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Abstract—The activity of Control Center operators is important to guarantee the effective performance of Power Systems.

Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent

Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service

restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into

account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques

were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems,

Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and

Intelligent User Interfaces.

Index Terms—Cooperative learning, intelligent tutoring systems, on-the-job training, operators’ training, power systems control

centers.
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1 INTRODUCTION

CURRENT Power Systems are highly complex and require
sophisticated and precise operation and control. The

most important decisions concerning Power System opera-
tion are taken in Control Centers, where real-time
information on the Power System state is received and
the human operators are the final link of an extended
chain. Although Power System reliability has been increas-
ing, incidents with more or less severe consequences still
occur. In some cases, this can result in blackout situations,
leading to consumer lack of supply, for which the
economic and social impact can dramatically be high.
Fig. 1 shows the impact of the 14th August 2003 blackout
in the Northeast part of the USA.

Blackouts have been major concerns in Power Systems

mainly since the occurrence of the 9th November 1965

Northeast Blackout in USA. In recent years, several black-

outs occurred, making the need to keep lights on more

important than ever. On the 4th of October 2006, a Saturday,

some minutes after 10 p.m., the Union for the Coordination

of Transmission of Electricity (UCTE) European Network

experienced a quasi blackout situation affecting nine

European countries and North Africa and about 10 million

consumers [1]. It was due to the simultaneous occurrence of

several unforeseen events, made worst by the increasing

unpredictability, which is inherent to wind power produc-

tion. The restoration process was hampered by limited

coordination and lack of an accurate global view. Not long

ago, IEEE Power and Energy Magazine devoted a special issue

titled “Shedding light on blackout—From prevention

through restoration” to the subject of blackouts, its

prevention, and recovery [2].
Control Center operators’ performance is determinant to

minimize the incident consequences. The need of a good
response of Control Centers to severe faults, like blackouts,
is even more important nowadays, due to the generalization
of liberalized Electricity Markets [3]. As Power Systems
reliability increased, the number of incidents offering
occasion for operator on-the-job training has decreased.
The consequences of incorrect operator behavior are all the
more severe during a serious incident [4]. Operator training
and the availability of decision-support tools are vital for
overcoming these problems [5].

Power System Control Centers are an interesting domain
for Knowledge-Based Systems (KBSs) because they can
provide solutions for a large set of problems for which
traditional software techniques are not suitable. In fact,
Power Systems are complex and dynamically changing
environments, made up of a lot of plants and equipments.
These characteristics of Power Systems require knowledge-
based applications in Control Centers to deal with non-
monotonic and temporal reasoning. On the other hand, the
analysis of these situations is event-driven, asking for each
piece of information to be analyzed in context and not
independently from the other available information.

Intelligent Tutoring Systems (ITSs) were the main
approach selected to deal with the operators’ training in
diagnosis [6] and restoration tasks, namely because:
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1. They represent domain knowledge in a structured

way, allowing the inference of new knowledge

(access to the essential knowledge).
2. They model the trainee, allowing action in a

nonmonotonous way, adapting better to the trainee’s

characteristics and evolution (awareness of the
needs of people).

3. With the right didactic knowledge, they allow the
system to choose different pedagogical approaches

in the different phases of the learning process

(requirements customization).
4. They are able to constantly monitor the trainee’s

performance and evolution, gathering information to

guide the system’s adaptation (context awareness).
5. They typically require very little intervention from

the training staff and can be used in the working

environment without disturbing the normal work-

ing routines.

In this paper, we present an Intelligent Tutoring System

used for training the Control Center operators of the

Portuguese Power System’s Network in fault diagnosis

and power restoration tasks.

Fig. 2 illustrates the environment in which the Operators

of the Portuguese Power System Control Center work.

Several Artificial Intelligence techniques are used to

make this system able to minimize network experts’ effort

in training preparation and to enable on the job and

cooperative effective training.

2 TUTORING ENVIRONMENT ARCHITECTURE

The tutoring environment that has been developed involves

two main areas: one devoted to the training of fault

diagnosis skills and another dedicated to the training of

power system restoration techniques. Fig. 3 shows the

tutoring environment architecture.

The selection of the adequate established restoration

procedure strongly depends on the correct identification of

the Power System operation state. Therefore, the identifica-

tion of the incidents or set of incidents occurring in the

transmission network is of utmost relevance in order to

establish the current Power System operation state. Thus,

the proposed training framework divides operator’s train-

ing into distinct stages. The first one, as described in

Section 3, is intended to give operators with competence

needed for incident diagnosis. After that, operators are able

to use CoopTutor (Section 4) to train their skills to manage

the restoration procedures.

2.1 DiagTutor’s Structure

This tutoring module is focused on Fault Diagnosis Training

and can be divided into two major classes: modules and

information stores. Modules are active processes that work

together to create the required intelligent behavior. The

tutoring system modules are the following:

1. Planning and instruction modules—the macroadap-

tation module defines the decisions taken before

the beginning of the training session and the

microadaptation module is responsible for guiding

the response to the operator actions during the

training session.
2. Training scenario search module—looks for a train-

ing scenario whose features are closer to the set of

features defined by the macroadaptation module.
3. Specific situation generation module—generates a

model describing the diagnostic process for each
incident included in the training scenario.

4. Domain expert and operator reasoning matching
module—compare the domain solver (SPARSE ex-

pert system [4]) reasoning with the steps performed

by the operator during problem resolution.
5. Errors identification module—detects operator mis-

conceptions by comparing the operator errors with

the error patterns’ library.
6. User interface manager.

2.2 CoopTutor’s Structure

The purpose of this tutoring module is Restoration Training

and it is built on a multiagent system including both agents

personifying the several entities usually present in a power

system control structure and the agents responsible for the

simulation and the pedagogical guidance tasks.
The main agents present in the system fall into one of

these categories as follows:

1. Supporting and Guidance agents:

a. Restoration Tutoring Module—containing the
domain and didactic knowledge needed for
the supervision of the student’s work and the
monitoring of the interaction between several
students training in cooperative mode.
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Fig. 1. Northeast USA before and after the 14th August 2003 blackout
(Source: NOAA—National Oceanic and Atmospheric Administration).

Fig. 2. Power system control center environment.



b. Simulator Units—responsible for the simula-
tion of the different aspects of the power
system operation.

2. Role playing agents—performing the roles normally
assured by the human operators present in the
Control Centers.

3. Interface agents—assigned to students being trained.

3 TUTORING MODULE FOR

FAULT DIAGNOSIS TRAINING

During the analysis of alarm messages lists, CC operators

must have in mind the group of messages that describes

each type of fault. The same group of messages can show up

in the reports of different types of faults. So CC operators

have to analyze the arrival of additional information whose

presence or absence determines the final diagnosis.
Operators have to deal with uncertain, incomplete, and

inconsistent information, due to the data loss or errors

occurred in the data gathering system.
Let us consider a small example: a simplified situation

that may occur in a Power System that helps to understand

the importance of temporal reasoning when dealing with

Power System operation.
Whenever a fault occurs in a Power System, its

protection system should react to it, giving automatic

opening orders to one or more breakers. The opening of

these breakers ensures the isolation of the fault, being the
protection system designed in such a way that only an area
as small as possible is affected. Protection systems are very
important for the performance and security of Power
Systems and can be rather complex, especially in the case
of transmission networks, involving a lot of different
protection devices. In our example, we will consider that
a fault occurs in a line connecting two substations of a
Power System and, as a consequence of that, the protection
system gives opening orders to two breakers installed at the
two ends of this line (Fig. 4).

Fig. 5 considers one of these breakers and a possible
sequence of operations after the occurrence of the fault.

FARIA ET AL.: TRAINING CONTROL CENTERS’ OPERATORS IN INCIDENT DIAGNOSIS AND POWER RESTORATION USING INTELLIGENT... 137

Fig. 4. Power system line.

Fig. 3. Tutoring environment architecture.

Fig. 5. Sequence of breaker operations. T1 < T2 < T3.



Let us consider that the breaker opens at instant T1,
closes at instant T2, and opens again at instant T3. The
interpretation of this fault depends not only on the
sequence of events but also on the time intervals between
them. In fact, when the breaker closes at T2, after the first
opening at T1, this is likely to be due to the automatic
reclosure procedure of the protection equipment. Fast
automatic reclosures are widely used in Power Systems in
order to minimize the impact of faults. In this case, the time
interval between T1 and T2 would depend on the type of
the fault and on the regulation of the automatic reclosure in
the protection. Let us consider that, for instance, for a fault
involving only one of the three phases (single-phase fault),
this time would be 900 milliseconds whereas for a fault
involving the three phases (three-phase fault), it would be
300 milliseconds. Apart from considering these times, we
have to consider some tolerance in the dating and
transmission of the information from the plant to the
Control Center. For this reason, let us say that in the case of
a three-phase fault, the time interval between T1 and T2
should not exceed 500 milliseconds. So, if T2-T1 is less than
or equal to 500 milliseconds, we can interpret the first two
messages as a consequence of a three-phase fault. After this,
we have to consider the third message reporting a new
opening of the breaker at T3. Assuming that this is a
consequence of a tripping command sent by the protection
system, it is due to an incident situation. Once more, the
time T3 is crucial for the interpretation of this part of the
incident. If this tripping takes place in a short interval of
time (let us say within 5 seconds) after the reclosure of the
breaker, it is considered that it is caused by the same fault
that originated the first opening of the breaker considered
in this example. Under these circumstances, with T3-T2
equal to or less than 5 seconds, the whole incident would be
seen as a three-fault with unsuccessful reclosure at this end
of the line. If T3-T2 was greater than 5 seconds, the third
message would be considered as reporting a fault indepen-
dent from the already considered.

The above example shows the complexity of the analysis
of the messages that CC operators have to interpret. Note
that the same sequence of messages can be interpreted in
different ways, depending on the time intervals between
messages. If a Knowledge-Based System is used to assist
this interpretation, its inference engine must be prepared to
deal with the temporal nature of the problem. For instance,
after receiving the second message considered in this
example, the incident could be described as a three-phase
fault with successful reclosure, but the inference engine will
have to wait at least 5 seconds for the possible arrival of a
message reporting another opening of the breaker. If the
message arrives, the incident will be described as a three-
phase fault with unsuccessful reclosure.

In fact, if we consider all the messages that are
generated during the period of the incident, including not

only the messages originated in the plants involved in the
incident but also in other plants of the Power System,
operators can be forced to consider several hundreds of
messages in just a few minutes. It is important to note that
an incident usually causes the generation of not only the
messages that are relevant to the analysis of this particular
incident but also a lot of other messages that are not
important in that context, increasing the total number of
received messages. However, on other contexts, these
messages could be important, which stresses the need of
a contextual interpretation of the information.

On the other hand, several incidents can take place
almost at the same time and one incident can have
consequences in much more than two plants, resulting on
a much more complex interpretation of the situation. If we
also take into account the need to consider missing
information, we can have an idea of the difficulties that
CC operators face and also of the complexity of a knowl-
edge-based application for this area.

In order to illustrate how a diagnosis training session is
conducted and the interaction between the operator and the
tutor, this section presents a very simplified diagnosis
problem containing a DmR (monophase tripping with
reclosure) incident, occurred in panel 204 of SED substa-
tion. The relevant SCADA messages related to this incident
are depicted in Table 1. These SCADA messages corre-
spond to the following events: breaker tripping, breaker
moving, and breaker closing [7]. In a real training scenario,
the operator is faced with a huge amount of messages,
typically several hundreds.

3.1 Reasoning about Operator Answers

The interaction between the trainee and the tutor is
performed through prediction tables (Fig. 6), where the
operator selects a set of premises and the corresponding
conclusion. The premises represent events (SCADA mes-
sages), temporal constraints between events, or previous
conclusions [7].

DiagTutor does not require the operator’s reasoning to
follow a predefined set of steps, as in other implementations
of the model tracing technique [8]. In order to evaluate this
reasoning, the tutor will compare the prediction tables’
content with the specific situation model [9]. This model is
obtained by matching the domain model with the inference
undertaken by SPARSE expert system [4]. The process is
used to: identify the errors revealing operator’s misconcep-
tions; provide assistance on each problem solving action, if
needed; monitor the trainee knowledge evolution; and
provide learning opportunities for the trainee to reach
mastery. In the area of ITSs, this goal has been achieved
through the use of cognitive tutors [10], [11].
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TABLE 1
Incident in Panel 204 of SED Substation

Fig. 6. Prediction table.



The identified errors are used as opportunities to correct
the faults in the operator’s reasoning. The operator’s entries
in prediction tables cause immediate responses from the
tutor. In case of error, the operator can ask for help that is
supplied as hints. Hinting is a tactic that encourages active
thinking structured within guidelines dictated by the tutor
[12]. The first hints are generic, becoming more detailed if
the help requests are repeated.

The situation-specific model generated by the tutoring
system for the problem presented is shown in the left frame
of Fig. 7. It presents high granularity since it includes all the
elementary steps used to get the problem solution. The tutor
uses this model to detect errors in the operator reasoning by
comparing the situation-specific model with the set of steps
used by the operator. The model’s granularity level is
adequate to a novice trainee but not to an expert operator.
The right frame of Fig. 7 represents a model used by an
expert operator, including only concepts representing
events, temporal constraints between events, and the final
conclusion. Any reasoning model between the higher and
lower granularity level models is admissible since it does not
include any violation to the domain model. These two levels
are used as boundaries of a continuous cognitive space.

Indeed, the process used to evaluate the trainee’s
reasoning is based on the application of pattern matching
algorithms. Similar approaches with the same purpose are
used in other ITSs, such as in TAO [13], an ITS designed to
provide tactical action officer students at US navy with
practice-based and individualized instruction.

3.2 Adapting the Curriculum to the Operator

The main goal of the Curriculum Planning module is to
select, from a library, a problem fitting the trainee needs.

The preparation of the tutoring sessions’ learning
material is a time-consuming task. In the industrial environ-
ment, usually there is not a staff exclusively dedicated to
training tasks. In particular, in the electrical sector, the
preparation of training sessions is done by the most
experienced operators, which are often overloaded with
power system operation tasks [7]. In order to overcome this
difficulty, we developed two tools. The first one generates
and classifies training scenarios from real cases previously
stored. As these may not cover all the situations that control
center operators must be prepared to face, another tool is
used to create new training scenarios or to edit already

existing ones [7]. The second tool, named Training Scenarios
Generator, allows the user to choose the features of the
training scenario such as the possibility of chronological
inversion of SCADA messages.

The process used by the Curriculum Planning module to
define the problems’ features involves two phases. First, the
tutor must define the difficulty level of the problem, using
heuristic rules. These rules relate parameters like the
trainee’s performance in previous problems and his overall
level of knowledge. In the second phase, the tutor uses the
user model’s contents to choose the type of the most
suitable incidents to be included in the problem, taking into
account the domain concepts involved in each type of
incident and the corresponding trainee’s expertise.

3.3 Difficulty Level Selection

To evaluate the problems’ difficulty level, we need to
identify the cases’ characteristics that increase their com-
plexity, namely number of incidents involved in the case,
variety of incident types, number of involved plants, and
existence of chronological inversion in SCADA messages.

The choice of the difficulty level depends on two factors
contained in the trainee’s model: the trainee’s global
knowledge and a global acquisition factor. The first
parameter is a measure of the trainee’ knowledge level in
the whole range of domain concepts and is calculated
using the mean of his knowledge level in each domain
concept. The Curriculum Planning Module needs appro-
priate thresholds for deciding on the next problem
difficulty level. The opinion of the trainees, regarding their
personal evolution as the problems difficulty level is
changed, can be used to tune these thresholds.

The acquisition factors record how well trainees learn
new concepts. When a new concept is introduced, the tutor
monitors the trainee’s performance on the first few pro-
blems, namely how well and how quickly he solves them.
This analysis determines the trainee’s acquisition factor. The
procedure used to determine the trainee’s acquisition in each
domain concept is based on the number of times the trainee’s
knowledge level about the concept increased, considering
the three first applications of the concept.

The mechanism used to define the difficulty level of the
problems is based on the following rule:

If the global knowledge level and the global acquisition factor
change in opposite directions (low-high or high-low),

then the problem difficulty level does not change.
Else, the problem difficulty level changes in the same direction of

the global knowledge level.

Table 2 illustrates the application of the previous rule.
Table 2 shows that if the trainee possesses a weak global

acquisition factor, regardless of the global knowledge level,
the resulting difficulty level never increases. In order to
prevent this behavior, whenever the operator reaches three
increase/decrease steps of the global acquisition factor after
three consecutive problems, while the global acquisition
factor shows a low/high level, then the problem’s difficulty
level is incremented/decremented. The goal of this heur-
istic rule is to prevent the global acquisition factor from
inducing permanently the variation of the problem’s
difficulty level.
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Fig. 7. Higher and lower granularity levels of the situation-specific model.



3.4 Problem Type Adequacy to the Trainee
Cognitive Status

The mechanism used to classify each kind of incident in
terms of adequacy to the trainee is based on a neural
network (right side of Fig. 8). The nodes belonging to the
input layer correspond to the concepts included in the
domain’s knowledge base (to be assimilated by the trainees).
Each node represents the application of a concept in a
specific context. For instance, the nodes ce1/T1 and ce1/T5
represent two instances of the same concept and character-
ize the application of the concept of breaker tripping in the
situations of first tripping and tripping after an automatic
reclosure. The input vector contains an estimate of the
trainee’s expertise level for each concept or its application
and is obtained from the user model. Therefore, this vector
represents an estimate of the trainee’s domain knowledge.

The output layer units represent the adequacy of an
incident type to the current learner’s knowledge status. The
number of units corresponds to the number of incident
types. The five incident types considered are DS (simple

tripping), DtR (triphase tripping with successful reclosure),
DmR (monophase tripping with successful reclosure), DtD
(triphase tripping with unsuccessful reclosure), and DmD
(monophase tripping with unsuccessful reclosure). Each
output layer’s node, representing a type of incident, is
connected only to the input nodes corresponding to the
concepts involved with that incident type. These connec-
tions are done with links of weight wij.

The values used as weights are wij ¼ f1; 0;�g, where “-”
is used to indicate that there is no connection between the
node i of the output layer and the input node j. This means
that concept j is not involved in an incident type i.

Each output neuron activation level is computed using
the input vector and its weight vector. The activation is
defined by the euclidean distance, given by (1):

ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j¼1

wij � xj
� �2

:

vuut ð1Þ

We can see that a neuron with a weight vector (w)
similar to the activation level vector of the input node (x)
will have a low activation level and vice versa. The output
layer’s node with the lowest activation will be the winner.

On the left side of Fig. 8, each line represents the
evolution of the knowledge level about each domain
concept, across a sequence of problems presented to the
ideal operator. The vertical axis represents the knowledge
level of the operator about each domain concept. The
horizontal axis represents the sequence of problems
obtained by the classification mechanism.

It can be observed that, after the third iteration, the
concepts used in DS incident type overcome the medium
level (0.5), leading to a new type of incident (DtR) in the
next iteration. After the fourth iteration, some concepts that
are not used in DS but are involved in DtR incident
overtake the minimum level for the first time. In the
simulation, all the model variables are set to their minimum
value (0.1) and achieve a maximum value of 0.9. It is also
assumed that the ideal operator applies correctly all the
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Fig. 8. Classification mechanism.

TABLE 2
Application of the Mechanism Used to
Define the Difficulty Level of Problems



domain concepts involved in the problem and that the
updating rate is constant (0.2).

We observed that an early introduction of new concepts
can contribute to increase the instructional process effi-
ciency. The problem selection mechanism ensures that the
problem sequence is not monotonous, tending to stimulate
the operator’s performance with new kinds of incidents.

3.5 A Case Study

In this section, we will present a more elaborated example
that can be presented to the Control Center’s Operator
trainee and is based on a real incident. This incident
generated a set of messages from which we have selected
the following 35 messages arriving in a period of just 130 ms.

These messages correspond to an incident at the line
Ferreira do Alentejo-Palmela (SFA-SPM) involving only one
phase that triggered the tripping of both ends. Automatic
reclosure equipment performed the reclosure of the line,
successfully in Palmela substation (SPM) but unsuccess-
fully in Ferreira do Alentejo substation (SFA). This end of
the line has been closed by the automatic operator (OPA) of
Ferreira do Alentejo substation. After the occurrence of a
breaker tripping, the OPA will try to reengage it. If the fault
persists and another tripping immediately occurs, the OPA
will stop trying.

For this incident, the correct diagnosis is the following:

In this scenario, the automatic equipment was able to
close both extremes of the line and the operator did not
need to perform any corrective action. However, in other
situations, where the cause of tripping is not transitory, the
operator must perform corrective actions in order to restore

the service. The training of these corrective actions is the

goal of CoopTutor, presented in Section 4.
This diagnosis is reached by the SPARSE Expert System,

which is used by DiagTutor as the Domain Expert. In order

to support the trainee activity during the training session,

DiagTutor receives the inference produced by the Domain

Expert (SPARSE Expert System) used to get the correct

diagnosis. The Expert System Knowledge Base is repre-

sented through production rules, so the inference produced

includes the triggered rules, its premises, and its corre-
sponding conclusions. This inference is used by DiagTutor

to get the situation-specific model presented in Section 3.1.

As presented before, this model is represented with two

granularity levels. These two levels represent the bound-

aries of the trainee behavior during problem solving. One of

these levels, with the lower granularity level, represents the

reasoning of an expert during problem solving. An expert is

able to solve the diagnosis problem with a minimum

number of steps. On the other hand, a beginner trainee will

require a maximum number of steps to reach the correct

diagnosis. Such set of steps is represented by the higher

granularity level of the situation-specific model.
Returning to the example, the incident involves tripping

in both extremes of a line. In such case, the strategy used by

an expert is to identify the tripping in each extreme of the

line and then identify the correlation between the two

trippings. This correlation occurs if the interval between

trippings does not exceed a predefined number of seconds.
DiagTutor supports the trainee activity with this strategy.

Fig. 9 presents the situation-specific model with the
lower granularity level. The level represents the steps used

by an expert to reach the correct diagnosis.
During the problem solving activity, an advanced trainee

will need to use only three prediction tables (as presented in

Fig. 9) to reach to the correct diagnosis: two prediction

tables to get conclusions about the tripping in each extreme

of the line (conclusions cs11 and cs13 in Fig. 9), and a third

prediction table to conclude about the correlation between

the two trippings (conclusion cc1 in Fig. 9).
On the other hand, a trainee in an earlier training stage

may require the usage of a large number of steps to achieve

the correct diagnosis, which means that the trainee will use

more prediction tables during problem solving. Such

trainee does not have the diagnosis task automated.
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Fig. 9. Lower granularity level of the situation-specific model.



Fig. 10 shows the higher level of the situation-specific
model for the example.

A beginner trainee will need to use 8 prediction tables:
3 prediction tables to conclude about DmR in SPM (cs11),
4 prediction tables to conclude about DmD in SFA (cs13),
and another prediction table to get the correlation about the
tripping in both sides of the line (cc1).

For instance, the first of the three prediction tables used
to conclude about DmR in SPM will allow to conclude
about the concept cs6 (monophase tripping of unknown
type at instant T1) based on the evidence of the events ce1
(breaker tripping at instant T1) and ce4 (breaker moving at
instant T2), and based on verification of the temporal
constraint ct1 (jT1� T2j � 300 milliseconds).

The existence of the two granularity levels of the
situation specific model does not demand the operator’s
reasoning to follow the number of predefined set of steps
expressed by each of the granularity levels. Considering
the example, DiagTutor would accept as correct the
conclusion about DmR in SFA (the tripping in the first
extreme of the line) if a trainee with an intermediate level
of knowledge about the diagnosis task uses 2 prediction
tables instead of 3 from the higher granularity level. In this
case, the first two prediction tables, corresponding to the
higher granularity level, could be replaced by only one.
This prediction table could conclude about the concept cs8
(monophase fast reclosure at instant T3) based on the
evidence of the events ce1 (breaker tripping at instant T1),
ce4 (breaker moving at instant T2), and ce2 (breaker closed
at instant T3), and based on verification of the temporal
constraints ct1 (jT1� T2j � 300 milliseconds) and ct4
(jT2� T3j � 1 second). This hypothetic reasoning his
represented in the right side of Fig. 11.

The scenario illustrated in Fig. 11 shows that the trainee
does not explicitly conclude the concept cs6 (see Fig. 10).
However, since he concludes about cs8 based on all
premises needed to conclude it, DiagTutor will accept that
reasoning as a valid one. Furthermore, DiagTutor will infer
that the trainee applied concept cs6 correctly and would
increase the corresponding variable from the user model.

In order to fill the fields of prediction tables, the trainee
uses a pull-down menu adjacent to each field. The set of items
present in the pull-down menu is dynamic and depends on
the expertise level of the trainee. A trainee, who is initiating
his training, will have fewer options to fill the prediction
table fields. As the trainee gets more expertise, the set of
options available to fill each field increases. This adaptive
behavior is based on the contents of the trainee model.

During problem solving, DiagTutor will present in green
all correct inputs in the prediction tables and in red the
wrong ones. In case of wrong entries, the trainee can ask
about “What is wrong?”. DiagTutor will answer with a hint
in order that the trainee can overcome his difficulty. If the
trainee asks for help about the same error, done before, the
tutor will supply hints with increasing detail. The sequence
of presented hints is maintained by the tutor in order to
prevent showing repeated hints.

Another kind of help is supplied by DiagTutor. The
trainee can ask help about “What to do next?”. This kind of
help is presented only when there is not a red entry in the
prediction table.

This example is not one of the most complex presented to
the trainee. In the final phase of the diagnosis training, the
operator is faced with several incidents taking place during
the same time interval and having consequences in more
than two plants.

4 TUTORING MODULE FOR RESTORATION TRAINING

4.1 Restoration Training Issues

The management of a power system involves several
distinct entities, responsible for different parts of the
network. The power system restoration needs a close
coordination between generation, transmission, and dis-
tribution personnel and their actions should be based on a
careful planning and guided by adequate strategies [14].

In the Portuguese transmission network, four main
entities can be identified: the National Dispatch Center
(CG), responsible for the energy management and the
thermal generation; the Operational Center (CO), control-
ling the transmission network; the Hydroelectric Control
Center (CTCH), responsible for the remote control of
hydroelectric power plants, and the Distribution Dispatch
(EDIS), controlling the distribution network. It is important
to note that several companies are involved.

The power restoration process is conducted by these
entities in such a way that the parts of the grid they are
responsible for will be slowly led to their normal state, by
performing the actions specified in detailed operating
procedures and fulfilling the requirements defined in
previously established protocols. This process requires
frequent negotiation between entities, agreement on com-
mon goals to be achieved, and synchronization of the
separate action plans on well-defined moments.

Training programs should take this fact into account by
providing an environment where these different roles can
be performed and intensively trained. Traditionally, this
requirement has been met by the use of training simulators.
These systems are nowadays quite apt at describing
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Fig. 10. Higher granularity level of the situation-specific model.

Fig. 11. Two possible sequences of steps to conclude about monophase

fast reclosure at instant T3.



accurately the power systems’ behavior and representing
the system’s performance realistically. It is possible to turn
them into the core of a training environment with
great realism.

However, several drawbacks can be found in training
programs solely based on the training simulators. The
preparation of these training sessions typically requires
several days of work from specialized training staff. The
need to move away at least four control center operators
from their workplace during several days for the simulation
to be convincing has the consequence of no more than two
training sessions per year being usually attended. Another
facility usually absent from a simulator-based training
session is the capability to perform an accurate evaluation
of the trainees’ knowledge level and learning evolution.

Some of these operator training simulators are built having
in mind the need to reflect in the training the fragmented
structure of the control hierarchy [15]. Therefore, they have
basic provisions to emulate that environment. The roles of the
different control centers are emulated by one or more
instructors in a somewhat sketchy and cumbersome way.

The role of a simulation facility for the training of Power
Systems restoration procedures and techniques is undeni-
able. The same can be said to several other areas addressed
by ITSs. Systems like Tactical Action Officer (TAO) [13]
make extensive use of simulation to provide tactical action
officer students at US Navy with practice-based and
individualized instruction.

To have a full-scale simulator at hand can obviously be
convenient when building a power system restoration
training system, but do we really need a full-blown
simulator for that? In fact, provided that its purpose is not

to accurately describe the network behavior but only to lend
enough realism to the training environment, its limited
simulation capabilities may be good enough to add some
realistic sense to the tutoring process, confirming the
conclusions of some recent research [16].

The purpose of this tutoring system is to allow the
training of the established restoration procedures and the
drilling of some basic techniques. Power system utilities
have built detailed plans containing the actions to execute
and the procedures to follow in case of incident. In the case
of the Portuguese network, there are specific plans for the
system restoration following several cases of partial black-
outs as well as national blackouts, with or without loss of
interconnection with the Spanish network. Table 3 illus-
trates a service restoration plan.

In this section, we describe how we developed a training
environment able to deal adequately with the training of the
procedures, plans, and strategies of the power system
restoration, using what may be called lightweight, limited
scope simulation techniques. This environment’s purpose is
to make available to the trainees all the knowledge
accumulated during years of network operation, translated
into detailed power system restoration plans and strategies,
in an expedite and flexible way. The embedded knowledge
about procedures, plans, and strategies should easily be
revisable, any time that new field tests, postincident
analysis, or simulations supply new data.

This training environment aims to combine the tradi-
tional strengths of the Intelligent Tutors with some of
simulation capabilities of the Operator Training Simulators.

4.2 Multiagent System

Several agents personify the four entities that are present in
the power system restoration process: Operational Center
(CO), National Dispatch (CG), Hydroelectric Generation
(CTCH), and Distribution Dispatch (EDIS). In Fig. 12, it can
be seen that the four agents behavior is like virtual
CC operators.

The multiagent approach was chosen because it is the
most natural way of translating the real-life roles and the
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split of domain knowledge and performed functions that
can be witnessed in the actual power system. Several
entities responsible for separate parts of the whole task
must interact in a cooperative way toward the fulfillment of
the same global purpose. Agents’ technology has been
considered well-suited to domains, where the data are split
by distinct entities physically or logically and that must
interact with one another to pursue a common goal [17].

These agents can be seen as virtual entities that possess
knowledge about the domain. As real operators, they have
tasks assigned to them, goals to be achieved, and beliefs
about the network status and others agents’ activity. They
work asynchronously, performing their duties simulta-
neously and synchronizing their activities only when this
need arises. Therefore, the system needs some kind of
facilitator (simulator in Fig. 12) that supervises the process,
ensuring that the simulation is coherent and convincing.

In our system, the trainee can choose to play any of the
available roles, namely the CO and the CG ones, leaving to the
tutor the responsibility of simulating the other participants.

The ITS architecture was planned in order that future
upgrades of the involved entities or the inclusion of new
agents are simple tasks.

4.3 Trainee’s Model

The representation method used to model the trainee’s
knowledge about the domain knowledge is a variation of the
Constraint-Based Modeling (CBM) technique [18]. This
student model representation technique is based on the
assumption that diagnostic information is not extracted from
the sequence of student’s actions but rather from the
situation, also described as problem state that the student
arrived at. Hence, the student model should not represent
the student’s actions but the effects of these actions. Because
the space of false knowledge is much greater than the one
for the correct one, it was suggested that the use of an
abstraction mechanism based on constraints. In this repre-
sentation, a state constraint is an ordered pair (Cr, Cs), where
Cr stands for relevance condition and Cs for satisfaction
condition. Cr identifies the class of problem states in which
this condition is relevant and Cs identifies the class of
relevant states that satisfy Cs. Under these assumptions,
domain knowledge can be represented as a set of state
constraints. Any correct solution for a problem cannot
violate any of the constraints. A violation indicates incom-
plete or incorrect knowledge and constitutes the basic piece
of information that allows the Student Model to be built on.

This CBM technique does not require an expert module
and is computationally undemanding because it reduces
student modeling processing to a basic pattern matching
mechanism [19]. One example of a state constraint, as used
in our system, can be found below:

If
any circuit breaker is closed in a substation in automatic mode,
then
that circuit breaker must have been closed by the Automatic

Operator.
Otherwise,
Error #10 will be raised.

Each violation of a state constraint like the one above
enables the tutor to intervene both immediately or at a later
stage, depending on the seriousness of the error or the
pedagogical approach that was chosen.

This technique gives the tutor the flexibility needed to
address trainees with a wide range of experience and
knowledge, tailoring, in a much finer way, the degree and
type of support given, and, at the same time, spared us the
exhaustive monitoring and interpretation of the student’s
errors during an extended period, which would be required
by alternative methods.

Nevertheless, it was found the need for a metaknow-
ledge layer in order to adapt the CBM method to an
essentially procedural, time-dependent domain like the
power system restoration field. In fact, the validity of
certain constraints may be limited to only parts of the
restoration process. On the other hand, the violation of a
constraint can, in certain cases, render irrelevant the future
verification of other constraints. Finally, equally valid
constraints in a certain state of the process can have
different relative importance from the didactic point of
view. This fact suggests the convenience of establishing a
constraint hierarchy.

This metaknowledge layer is composed of rules that
control the constraints’ application, depending on several
issues: the phase of the restoration process in which the
trainee is; the constraints previously satisfied; and the set of
constraints triggered simultaneously.

These rules establish a dependency network between
constraints that can be represented by a graph (Fig. 13) [20].
The nodes 1-15 represent constraints. The relationships
between constraints expressed by this graph can be of
precedence, mutual exclusion, or priority.

For example, prior to the satisfaction of the R1 and R9
constraints (see Table 4), it does not make practical sense to
verify all the other constraints. These two constraints deal
with the need to assure that some preconditions are met in
order to start the restoration process. So, only when they are
satisfied, the remaining constraints will be inserted in the
constraint knowledge base. This relationship is expressed
by the following metarule:

meta_rule(1, satisfied, [2,3,4,5,6,7,8,9,10,11,12,13,14,15], insert).

There is a metarule that states that when the constraint
R14 is violated simultaneously with R7 and R8 (see Table 4),
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Fig. 13. Constraint dependency graph.



only R14 should be addressed because of the didactic

considerations. All the constraints being relevant, the

system chooses to only present the more critical one in

order to limit the student’s cognitive load. This inhibition

relationship is expressed by

meta_rule(14, violated, [7,8], inhibit).

Sometimes, it makes sense to let external events to have

an impact on the set of available constraints. It is the case of

the metarule below, which states that, after the end of the

automatic restoration process, R10 and R13 must be

removed because they are now counterproductive:

meta_rule(restorationFinished, _ , [10,13], remove).

The constraints R10 and R13 deal with restrictions
concerning substations in automatic mode that make no
longer sense when the last task assigned to the operators is
precisely to check all the circuit breakers that should have
been closed by automatic means, but for some reason, are
still open. The end of the automatic restoration process does
not mean then that some manual adjustments are not
needed even in installations normally in automatic mode.

4.4 The Cooperative Learning Environment

This tutor is able to train individual operators as if they were
in a team, surrounded by virtual “operators,” but is also
capable of dealing with the interaction between several
trainees engaged in a cooperative process. It provides
specialized agents to fulfill the roles of the missing operators
and, at the same time, monitors the cooperative work,
stepping in when a serious imbalance is detected. It is not
the first time that a multiagent system is used to support a
cooperative training environment [21]. Our system, never-
theless, not only uses agents to support the cooperative
process of interaction but also includes agents to perform
vital roles in the simulation of the restoration environment.
The tutor can be used as a distance learning tool, with
several operators being trained at different locations.

To support the tutor monitoring activities of the
cooperative discussion and decision processes, several
provisions were made in order to be able to accurately
model the interactions between trainees. The core data
contained in the student model have been complemented
with information concerning the quantity and character-
istics of the interactions detected between trainees. The data
are gathered by the tutor by means of a loose monitoring of
the interaction patterns coupled with a surface-level
analysis of the message contents.

The tutor will be active by its own initiative only if it
detects a clear imbalance in the discussion process or a
continued trend of passive behavior [22]. It may also be called
to step in though by the trainees themselves, if they agree on a
course of action or if they find themselves in an impasse
situation. In the former case, the tutor will use the knowledge
contained in the CBM module to evaluate the divergent
proposals. In the latter case, it will combine the constraint
satisfaction data previously gathered with procedural
knowledge containing the sequence of the specific restora-
tion plan, in order to issue recommendations about the next
step to fulfill. In order to be able to monitor the interaction
between students, the tutor, although lacking natural
language understanding capabilities, requires only a mini-
mal degree of message formalization [23].

The general aspect of the ITS interface is depicted in
Fig. 14. It shows three main areas: the high-voltage transmis-
sion network (bottom-left side), the substation synoptic
description (bottom-right side), and a cooperative work
chatroom (top).

5 CONCLUSIONS

This paper described how an Intelligent Tutoring System can
be used for the training of Power Systems Control Center
operators in two main tasks: Incident Analysis and Diag-
nosis and Service Restoration. Several Artificial Intelligence
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(AI) techniques were joined to obtain an effective Intelligent
Tutoring environment, namely Multiagent Systems, Neural
Networks, Constraint-based Modeling, Intelligent Planning,
Knowledge Representation, Expert Systems, User Modeling,
and Intelligent User Interfaces.

The developed system is used in the training of Electrical
Engineering BSc students who are the prime candidates to
become CC operators. Note that CC operator teams are
frequently renewed because the job is quite demanding,
especially because of the operators’ timetables.

It is quite usual the start of an Engineering career in a
Power Systems company to be done at this level, in order to
have a kind of hands-on experience and understanding of
the Power System technical needs. Now the Intelligent
Tutoring Systems is being used twofold: for training BSc
students that have the possibility to be hired by the Power
System company and to train the hired operators on the job.

It is also important to note that this tutorial environment
has been selected as one of the most important systems
combining AI techniques to be available in the “AI-50
years” Exhibition in Portugal [24], being tried by many
undergraduate students, motivating them for the Electrical
Engineering and Computer Science fields.

Concerning the operators’ training, the most interesting
features of this environment are the following:

1. The connection with SPARSE, a legacy Expert
System used for Intelligent Alarm Processing [4].

2. The use of prediction tables and different granularity
levels for fault diagnosis training.

3. The use of the model tracing technique to capture
the operator’s reasoning.

4. The development of two tools to help the adaptation
of the curriculum to the operator—one that gener-
ates training scenarios from real cases and another
that assists in creating new scenarios.

5. The automatic assignment of the difficulty level to
the problems.

6. The identification of the operators’ knowledge
acquisition factors.

7. The automatic selection of the next problem to be
presented, using Neural Networks.

8. The use of Multiagent Systems paradigm to model
the interaction of several operators during system
restoration.

9. The use of the Constraint-based Modeling technique
in restoration training.

10. The availability of an Intelligent User Interface in the
interaction with the operator.
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