

Fig. 2. Mathtutor problem dealing with proportional reasoning.

tutor provides feedback: correct problem steps are high-
lighted in green. The tutor offers hints upon the student’s
request at every step along the way. The panel at the bottom
of the tutor interface provides help with the current step.

As discussed further below, example-tracing tutors are
capable of following along with the student in problems
that allow for multiple solution paths, which simpler tutors
cannot do. The decimal place value tutor shown in Fig. 3
illustrates this capability. It has a large space of possible
solutions, since there are many ways of breaking down
$82.37 into tens, ones, dimes, and pennies (even when, as in
this problem, the number of ones is given). The solution
shown in line 3 is perhaps not one that many students
would produce, but the tutor must be able to recognize it
anyway, and be able to provide meaningful hints when a
student decides to follow this strategy.

The problem sets and tutors we are creating have two
novel features that are desirable especially when the users
are not in a classroom context, but work by themselves, and
therefore, need to be able to come up to speed with the
Mathtutor problem sets by themselves without the help of
peers or teachers. First, we have added an introductory
screen to each problem set, with brief explanations of how
to approach the type of problems in the set (Fig. 4). The
introductory screen shows the tutor interface annotated
with text balloons. When the student mouses over a balloon,
the relevant part of the tutor screen is highlighted.

Second, we are developing worked examples: at the start
of each problem set, the first few problems have worked-out
steps. Educational psychology and the learning sciences
literature indicate that students learn more robustly when
worked examples supplement problem-solving practice [6],
[17], [42], [47], [56]. Various studies involving Cognitive
Tutors and CTAT-built tutors have also shown that worked
examples can be an effective supplement to problem-
solving practice [31], [52], [55]. The steps in our examples
are faded in a backward manner, meaning that initially the
later steps in the given problems are left open, and the
earlier steps are worked out, and then gradually, in later
problems, more steps are left open, until entire problems
are open for the student to solve. This method has been

found to be a very effective way of transitioning from
worked examples to problem-solving practice [7], [48].

5 CTAT: AUTHORING EXAMPLE-TRACING TUTORS

“BY DEMONSTRATION”

The tutors on the Mathtutor site are example-tracing tutors
implemented with the Cognitive Tutor Authoring Tools
(CTATs) [1], [23]. As previously discussed, these tutors
share many of the essential behaviors of Cognitive Tutors,
but are easier to build. They utilize specific examples of
problem-solving behaviors to provide tutoring, rather than
a rule-based cognitive model of student problem solving.
(The fact that the tool suite is named Cognitive Tutor
Authoring Tools reflects the fact that it was originally
created to support the development of regular Cognitive
Tutors. In addition to tools for developing Cognitive Tutors,
however, the suite includes tools for creating example-
tracing tutors. These tools were added after the tool suite
had been given its name.) In this section, we describe the
process of authoring an example-tracing tutor with CTAT.
We highlight the features within CTAT that enhance the
maintainability of example-tracing tutors, which will be key
to the large-scale development of such tutors for the
Mathtutor project. We also sketch the algorithm used by
example-tracing tutors to evaluate student solution steps.
For an in-depth treatment, the reader is referred to [1].

CTAT has been used extensively and the accumulated
experience indicates that building example-tracing tutors
with CTAT is significantly less costly and time-consuming
than building regular Cognitive Tutors. Close to 400 users
have built tutors with the CTAT tools, mostly in workshops,
tutorials, and courses, but also for research and develop-
ment projects. Tutors built with CTAT have been used in
university, high school, and middle school classrooms as
part of regular course assignments and experimental
interventions. At the time of this writing, 26 research
studies have used CTAT tutors in real educational settings.
In these projects, the development of tutors with CTAT is
three to four times more efficient than historical estimates in
the literature [1], which indicate that creating one hour of
instruction with an ITS takes 200-300 hours [37]. Factoring
in the lower cost of authoring, since advanced program-
ming skill is not required, ITS development with CTAT

68 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

Fig. 3. Mathtutor problem for decimal place value.

Fig. 4. “Intro screen” for one of the problem sets on Mathtutor; the

annotations actually appear on the site as students’ view this problem

set (i.e., they were not added for this paper).

appears to be four to eight times more cost effective than
the development of Cognitive Tutors and other types of
non-CTAT ITS [1].

5.1 Developing an Example-Tracing Tutor

Creating an example-tracing tutor with CTAT involves five
main phases. First, the author builds a user interface for a
particular problem type for which tutoring is to be
provided, carefully designed to make thinking visible [4].
A typical interface lays out the problem-solving steps for
the given problem type. The interface is built through drag-
and-drop techniques using an off-the-shelf tool such as
Netbeans or Flash (Fig. 5a). The author selects “tutor-
enabled interface components” from a palette (the top-right
panel in the Flash IDE) and drags them into the desired
positions on a central canvas. These components, which
were written (by us) in ActionScript and imported into the
IDE, communicate with the rest of CTAT. Where tutors
require behaviors that cannot be realized with the existing
set of tutor-enabled components, ActionScript program-
ming is needed to create new ones. In addition to static
“form filling” interfaces, CTAT supports “dynamic inter-
faces” that can change during the interaction with the
student. The tutor controls the interface changes, which can,
therefore, be contingent on the state of problem solving by
the student. As described below, dynamic interface changes
can be authored without programming. For example, at
specific points in the problem-solving process, a tutor may
hide or show particular interface components, or display
new values within given components. For more extensive
layout changes, an author can create a Flash interface with
multiple frames (essentially, separate layouts containing
different interface components) and make the tutor switch
from one to the other at specific points in the interaction.
Dynamic interfaces are useful in ITS for many purposes,

including dynamic scaffolding, dynamically linking of
problem-solving representations, and careful management
of screen real estate [1]. For example, in the fractions
conversion problem in Fig. 5, the tutor (at tutoring time)
initially displays a pie divided into six slices, but at an
appropriate point in the interaction sequence, the tutor
replaces the image by one in which the pie is divided into
eight slices, to illustrate the equivalence of 3/6 and 4/8.

In the second phase of authoring, the author runs the
interface (Fig. 5b) and demonstrates correct and incorrect
problem-solving behavior. CTAT’s Behavior Recorder tool
records each step in a behavior graph (Fig. 5c). Each link in
the graph represents a correct or incorrect step. If there are
multiple correct solution strategies, they can be recorded as
separate paths in the graph. To record a new path, the
author can “back up” to an earlier point in the graph by
clicking on one of the recorded states and resume recording
under that state. The author can also demonstrate common
student errors and mark them as such in the behavior graph.
The Behavior Recorder displays them with a label contain-
ing red font. Eventually, after the author has completed all
five authoring phases and the graph is ready to be used for
tutoring, the graph serves as a model for student behavior:
the runtime tutor flexibly compares student actions to the
graph and provides feedback on the correctness of the
student actions.

As a key step in authoring dynamic interfaces without
programming, an author can mark certain links in the graph
as representing “tutor-performed actions,” which (at tutor-
ing time) the tutor executes when the student’s solution
reaches the state from which they emanate. Typical tutor-
performed actions are to show or hide widgets, display a
particular value in a widget, or to move to a different frame
in the Flash-based tutor interface.

ALEVEN ET AL.: SCALING UP PROGRAMMING BY DEMONSTRATION FOR INTELLIGENT TUTORING SYSTEMS DEVELOPMENT: AN OPEN-... 69

Fig. 5. Using CTAT to create an example-tracing tutor through programming by demonstration. (a) After creating an interface through drag-and-drop
techniques, without programming, (b) an author runs the interface and demonstrates correct and incorrect behavior. (c) CTAT records the steps in a
behavior graph and later uses this graph, duly generalized by the author, as a model to evaluate student behavior.

As the third part of tutor construction, the author
associates skills, hints, and feedback messages with the
steps represented in the behavior graph. To do this, the
author clicks on the link labels and fills in pop-up forms
soliciting the information. Typically, an author provides
multiple levels of hints for each step. Earlier hint levels may
identify a problem-solving principle, later hint levels may
discuss how to apply it in the given problem. The last hint
level may give the specific step to be performed. At tutoring
time, hints are presented upon the student’s request. The
skill labels that are provided as annotations on links
typically reflect a fine-grained decomposition of the skills
involved in solving a problem (e.g., “find the least common
denominator”). The tutor uses the skills to identify and
report student progress in mastering particular skills, a
capability briefly discussed earlier.

Fourth, the author can generalize the graph to indicate
that a wider range of student behavior is to be recognized as
correct beyond just the fixed value(s) and sequence(s) of
steps recorded in the graph. An author can generalize a
behavior graph by specifying ordering constraints on steps
or by specifying formulas that describe how problem steps
are related. These generalization features enhance the
maintainability of example-tracing tutors by keeping down
the number of paths in behavior graphs.

In those problems in which (as is typical) there are only
fairly loose constraints on the order in which solution steps
are to be performed, authors either can specify that any step
order within the graph is fine, or they can group steps,
nesting groups inside other groups where appropriate, and
then specify on a per-group basis whether the student must
strictly follow the demonstrated order or can perform the
steps in any order. Furthermore, an author can set lower
and upper bounds on the number of times a particular step
needs to be executed in order for a problem to be
considered fully solved. By setting these limits to 0 and 1,
for example, an author essentially marks steps as optional.

Authors can also generalize their behavior graphs by
attaching “formulas” to links in the graph, similar to Excel
formulas, which specify how steps depend on each other.
The formulas involve mathematical and string functions.
For example, in the tutor for decimal place value shown in
Fig. 3, formulas are used to specify that the number of tens,
ones, dimes, and pennies entered add up to the given dollar
amount. Formulas can dramatically reduce the number of
paths in a graph, compared to having to enumerate all paths
corresponding to the input described by the formula, and
thereby, significantly enhance the maintainability of exam-
ple-tracing tutors. Formulas represent a level of end-user
programming that, as the success of Excel proves, is feasible
for people not trained in software engineering. When further
functions are needed, besides those currently supported,
they can be added with limited Java programming.

As an optional fifth step in the development of example-
tracing tutors, in cases in which authors want a number of
similar exercises (as is often the case when building tutors),
they can avoid the work of demonstrating solutions to each
individual problem by employing a “Mass Production”
feature. In this approach, an author first creates a behavior
graph in the usual manner, tests it, and once it is fully

debugged, turns it into a template by replacing problem-
specific values and hints with variables. Next, CTAT
generates an Excel table with a row for each variable;
authors then fill in the table’s columns with problem-specific
values for each variable, one column per problem. In a final
merge step, a behavior graph is created for each column by
substituting the variable values into the template. In our
experience, the Mass Production process significantly
reduces authoring time and enhances the consistency and
maintainability of the resulting tutors, as discussed further
below. Mass Production is useful even with very small
numbers of isomorphic or near-isomorphic tutor problems
created from the same template (e.g., 2 or 3). Editing a
spreadsheet is faster and decidedly less error-prone than
demonstrating solutions over and over. Also, most authors
know how to use common spreadsheet tools, such as Excel.
Finally, keeping tutors consistent is easier this way.

5.2 The Example-Tracing Algorithm

CTAT’s example tracer functions as “step analyzer” in
VanLehn’s [57] terminology, the module that evaluates
whether a given problem-solving step by the student is
appropriate and correct, given the current state of problem
solving. Although it is beyond the scope of this paper to
provide the full details of the example-tracing algorithm, a
brief sketch follows. Two broad requirements are that, first,
in order to complete a problem, a student must complete a
single start-to-finish path through the behavior graph for
that problem (i.e., must “traverse” all nonoptional links on
such a path, in an order that observes any ordering
constraints specified in the graph; as mentioned, these
constraints are defined in the form of nested groups of links
that are either ordered or unordered). Second, the example
tracer does not let the student change his or her mind about
the path that he or she takes through the problem. That is,
once a student is one more step onto a certain path, all paths
that do not match the same steps are ruled out. Any paths
that do match the same steps remain viable, however, as
alternative interpretations of student behavior. As a
consequence, steps that have been accepted as correct by
the tutor remain correct for the duration of the problem.

More specifically, in order to perform its function as a
step analyzer, the example tracer maintains one or more
interpretations of the students’ problem-solving behavior.
Each interpretation (at least at a conceptual level) consists of
1) a start-to-finish path through the behavior graph for the
given problem and 2) a record of the links on that path that
have been matched by student input, together with the
student actions that matched the links. At any point in time,
all interpretations must involve the same set of matched
student actions; this set comprises all student actions within
the current problem that the tutor has so far accepted as
correct. When there is new student input, the example
tracer evaluates that input by considering whether it can
extend any of the existing interpretations. To do so, it
considers for each interpretation whether the input matches
any nonmatched link within that interpretation, subject to
the ordering constraints specified in the given behavior
graph. As part of this step, the example tracer computes
values specified by formulas on links. If no such matching
link can be found, the input is rejected and the tutor gives

70 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

negative feedback to the student. The set of interpretations
remains the same, reflecting the fact that the state of
problem solving has not been advanced. If, on the other
hand, student input does match a previously nonmatched
link in at least one of the existing interpretations, while also
observing the ordering constraints specified in the behavior
graph, then the input is accepted, and the set of interpreta-
tions is updated as follows. First, all interpretations in
which a previously nonmatched link is matched are
extended, by recording the newly matched link in their
set of matched links. Second, any interpretations that do not
have a matching link are dropped. These interpretations are
no longer consistent with student behavior, and therefore,
must be ruled out. Finally, if a student action matches
multiple links within any given interpretation, then that
interpretation is split into multiple interpretations, one for
each match. The student is done with a problem when all
nonoptional links within any single interpretation have
been matched in the manner described above.

Example-tracing tutors satisfy, but also go beyond,
VanLehn’s [57] minimum criterion for being an ITS: they
have an “inner loop,” meaning that they provide step-by-
step guidance with problem-solving activities through
feedback messages and next-step hints. Example-tracing
tutors go beyond this minimum definition in a number of
important ways [1]. First, they are capable of following
students along multiple solution paths. Further, CTAT’s
formula mechanism enables example-tracing tutors to
recognize problem solutions, where later steps depend on
earlier steps in intricate ways, even when it would be
prohibitively difficult to enumerate all possible ways in
advance. (The tutor in Fig. 3 illustrates this capability.)
Finally, example-tracing tutors are capable of maintaining
multiple interpretations of student behavior in situations,
where a problem-solving step cannot uniquely be inter-
preted until later steps have been seen. As a result,
example-tracing tutors fluidly follow student strategies
even in the face of temporary ambiguity as to what strategy
they are following, without the need to ask the student

disambiguation questions, and without the risk of prema-
turely ruling out an interpretation of student behavior that
later turns out to have been correct. Such a response would
have the undesirable consequence that the tutor would
force the student off of a valid solution path they were
following. Thus, while example-tracing tutors are built
using dramatically simplified authoring technology, com-
pared to their direct ancestors, Cognitive Tutors [5], and to
many other ITS, they are by no means simple tutors.

6 MATHTUTOR ARCHITECTURE

The Mathtutor architecture instantiates CTAT’s Web-based
architecture, described in [1]. Use of this architecture makes
it possible to run example-tracing tutors on the Web, a key
motivation for reimplementing the existing Cognitive
Tutors for middle school mathematics as example-tracing
tutors. As mentioned, a central characteristic of this
architecture is that it supports a thin client, meaning that
a minimum amount of functionality runs on the student’s
machine. In this section, we describe the main components
of the Mathtutor architecture and illustrate the data flow
among these components. We also motivate several
important architectural choices we have made, in particular,
the decision to have a thin client.

6.1 Mathtutor’s Main Components

The main components of Mathtutor (Fig. 6) are the following:

. The CTAT authoring tools (Fig. 6, bottom), including
the Behavior Recorder and tools for generalizing
behavior graphs.

. GUI builder tools, such as the Flash IDE is used to
create interfaces; we imported ActionScript-based
components into the Flash IDE.

. The Mathtutor Server-Side Components (top-right of
Fig. 6). These server-side components include:

- Tutoring Service, the module that runs the
example-tracing tutor engine;

ALEVEN ET AL.: SCALING UP PROGRAMMING BY DEMONSTRATION FOR INTELLIGENT TUTORING SYSTEMS DEVELOPMENT: AN OPEN-... 71

Fig. 6. Mathtutor architecture.

- Mathtutor Learner Management System, used by
teachers to select, sequence, and assign problems,
edit class rosters, and generate reports; used by
students to get problems;

- Several data stores, including the tutor inter-
faces; the DataShop research database (see
below); and the Mathtutor Database, which
contains class, curriculum, assignment, and
student performance data.

. The Mathtutor Client-Side Components (top-left of
Fig. 6). These are the Mathtutor user interfaces that
run on the student machines, after being downloaded
from the server. Each is designed to support a specific
problem type.

The DataShop, drawn in Fig. 6 amid the other server-side
components, is not part of Mathtutor or CTAT proper;
rather, it is a separate and publicly available facility for
storing and analyzing anonymous log data of student-tutor
interactions for research and development purposes. See
http://pslcdatashop.org.

6.2 Data Flow among Components at Runtime

In the following paragraphs, we trace the flow of data
among the components in Fig. 6 during the workflow of a
typical teacher and student using the site. Assume that a
teacher, call her Jane, brings up the Mathtutor Web site on
her browser, creates a class by providing a list of students
(possibly copy-and-pasted from a spreadsheet), and assigns
a sequence of problem sets to the class. Mathtutor’s Learner
Management System (LMS) stores the students, class
rosters and assignments in the Mathtutor Database, which
also contains information about the problem sets available
on the site.

Next, Fred, a student in Jane’s class, brings up the
Mathtutor Web site in his browser and logs in. The LMS
retrieves Fred’s class(es) and assignment(s) from the
Database and lists them on the screen. After Fred selects
one of the open assignments, the LMS presents the first
open problem within that assignment. To do so, the LMS
retrieves from the Database the name of the Behavior Graph
for this first open problem and the name of the Flash
program (typically called a “movie”) that implements the
tutor interface for this problem. It then generates the HTML
needed for the browser on Fred’s machine to invoke the
Flash Player in a special-purpose frame. The Flash Player
retrieves the Flash movie from the Store of Student
Interfaces on the server and launches it. (Within the thin
client approach, this is the only program download
required.) The Flash movie first sends the behavior graph
name and other parameters to the Tutoring Service, the
server-based module that runs the tutor engine for
example-tracing tutors. The Tutoring Service creates a
new instance of the Example Tracer in order to serve Fred’s
session and initializes it using information from the named
Behavior Graph. It sends the initial problem values to the
Flash movie so that the interface can display the initial
problem state. After this, Fred can begin work on the
problem.

As Fred performs problem-solving steps and asks for
hints, each action is sent to his instance of the Example
Tracer, which persists throughout the session. The Example

Tracer evaluates student behavior by comparing it against
the solution paths stored in the graph, as described above.
The protocol between the student interface and tutor engine
is described in [28]. Each student action and tutor response
are logged to the DataShop whose rich logging format [44]
permits extensive detail on the state of the tutor, including,
for example, the multiple interpretations the tutor might
have for a single student action. When the Example Tracer
considers the problem finished, the Tutoring Service
prepares and sends to the Flash movie a Problem Summary
message with counts of hint use, correct and incorrect
responses. The Flash move forwards the Problem Summary
to the LMS, which stores the performance data for reporting
and responds with information needed to run the next
problem in the given problem set.

Fred’s teacher Jane can use the Mathtutor report screens
to track Fred’s progress: these reports aggregate data
provided in the Problem Summary messages just men-
tioned. In a coming version of the site, we plan to use skill
information from these messages to choose problems for
Fred adaptively, according to the “knowledge-tracing”
algorithm in [19].

6.3 Architectural Choices

The remainder of this section motivates key choices under-
lying the Mathtutor architecture, which may be of general
interest to the learning technologies community.

6.3.1 Choice #1: Running the Tutor Engine

on the Server

As mentioned, a central architectural choice (inherited from
CTAT) was to have a thin client, that is, to place the tutor
engine on the server so that only minimal functionality runs
on the client. Specifically, the tutor engine runs in a module
called the Tutoring Service, a Java-language process on a
Linux host. We see a number of pros of having the tutor
engine run on the server, especially in an architecture such
as CTAT’s that aims to support not a single ITS, but many
ITSs with a wide variety of tutor interfaces, implemented in
any language, and can also be employed to provide tutoring
within existing interfaces or simulators.

First, it is easier to combine the same tutor engine with
different options for implementing student interfaces when
the two communicate over sockets, unencumbered by
difficulties associated with direct procedure calls between
systems implemented in different programming languages.
However, security restrictions in browsers typically permit
socket connections only back to the Web application’s host
server, preventing tutor/interface interprocess communica-
tion locally on a client machine. Communication with a
tutor engine on the server avoids this problem and still
gains the ease of integration.

A second advantage of the thin client architecture is that
it minimizes the requirements on the client machine and
network so that the site is useful in schools and tutoring
sites with older hardware. The client machines’ processing
and memory requirements are limited to those of the
browser and the lightweight Flash Player. Download sizes
are limited to the compiled Flash student interfaces, which
tend to be small (10s or 100s of kilobytes). The remaining
network usage consists of (frequent) short messages

72 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

conveying student step descriptors and tutor evaluations;
this usage pattern permits effective multiplexing of many
concurrent sessions over low-bandwidth Internet connec-
tions, even if every student action in the tutor interface
requires server access.

Third, placing the tutor engine on a server with full-time
connectivity accommodates access by the tutor engine to a
range of possible external resources (e.g., natural language
processing, image analysis, computer algebra engines, etc.)
that might not be suited to direct Web access from clients.
This kind of interoperability is useful for possible future
extensions of Mathtutor as well as for applications of the
CTAT architecture outside of Mathtutor. External resources
available via socket interfaces can be integrated by connec-
tions from the Tutoring Service, which is unrestricted by
browser security regimes that inhibit client access to servers
other than that which served the UI. The server-side tutor
engine also facilitates access to external Java-based re-
sources. They can be linked in as application libraries,
without the need to download them to the client.

A key question is: Will a server-side tutor engine solution
be able to serve potentially thousands of concurrent users
without requiring large numbers of server machines? Our
initial experience with approximately 60 simultaneous
users in a school has been positive even with old server
hardware (and we now have a brand-new server). But this
matter remains to be seen: to get a measurement, we are
developing load tests, which (more severe than real-world
use) simulate many simultaneous student sessions with no
pausing for think time between steps. As mentioned, our
many-small-messages communication pattern is suited to
low network bandwidth. Also, we continue to make the
example-tracing algorithm more efficient. It already is
considerably lighter weight than the more complex model
tracer of CTAT.

6.3.2 Choice #2: Use of Flash for User Interfaces

CTAT has long supported both Flash and Java as
implementation environments for tutor user interfaces. In
the Mathtutor project, we opted to use Flash to implement
the tutor interfaces for the Mathtutor site for a number of
reasons. First, Flash interfaces are a convenient way of
delivering complex tutor interfaces on the Web. The
compact Flash Player is well supported across browsers
and client machines. Second, Flash’s ActionScript program-
ming capabilities generally permit richer client functions
than HTML- and Javascript-based interfaces, such as those
found in other Web-based learning environments for
mathematics, such as Assistments [46] and ActiveMath [32].
Third, Flash’s frame and layer facilities enable easy creation
of dynamic interfaces, described above. Finally, a version of
Flash runs on handheld devices such as personal digital
assistants (PDAs). Brown et al. [16] have implemented
CTAT tutors on PDAs for the domain of college-level
introductory business mathematics. Hence, it is conceivable
that ultimately some of Mathtutor’s problems can be run on
the pocket-sized cell-enabled devices in growing use among
middle- and high school students. However, there are some
disadvantages to the use of Flash. The Flash integrated
development environment (IDE) is not free. If we were to
contemplate contributions from authors outside our lab,

those authors would bear the cost of the tool. On the other
hand, several Java IDEs (e.g., NetBeans, Eclipse) are
available for free. Further, we are at the mercy of Adobe’s
development priorities; we have already discovered that
backward compatibility of ActionScript versions appears
not to be high priority for Adobe. On the whole, however,
we feel that the advantages outweigh the disadvantages.

6.3.3 Choice #3: Use of Ruby on Rails to Implement

Most of the Nontutoring Functionality

We opted to use Rails to implement functionality for
student and class management, teacher reports, etc. Our
choice followed the positive experience of the Assistments
group with Rails. It offers several advantages. First, it
affords fast prototyping and implementation for Web
applications, with compact, easy-to-read code and lots of
examples from the online development community. Second,
integration with Java, which may be necessary for access to
external resources, is straightforward. Third, with the
Apache Web server and Rails’ Mongrel server, it is easy to
add multiple host machines for scalability [51].

6.3.4 Choice #4: Separation of Data for Normal

Operation of the Site and for Research

The Mathtutor architecture strictly separates the data
collected for research purposes from the data needed to
support the normal operation of the site, mainly because the
data collected for research purposes need to be kept in
anonymous form (meaning that we remove all information
from which the identity of students, teachers, and schools
can be inferred), whereas the data needed for regular use
should not be anonymous. For the purpose of research and
development, detailed logs of step-by-step performance
data are collected in the DataShop, where anonymization is
automatic [26]. This facility was developed for the Pitts-
burgh Science of Learning Center (PSLC, http://www.
learnlab.org/), a US National Science Foundation (NSF)-
sponsored research center spanning Carnegie Mellon
University and the University of Pittsburgh. The DataShop
is a public available repository for many data sets collected
by various kinds of educational technology, including many
data sets from various tutors. It provides a suite of Web-
based tools for analyzing these data and generates reports
on error rates and learning curves, among other things.
These reports differ from the teacher reports described
above in that they are available in DataShop only, not on the
Mathtutor site, and are geared more toward learning science
researchers than teachers. These reports will be invaluable
in the iterative redesign of the content on the site and also
tell us how effective the tutors on the Mathtutor site are in
helping students learn.

7 COMPARISON WITH OTHER MATH SITES

There is a bewildering array of Web sites devoted to math
instruction. Why then is there a need for Mathtutor? Many
of the existing sites are of low quality, although the best
offer useful services such as games to motivate students,
expert help on problems submitted via the site, descriptions
of concepts and procedures, examples, practice problems

ALEVEN ET AL.: SCALING UP PROGRAMMING BY DEMONSTRATION FOR INTELLIGENT TUTORING SYSTEMS DEVELOPMENT: AN OPEN-... 73

with answers, and online “interactive” textbooks. Some (but
very few) existing Web sites provide guidance from
software tutors. Mathtutor appears to be the only site with
a (soon-to-be) comprehensive set of ITS for middle school
mathematics, with step-by-step support on problems with
multiple solution paths.

The Assistments Web site (http://www.assistment.org/)
is the closest in concept and objective to Mathtutor. Like
Mathtutor, the Assistments site provides online computer
tutoring, complete with hints, immediate feedback, and
dynamic scaffolding, and provides online reports for
teachers [46]. Although the Assistments tutors derive from
the same Cognitive Tutoring tradition as Mathtutor, there
are some important distinctions. First, while Assistments is
geared toward preparation for high-stakes standardized
tests, Mathtutor will eventually support a comprehensive set
of mathematics topics for the middle grades. Second, the
underlying tutoring technology is different. Assistments
supports simple tutors capable of recognizing only a single
solution path for any given problem (Koedinger, personal
communication), whereas example-tracing tutors support
more sophisticated tutoring behaviors: they recognize
multiple strategies within a problem, can deal with complex
dependencies between problem steps, and can handle
ambiguity about how any single student action should be
interpreted. On the other hand, at the time of this writing,
Assistments is a more mature site than Mathtutor and has
demonstrated learning gains in empirical studies [46]. The
large number of Assistments users is a strong indicator that
there is a need for interactive Web-based computer tutoring
in the area of K-12 mathematics.

Like Mathtutor, the ActiveMath mathematics Web site
[32], [33] supports mathematics exercises with hints and
feedback. However, ActiveMath aims to support a broader
pedagogy than Mathtutor. It focuses on adaptive presenta-
tion of a range of instructional materials, and, more so than
Mathtutor, it gives the student control over the instructional
activities. ActiveMath is designed to be broadly applicable;
so far, though, it has a limited curriculum of middle school
math. Further, the math content on ActiveMath, although
sophisticated in its use of AI technology, has not been
empirically tested for learning benefits nearly to the extent
that Cognitive Tutors, the basis of Mathtutor, have been.

Wayang Outpost [13] is an online system for high school
mathematics aimed at high-stakes test preparation. It
provides simple tutors embedded in a virtual adventure
involving environmental science researchers stationed in
Indonesia. These tutors provide multimedia hints. They
do not, however, support complex, multistep problem
solving—only multiple-choice solutions are supported. In
Animal Watch [8], [18], mathematics problem solving is
integrated with multimedia material about endangered
species. Animal Watch targets middle school mathematics,
although it does not appear to support a comprehensive
curriculum. It provides limited support for step-by-step
problem solving, with multimedia hints and interactive hints
that illustrate strategies but do not show how to apply them to
the problem at hand.

Among free sites for mathematics learning, the Math
Forum Web site (http://mathforum.org) stands out due to

the sheer scope and volume of materials and its many
services. It provides a wide variety of resources, for a range of
levels from basic math to advanced topics such as calculus.
Within the “Dr. Math” section of the site, students can submit
questions, which a group of volunteer teachers discuss and
answer. The Dr. Math service, however, does not support
interactive learning by doing; it merely turns a single
problem instance into an example for a student to study. A
“Math Tools” section contains many freely downloadable
programs for students to use. While the number of programs
is impressive (in the hundreds), most of the software appear
to be lacking a strong pedagogical rationale, unlike the
Cognitive Tutor approach used for the Mathtutor Web site.

There is also a multitude of commercial sites that provide
services to math learners for a fee. As far as we have been
able to ascertain, however, none of these sites provide
access to ITS or provide step-by-step guidance with
problem-solving exercises. Furthermore, a solid theoretical
or empirical basis is typically lacking to back up the
learning efficacy of the combination of services or materials
that is offered on these sites. The textbook publisher Prentice

Hall (http://www.phschool.com/math) presents “interac-
tive online textbooks” for basic math, Prealgebra, Algebra 1,
Algebra 2, and Geometry. These include audio clips that
define terms and principles, worked examples for students
to study, videos of math teachers explaining mathematical
concepts and solving problems, and automatically graded
multiple-choice questions. The materials, however, are not
customizable and the site does not provide step-by-step
guidance with problems. Math.com (http://www.math.
com) sells materials and services for Prealgebra, Algebra,
Geometry, Trigonometry, Statistics, and Calculus. The site
contains mostly static practice and test materials that can be
purchased through a yearly membership fee. Math.com also
sells online tutoring provided by humans and delivered
over the Internet for a hefty fee. FirstInMath.com (http://
www.firstinmath.com) provides engaging math games, all
using the same basic user interface, to motivate students to
learn mathematics. It is based on the concept of a common
fear—getting the wrong answer—by presenting problems
in which the answer is given. However, FirstInMath does
not provide step-by-step tutoring (only the final answer is
checked), it is not customizable, and does not explicitly
provide practice with multiple strategies. The Compass-

Learning Odyssey Web site (http://www.childu.com) also
strives to teach students by engaging them in mathematics
game playing (as well as writing, reading, and social
studies). It employs elaborate Flash-animated worked
examples that include audio narration, followed by
hands-on exercises. CompassLearning appears to emphasize
rote mathematical learning of procedures.

There are many other Web sites, including engrade

(http://engrade.com), which offers free Web-based tools
for grading assignments, AplusMath (http://aplusmath.
com), which provides many (untutored) exercises and
games, and SuperKids (http://superkids.com), which auto-
matically generates worksheets and answer sheets for
teachers to use for tests or homework, but none of these sites
is focused on computer-to-human tutoring, as is Mathtutor.

74 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

Finally, a recent review of mathematics e-Learning
systems [58] cites over 30 systems, some of which provide
ITS-like functionality, such as feedback and hints (e.g.,
STACK [53], WALLIS [30], and ActiveMath, discussed
above). While this review provides much useful informa-
tion, it focuses little attention on our greatest aim: How one
can scale up a mathematics Web site for open-access use of
intelligent tutors.

8 DISCUSSION

The Mathtutor project brings together four strands of closely
related ITS research as follows:

1. the Cognitive Tutor technology (e.g., [24]);
2. a set of Cognitive Tutor courses for middle school

mathematics that was created in our lab;
3. a relatively new kind of ITS technology, example-

tracing tutors; and
4. a set of authoring tools, CTAT, which makes it

possible for computer-savvy nonprogrammers to
create example-tracing tutors.

As we use CTAT’s programming-by-demonstration ap-
proach to reimplement the existing Cognitive Tutors for
middle school mathematics as example-tracing tutors, a key
question addressed is whether programming by demon-
stration, by tech-savvy nonprogrammers is feasible for ITS
development on a large scale. Put differently, can we have
our cake and eat it too? Can we have simpler ITS authoring,
more efficient tutor development, lower personnel cost, as
well as large scale and maintainability? The viability of
efficient approaches to ITS authoring is of broad interest to
the ITS and learning technologies research communities, in
light of the fact that ITS, while highly effective in improving
student learning, have typically been difficult and time-
consuming to build. Large-scale ITS projects such as
Mathtutor are few and far between, so the Mathtutor project
provides a unique opportunity for studying this issue. In
this section, we discuss our initial experiences with respect
to this scalability issue.

At this point in time, we are quite confident that the
example-tracing technology will be able to support the
reimplementation of the vast majority of the tutoring
behaviors found within the existing middle school math
tutors, supporting our claim that example-tracing tutors
support many of the same tutoring behaviors that Cogni-
tive Tutors provide. (As mentioned, our efforts in the early
stages of the project are directed at reimplementing existing
Cognitive Tutors as example-tracing tutors, in order to run
them on the Web.) While example-tracing tutors are no
doubt simpler than Cognitive Tutors, they are nonetheless
able to support sophisticated tutoring behaviors. We,
therefore, do not foresee that we will be watering down
any of the tutors just to make them amenable to
implementation as example-tracing tutors. We are also
quite confident that computer-savvy nonprogrammers will
be able to author tutors of sufficiently high quality. This
confidence is based in part on our experience supporting
CTAT users in earlier projects, reported in [1], in part on
our experience in the Mathtutor project so far. We have been

pleasantly surprised by how productive nonprogrammers
have been with the CTAT tools. For instance, under-
graduate students from CMU’s School of Design have done
most of the tutor development so far.

A key remaining question with respect to scalability is:
Will tutors built through programming by demonstration
be maintainable over an extended life cycle? It is tempting
to think that because example-tracing tutors are (relatively)
easy to create, they are also easy to maintain. But
maintainability requires more than ease of creation/mod-
ification. A key requirement is that common structures (or
code) are captured once and shared across contexts, rather
than duplicated and copied for use in different contexts. In
other words, a key question is whether a proliferation of
behavior graphs that only differ in minor ways can be
avoided within CTAT’s programming-by-demonstration
approach.

Fortunately, some of CTAT’s advanced authoring fea-
tures, in particular, formulas and Mass Production have the
side effect that when used well, they enhance the main-
tainability of the resulting behavior graphs. First, the use of
formulas tends to reduce the number of different paths in a
behavior graph because the formula makes it possible to
generalize across multiple solution paths, essentially collap-
sing different paths into one. No doubt, less elaborate
graphs will be easier to maintain.

Second, the Mass Production facility makes it possible to
author tutor behavior for many isomorphic or near-
isomorphic tutor problems with a single template. It,
therefore, helps dramatically in capturing, in a single place,
behavior graph structure that is common across multiple
tutor problems. Until recently, a limitation of the Mass
Production facility was that the slightest variation in the
problem space between two problems would preclude
Mass Producing them using the same behavior graph
template. We are, however, making progress in streamlin-
ing CTAT’s Mass Production facility so that Mass Produc-
tion can use the same behavior graph template for
problems that are near isomorphs. We are taking advantage
of a mechanism that was added for a different purpose,
namely the ability to specify a lower and upper bound on
the number of times a student should traverse a behavior
graph link in order for the problem to be considered
finished. By setting both limits to zero on a given link, this
link is effectively removed from consideration by the
example tracer. By including variables for the link traversal
limits in a behavior graph template used for Mass
Production, behavior graphs with and without the link
(which, therefore, are near isomorphs) can be generated off
of a single template, considerably enhancing the utility of
Mass Production. Accommodating near isomorphs is
important because in a realistic tutoring corpus such as
the one for middle school math that we started with, we
find many near-isomorphic problems. More generally,
problem variability is desirable [42].

9 CONCLUSION

We have created an open-access Web site, called Mathtutor,
where middle school students can learn mathematics with
guidance from artificially intelligent software tutors.

ALEVEN ET AL.: SCALING UP PROGRAMMING BY DEMONSTRATION FOR INTELLIGENT TUTORING SYSTEMS DEVELOPMENT: AN OPEN-... 75

Eventually, the site will provide a comprehensive set of
tutors covering five key content strands for mathematics
students in grades 6-8. The Mathtutor site is unique, even in
the crowded landscape of Web sites for mathematics
learning, because very few (if any) existing math sites
support complex, multistrategy problem solving by means
of ITS for a comprehensive range of middle school math
topics. An important future goal of the project is to
document the feasibility of the Web site in real educational
settings. Although the Web site is designed to be useful in
a large variety of contexts, our initial efforts have been to
encourage adoption by teachers and schools with a focus
on after-school tutoring programs. Detailed log data of
student-tutor interactions on the site will help in evaluating
whether Mathtutor helps students improve their mathema-
tical competence.

The Mathtutor project is addressing an important open

question in ITS and learning technologies research: Can ITS

authoring be made simpler and more cost effective in a way

that 1) supports sophisticated tutoring behaviors such as

multiple solution strategies, dependencies among problem

steps, and multiple interpretations of student behavior and

2) supports large-scale development, iterative refinement,

and maintenance of ITS? We are employing a novel

technology for ITS, called example-tracing tutors. These

tutors maintain many of the key behaviors that make ITS

effective, yet are based on a technology of programming by

demonstration that makes them easier to build. Our

experience in the Mathtutor project so far gives us

confidence that a programming-by-demonstration ap-

proach is appropriate to support the range of tutoring

behaviors needed for the middle school math tutors, and it

will support iterative content development and refinement

on a large scale. So far, nonprogrammers have been very

productive using CTAT to develop example-tracing tutors.

Further, we are confident that maintainability will not be an

obstacle. CTAT’s advanced authoring features, in particu-

lar, formulas and Mass Production, have the side effect that

when used well, they enhance maintainability. A final issue

regarding scale is whether the thin client approach taken in

the Mathtutor architecture will support large numbers of

simultaneous users. This issue is still open; we have laid out

reasons that we think the thin client will work well.
The Mathtutor project will provide insight into whether

open access to ITS for math learning, with an extremely low
barrier for entry, is a useful way of enhancing math learning
in a wide variety of settings. As evidence of the possibilities,
sites such as Assistments [46] and ActiveMath [32], [33],
which also have an intelligent tutoring math presence on
the Web, have attracted many users. It is too early to tell
whether Mathtutor will succeed equally admirably in this
regard. We are hopeful, however, that Mathtutor will attract
a large and diverse user population and contribute
substantially to making ITS widespread.

ACKNOWLEDGMENTS

This project is supported by the US Department of
Education (IES) Award No. R305A080093.

REFERENCES

[1] V. Aleven, B.M. McLaren, J. Sewall, and K.R. Koedinger,
“Example-Tracing Tutors: A New Paradigm for Intelligent Tutor-
ing Systems,” Int’l J. Artificial Intelligence and Education, to appear.

[2] S.R. Alpert, M.K. Singley, and P.G. Fairweather, “Deploying
Intelligent Tutors on the Web: An Architecture and an Example,”
Int’l J. Artificial Intelligence in Education, vol. 10, no. 2, pp. 183-197,
1999.

[3] J.R. Anderson, Rules of the Mind. Erlbaum, 1993.
[4] J.R. Anderson, A.T. Corbett, K.R. Koedinger, and R. Pelletier,

“Cognitive Tutors: Lessons Learned,” J. Learning Sciences, vol. 4,
no. 2, pp. 167-207, 1995.

[5] J.R. Anderson and R. Pelletier, “A Development System for
Model-Tracing Tutors,” Proc. Int’l Conf. Learning Sciences, pp. 1-8,
1991.

[6] R.K. Atkinson, S.J. Derry, A. Renkl, and D. Wortham, “Learning
from Examples: Instructional Principles from the Worked Exam-
ples Research,” Rev. of the Educational Research, vol. 70, no. 2,
pp. 181-214, 2000.

[7] R.K. Atkinson, A. Renkl, and M.M. Merrill, “Transitioning from
Studying Examples to Solving Problems: Combining Fading with
Prompting Fosters Learning,” J. Educational Psychology, vol. 95,
pp. 774-783, 2003.

[8] I. Arroyo, B.P. Woolf, and C.R. Beal, “Addressing Cognitive
Differences and Gender during Problem Solving,” Technology,
Instruction, Cognition, and Learning, vol. 4, pp. 31-63, 2006.

[9] R.S. Baker, A.T. Corbett, and K.R. Koedinger, “Toward a Model of
Learning Data Representations,” Proc. 23rd Ann. Conf. Cognitive
Science Soc., pp. 45-50, 2001.

[10] R.S. Baker, A.T. Corbett, and K.R. Koedinger, “Learning to
Distinguish between Representations of Data: A Cognitive Tutor
That Uses Contrasting Cases,” Proc. Int’l Conf. Learning Sciences,
pp. 58-65, 2004.

[11] R.S.J.d. Baker, A.T. Corbett, and K.R. Koedinger, “The Difficulty
Factors Approach to the Design of Lessons in Intelligent Tutor
Curricula,” Int’l J. Artificial Intelligence in Education, vol. 17, no. 4,
pp. 341-369, 2007.

[12] R.S. Baker, A.T. Corbett, K.R. Koedinger, and M.P. Schneider, “A
Formative Evaluation of a Tutor for Scatterplot Generation:
Evidence on Difficulty Factors,” Proc. Conf. Artificial Intelligence
in Education: Shaping the Future of Learning through Intelligent
Technologies (AI-ED ’03), U. Hoppe, F. Verdejo, and J. Kay, eds.,
pp. 107-114, 2003.

[13] C.R. Beal, R. Walles, I. Arroyo, and B.P. Woolf, “Online Tutoring
for Math Achievement: A Controlled Evaluation,” J. Interactive
Online Learning, vol. 6, pp. 43-55, 2007.

[14] P. Black and D. William, “Inside the Black Box: Raising Standards
through Classroom Assessment,” Phi Delta Kappan, vol. 80, no. 2,
pp. 139-148, http://www.pdkintl.org/kappan/kbla9810.htm, Oct.
1998.

[15] P. Black and D. William, “Assessment and Classroom Learning,”
Assessment in Education, vol. 5, no. 1, pp. 7-74, Mar. 1998.

[16] Q. Brown, F.J. Lee, D.D. Salvucci, and V. Aleven, “Interface
Challenges for Mobile Tutoring Systems,” Proc. Ninth Int’l Conf.
Intelligent Tutoring Systems (ITS ’08), B. Woolf, E. Aimeur,
R. Nkambou, and S. Lajoie, eds., pp. 693-695, 2008.

[17] R. Catrambone, “The Subgoal Learning Model: Creating Better
Examples so that Students Can Solve Novel Problems,”
J. Experimental Psychology General, vol. 127, pp. 355-376, 1998.

[18] P.R. Cohen, C.R. Beale, and N.M. Adams, “The Design, Deploy-
ment and Evaluation of the AnimalWatch Intelligent Tutoring
System,” Proc. 18th European Conf. Artificial Intelligence (ECAI ’08),
M. Ghallab, C.D. Spyropoulos, N. Fakotakis, and N. Avouris, eds.,
pp. 663-667, 2008.

[19] A.T. Corbett and J.R. Anderson, “Knowledge Tracing: Modeling
the Acquisition of Procedural Knowledge,” User Modeling and
User-Adapted Interaction, vol. 4, pp. 253-278, 1995.

[20] A. Corbett, A. Wagner, and J. Raspat, “The Impact of Analyzing
Example Solutions on Problem Solving in a Pre-Algebra Tutor,”
Artificial Intelligence in Education, U. Hoppe, F. Verdejo and J. Kay,
eds., Proc. 11th Int’l Conf. Artificial Intelligence and Education (AIED
’03), pp. 133-140, 2003.

[21] N.T. Heffernan, T.E. Turner, A.L.N. Lourenco, M.A. Macasek, G.
Nuzzo-Jones, and K.R. Koedinger, “The ASSISTment Builder:
Towards an Analysis of Cost Effectiveness of ITS Creation,” Proc.
Int’l Florida Artificial Intelligence Research Soc. Conf. (FLAIRS ’06),
2006.

76 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

[22] K.R. Koedinger and V. Aleven, “Exploring the Assistance
Dilemma in Experiments with Cognitive Tutors,” Educational
Psychology Rev., vol. 19, no. 3, pp. 239-264, 2007.

[23] K.R. Koedinger, V. Aleven, N. Heffernan, B.M. McLaren, and M.
Hockenberry, “Opening the Door to Non-Programmers: Author-
ing Intelligent Tutor Behavior by Demonstration,” Proc. Seventh
Int’l Conf. Intelligent Tutoring Systems (ITS ’04), J.C. Lester,
R.M. Vicario, and F. Paraguaçu, eds., pp. 162-174, 2004.

[24] K.R. Koedinger, J.R. Anderson, W.H. Hadley, and M.A. Mark,
“Intelligent Tutoring Goes to School in the Big City,” Int’l J.
Artificial Intelligence in Education, vol. 8, pp. 30-43, 1997.

[25] K.R. Koedinger and A.T. Corbett, “Cognitive Tutors: Technology
Bringing Learning Science to the Classroom,” The Cambridge
Handbook of the Learning Sciences, K. Sawyer, ed., Cambridge Univ.
Press, 2006.

[26] K. Koedinger, K. Cunningham, A. Skogsholm, and B. Leber, “An
Open Repository and Analysis Tools for Fine-Grained, Long-
itudinal Learner Data,” Educational Data Mining 2008: Proc. First
Int’l Conf. Educational Data Mining, R.S.J.d., Baker, T. Barnes, and
J.E. Beck, eds., pp. 157-166, 2008.

[27] K.R. Koedinger and A. Terao, “A Cognitive Task Analysis of
Using Pictures to Support Pre-Algebraic Reasoning,” Proc. 24th
Ann. Conf. Cognitive Science Soc., C.D. Schunn and W. Gray, eds.,
pp. 542-547, 2002.

[28] B. Leber et al., “CTAT’s Tool-Tutor Application Interface,”
http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor, 2007.

[29] Your Wish Is my Command: Programming by Example, H. Lieberman
ed. Morgan Kaufmann, 2001.

[30] M. Mavrikis and A. Maciocia, “WALLIS: A Web-Based ILE for
Science and Engineering Students Studying Mathematics,” Proc.
Workshop Advanced Technologies for Math. Education in 11th Int’l
Conf. Artificial Intelligence in Education, http://www.maths.ed.ac.
uk/~wallis/, 2003.

[31] B.M. McLaren, S. Lim, and K.R. Koedinger, “When and How
Often Should Worked Examples be Given to Students? New
Results and a Summary of the Current State of Research,” Proc.
30th Ann. Conf. Cognitive Science Soc., B.C. Love, K. McRae, and
V.M. Sloutsky, eds., pp. 2176-2181, 2008.

[32] E. Melis, E. Andrès, J. Büdenbender, A. Frischauf, G. Goguadze, P.
Libbrecht, M. Pollet, and C. Ullrich, “ActiveMath: A Generic and
Adaptive Web-Based Learning Environment,” Int’l J. Artificial
Intelligence in Education, vol. 12, pp. 385-407, 2001.

[33] E. Melis, G. Goguadze, M. Homik, P. Libbrecht, C. Ullrich, and S.
Winterstein, “Semantic-Aware Components and Services of
ActiveMath,” British J. Educational Technology, vol. 37, no. 3,
pp. 405-423, 2006.

[34] A. Mitrovic, P. Suraweera, B. Martin, K. Zakharov, N. Milik, and J.
Holland, “Authoring Constraint-Based Tutors in ASPIRE,” Proc.
Eighth Int’l Conf. Intelligent Tutoring Systems (ITS ’06), M. Ikeda,
K.D. Ashley, and T.W. Chan, eds., pp. 41-50, 2006.

[35] A. Mitrovic, B. Martin, and P. Suraweera, “Intelligent Tutors for
All: The Constraint-Based Approach,” IEEE Intelligent Systems,
vol. 22, no. 4, pp. 38-45, July/Aug. 2007.

[36] P. Morgan and S. Ritter, “An Experimental Study of the Effects of
Cognitive Tutor Algebra I on Student Knowledge and Attitude,”
Carnegie Learning, Inc., http://www.carnegielearning.com, 2002.

[37] T. Murray, “An Overview of Intelligent Tutoring System Author-
ing Tools: Updated Analysis of the State of the Art,” Authoring
Tools for Advanced Learning Environments, T. Murray, S. Blessing,
and S. Ainsworth, eds., chapter 17, pp. 491-544, Kluwer Academic
Publishers, 2003.

[38] B.A. Myers, R.G. McDaniel, and D.S. Kosbie, “Marquise: Creating
Complete User Interfaces by Demonstration,” Proc. Conf. Human
Factors in Computing Systems (INTERCHI ’93), 1993.

[39] NCTM, Curriculum Focal Points for Prekindergarten through Grade 8
Math. Nat’l Council of Teachers of Math. 2008.

[40] NCTM, Principles and Standards for School Math. Nat’l Council of
Teachers of Math., 2000.

[41] J. Ong and S. Noneman, “Intelligent Tutoring Systems for
Procedural Task Training of Remote Payload Operations at
NASA,” Proc. Industry/Interservice, Training, Simulation and Educa-
tion Conf. (I/ITSEC ’00), 2000.

[42] F. Paas and J. Van Merriënboer, “Variability of Worked Examples
and Transfer of Geometry Problem-Solving Skills: A Cognitive-
Load Approach,” J. Educational Psychology, vol. 86, pp. 122-133,
1994.

[43] J. Patvarczki, S.F. Almeida, J.E. Beck, and N.T. Heffernan,
“Lessons Learned from Scaling Up a Web-Based Intelligent
Tutoring System,” Proc. Ninth Int’l Conf. Intelligent Tutoring
Systems (ITS ’08), B. Woolf, E. Aimeur, R. Nkambou, and
S. Lajoie, eds., pp. 766-770, 2008.

[44] Pittsburgh Science of Learning Center, Guide to the Tutor Message
Format, https://pslcdatashop.web.cmu.edu/dtd/guide/tutor_
message_dtd_guide_v4.pdf, 2008.

[45] G.S. Plano, “The Effects of the Cognitive Tutor Algebra on Student
Attitudes and Achievement in a Ninth Grade Algebra Course,”
PhD dissertation, Seton Hall Univ., unpublished.

[46] L. Razzaq, M. Feng, G. Nuzzo-Jones, N.T. Heffernan, K.R.
Koedinger, B. Junker, S. Ritter, A. Knight, C. Aniszczyk, S. Choksey,
T. Livak, E. Mercado, T.E. Turner, R. Upalekar, J.A. Walonoski,
M.A. Macasek, and K.P. Rasmussen, “The Assistment Project:
Blending Assessment and Assisting,” Proc. 12th Int’l Conf. Artificial
Intelligence in Education, C.K. Looi, G. McCalla, B. Bredeweg, and
J. Breuker, eds., pp. 555-562, 2005.

[47] A. Renkl, “Worked-Out Examples: Instructional Explanations
Support Learning by Self-Explanations,” Learning and Instruction,
vol. 12, no. 5, pp. 529-556, 2002.

[48] A. Renkl, R.K. Atkinson, and C.S. Große, “How Fading Worked
Solution Steps Works—A Cognitive Load Perspective,” Instruc-
tional Science, vol. 32, pp. 59-82, 2004.

[49] B. Rittle-Johnson and K.R. Koedinger, “Comparing Instructional
Strategies for Integrating Conceptual and Procedural Knowl-
edge,” Proc. Conf. Int’l Group for the Psychology of Math. Education,
North Am. Chapter (PME-NA XXXIII), 2002.

[50] B. Rittle-Johnson and K.R. Koedinger, “Using Cognitive Models to
Guide Instructional Design: The Case of Fraction Division,” Proc.
23rd Ann. Conf. Cognitive Science Soc., pp. 857-862, 2001.

[51] S. Ruby, D. Thomas, and D.H. Hansson, Agile Web Development
with Rails, third ed. The Pragmatic Programmers LLC, 2009.

[52] R. Salden, V. Aleven, A. Renkl, and R. Schwonke, “Worked
Examples and Tutored Problem Solving: Redundant or Synergis-
tic forms of Support?” Proc. 30th Ann. Conf. Cognitive Science Soc.,
B.C. Love, K. McRae, and V.M. Sloutsky, eds., pp. 589-594, 2008.

[53] C. Sangwin and S. Hammond, “Enhancing Traditional Teaching
through the STACK CAA System,” Proc. Fifth Workshop Joining
Educational Math. (JEM), http://www.stack.bham.ac.uk/, 2007.

[54] H. Sarkis, “Cognitive Tutor Algebra 1 Program Evaluation,”
Miami-Dade County Public Schools, The Reliability Group,
Carnegie Learning, Inc., http://www.carnegielearning.com, 2004.

[55] R. Schwonke, A. Renkl, C. Krieg, J. Wittwer, V. Aleven, and R.
Salden, “The Worked-Example Effect: Is It Just an Artefact of
Lousy Control Conditions?” Computers in Human Behavior, to
appear.

[56] J.G. Trafton and B.J. Reiser, “The Contributions of Studying
Examples and Solving Problems to Skill Acquisition,” Proc. 15th
Ann. Conf. Cognitive Science Soc., M. Polson, ed., pp. 1017-1022,
1993.

[57] K. VanLehn, “The Behavior of Tutoring Systems,” Int’l J. Artificial
Intelligence in Education, vol. 16, no. 3, pp. 227-265, 2006.

[58] WebALT “State of the Art in Mathematical E-Learning,” EDC-
22253-WEBALT, WebALT Consortium, WebALT Project Deliver-
able D1.1., http://webalt.math.helsinki.fi/content/e16/e301/
e304/D1.1._State_of_the_Art_in_mathematical_e-learning_
eng.pdf, Apr. 2005.

[59] G. Weber and P. Brusilovsky, “ELM-ART: An Adaptive Versatile
System for Web-Based Instruction,” Int’l J. Artificial Intelligence in
Education, Special Issue on Adaptive and Intelligent Web-Based
Educational Systems, vol. 12, no. 4, pp. 351-384, 2001.

[60] B.P. Woolf, Building Intelligent Interactive Tutors: Student-Centered
Strategies for Revolutionizing e-Learning. Morgan Kaufmann, 2008.

[61] K. Yacef, “The Logic-ITA in the Classroom: A Medium Scale
Experiment,” Int’l J. Artificial Intelligence in Education, vol. 15,
pp. 41-60, 2005.

ALEVEN ET AL.: SCALING UP PROGRAMMING BY DEMONSTRATION FOR INTELLIGENT TUTORING SYSTEMS DEVELOPMENT: AN OPEN-... 77

Vincent Aleven is an assistant professor in the
Human-Computer Interaction Institute at Carne-
gie Mellon University. He has 16 years of
experience in research and development related
to intelligent tutoring systems and authoring
tools for tutoring systems. He is one of the
original developers of the Cognitive Tutor
Geometry curriculum. He has conducted re-
search in real educational settings, in urban and
suburban schools at the high school, middle

school, and vocational school levels, as well as at the postsecondary
level. He is a member of the executive committee of the Pittsburgh
Science of Learning Center (http://www.learnlab.org).

Bruce M. McLaren has a split appointment as a
senior systems scientist in the Human-Computer
Interaction Institute at Carnegie Mellon Univer-
sity in Pittsburgh and as a senior researcher at
the Deutsches Forschungszentrum für Küns-
tliche Intelligenz (DFKI) in Saarbrücken, Ger-
many. He has research interests in educational
technology, collaborative learning, intelligent
tutoring, and artificial intelligence. He has more
than 50 publications in peer-reviewed journals,

conferences, workshops, and symposiums, with most focused on
educational technology and learning.

Jonathan Sewall is the project director in the
Human-Computer Interaction Institute at Carne-
gie Mellon University. He has been the technical
lead of the Cognitive Tutor Authoring Tools
Project for the last four years. He has 25 years of
experience in government, industry, and acade-
mia with software design and development. His
past work experience includes expert systems,
massively parallel systems, Web applications,
databases, and networks.

78 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 2, NO. 2, APRIL-JUNE 2009

